all.dvi

Size: px
Start display at page:

Download "all.dvi"

Transcription

1 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F

2 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan γ =tan = Δδ (4.4) 2 Δz Δδ X 2 Δz γ X 1 4.1: 4.2.,,.,.,.

3 :. t 0, X, X t x, X t 0 t u. u = x X (4.5) t 0 X u x t O 4.3:,,. 1 1 X 1, (1, 0) (a, 0) (X 1,X 2 ) (x 1,x 2 ) u 1,u 2. (b), (c). x 1 = X 1 + ax 1 (4.6) x 2 = X 2 (4.7) u 1 = ax 1 (4.8) u 2 =0 (4.9)

4 32 4 Green-Lagrange x 1 X 2 u 1 X 2 X 2 X 1 X 1 (a) a X1 x 2 X 2 u 2 X 2 X 1 X 1 (b) (c) 4.4: x u 1 1 X 1, (0, 1) (a, 1) (X 1,X 2 ) (x 1,x 2 ) u 1,u 2. (b), (c). x 1 = X 1 + ax 2 (4.10) x 2 = X 2 (4.11) u 1 = ax 2 (4.12) u 2 = 0 (4.13) x 1 X 2 u 1 X 2 X 2 X 1 X 1 X1 x 2 X 2 u 2 X 2 a (a) X 1 X 1 (b) (c) 4.5: x u

5 X 1 X 2, (0, 1) (a, b), (X 1,X 2 ) (x 1,x 2 ) u 1,u 2. (b), (c). x 1 = X 1 + ax 2 (4.14) x 2 = X 2 bx 2 (4.15) u 1 = ax 2 (4.16) u 2 = bx 2 (4.17) x 1 X 2 u 1 X 2 X 2 b X 1 X 1 a X1 x 2 X 2 u 2 X 2 (a) X 1 X 1 (b) (c) 4.6: x u.,, t 0. {(X 1,X 2 ) 0 X 1 1, 0 X 2 1}., X 1,X 2..,,,,..

6 34 4 Green-Lagrange 4.3,,,,. M 4.7:,,,.,.,. 4.8:,, 2,,.,., 2. dx, 2 X 1 = X (4.18) X 2 = X + dx (4.19)

7 ,. x 1 = X 1 + u(x 1 )=X + u(x) (4.20) x 2 = X 2 + u(x 2 )=X + dx + u(x + dx) (4.21) X + dx + u(x)+ u dx j X j (4.22) dx = x 2 x 1 2 dx = dx + u X j dx j (4.23) dx dx = dx i dx i (4.24) ( = dx i + u )( i dx j dx i + u ) i dx k (4.25) X j X k, u i X j = dx i dx i + u i X j dx j dx i + u i X k dx k dx i + u i X j u i X k dx j dx k (4.26) u i X k 2, dx dx dx i dx i + u i dx j dx i + u i dx k dx i (4.27) X j X k ( ui = dx dx + + u ) j dx i dx j (4.28) X j X i ε ij. ε ij = 1 ( ui + u ) j 2 X j X i (4.29) 2. dx dx dx dx =2ε ij dx i dx j (4.30) 4.1. u 1 = ax 1, u 2 =0 ε 11 = 1 ( u1 + u ) 1 2 X 1 X 1 = 1 (a + a) =a 2

8 36 4 Green-Lagrange u 1 = ax 1, u 2 =0 ε 12 = 1 ( u1 + u ) 3 2 X 2 X 1 = 1 2 (a) =a 2 γ γ =2ε 12 (4.31) , u X,,., +, 1., ε 12 = ε 21. u 1 = ax 2 (4.32) u 2 = bx 2 (4.33) ε 11 = 1 (0 + 0) = 0 (4.34) 2 ε 12 = 1 2 (a +0)= a 2 ε 21 = 1 2 (0 + a) = a 2 (4.35) (4.36) ε 22 = 1 ( b b) =b (4.37) 2, 2, u 1 = ax1 2 (4.38) u 2 = 0 (4.39) ε 11 = 1 2 (2aX 1 +2aX 1 )=2aX 1 (4.40) ε 12 = 1 (0 + 0) = 0 2 (4.41) ε 21 = 1 (0 + 0) = 0 2 (4.42) ε 22 = 1 (0 + 0) = 0 2 (4.43)., ε ij, t 0 X.,., ε ij., u X, u 1 = a 1,u 2 = a 2, u i X j =0 ε ij =0.

9 X 1,X 2 θ, { } [ ]{ } { } x 1 cos θ sin θ X 1 X 1 cos θ X 2 sin θ = = (4.44) x 2 sin θ cos θ X 2 X 1 sin θ + X 2 cos θ u i = x i X i { } { } u 1 X 1 (cos θ 1) X 2 sin θ = X 1 sin θ + X 2 (cos θ 1) u 2 [ ] cos θ 1 0 [ε] = 0 cosθ 1 (4.45) (4.46), 2,,.,,. θ 0 cos θ 1,. [ε] = [ ] [ cos θ cosθ ] (4.47),,., = Δt (4.48).,, Δt,. n x X u θ u X 4.9:

10 38 4 Green-Lagrange θ cos θ 1, sin θ θ (4.49), X 1. X 1 (X 1,X 2 ). n,.,, x = X + u = X + θn X (4.50) u = θn X (4.51) u 1 = θ(n 2 X 3 n 3 X 2 ) (4.52) u 2 = θ(n 3 X 1 n 1 X 3 ) (4.53) u 3 = θ(n 1 X 2 n 2 X 1 ) (4.54) u 1 u 1 u 1 =0, = n 3, = n 2 X 1 X 2 X 3 (4.55) u 2 u 2 u 2 = n 3, =0, = n 1 X 1 X 2 X 3 (4.56) u 3 u 3 u 3 = n 2, = n 1, = 0 X 1 X 2 X 3 (4.57) u 1 X 2 = u 2 X 1, u 2 X 3 = u 3 X 2, u 3 X 1 = u 1 X 3 (4.58) ε ij = 0 (4.59), ε ij =0.,, ε ij = Green-Lagrange, θ ε ij =0..,

11 4.4. Green-Lagrange 39 dx, 2 X 1 = X, X 2 = X + dx,. x 1 = X 1 + u(x 1 )=X + u(x) (4.60) x 2 = X 2 + u(x 2 )=X + dx + u(x + dx) (4.61) X + dx + u(x)+ u dx j X j (4.62) dx = x 2 x 1 dx = dx + u X j dx j (4.63), 2 2 u i X j. u i X k dx dx = dx i dx i (4.64) ( = dx i + u )( i dx j dx i + u ) i dx k (4.65) X j X k = dx i dx i + u i X j dx j dx i + u i X k dx k dx i + u i X j u i X k dx j dx k (4.66).,, (4.66) 2,3,4 ( ui dx dx = dx dx + + u j + u ) k u k dx i dx j (4.67) X j X i X i X j ε ij E ij. E ij = 1 ( ui + u j + u ) k u k 2 X j X i X i X j (4.68) dx dx dx dx =2E ij dx i dx j (4.69), dx dx dx dx 2ε ij dx i dx j (4.70). E ij =0, ε ij..

12 40 4 Green-Lagrange { u 1 u 2 } { = X 1 (cos θ 1) X 2 sin θ X 1 sin θ + X 2 (cos θ 1), (4.68), E ij. E 11 = 1 ( u1 + u 1 + u ) k u k 2 X 1 X 1 X 1 X 1 = 1 ( u1 + u 1 + u 1 u 1 + u 2 u 2 + u ) 3 u 3 2 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 } (4.71) (4.72) (4.73) = 1 2 { (cos θ 1) + (cos θ 1) + (cos θ 1) 2 +sin 2 θ +0 } (4.74) = 0 (4.75) E 22 = 1 ( u2 + u 2 + u ) k u k 2 X 2 X 2 X 2 X 2 = 1 ( u2 + u 2 + u 1 u 1 + u 2 u 2 + u ) 3 u 3 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 (4.76) (4.77) = 1 2 { (cos θ 1) + (cos θ 1) + ( sin θ) 2 +(cosθ 1) 2 +0 } (4.78) = 0 (4.79) E 12 = 1 ( u1 + u 2 + u ) k u k 2 X 2 X 1 X 1 X 2 = 1 ( u1 + u 2 + u 1 u 1 + u 2 u 2 + u ) 3 u 3 2 X 2 X 1 X 1 X 2 X 1 X 2 X 1 X 2 (4.80) (4.81) = 1 { sin θ +sinθ +(cosθ 1)( sin θ) sin θ(cos θ 1) + 0} 2 (4.82) = 0 (4.83) E 21 = E 12. 2,. Green-Lagrange. 4.5 Green- Lagrange.

13 , u 1 = ax 1, u 2 =0, u 3 = 0 (4.84)., 2, 2.,,, 10. u 1 = ax 1, u 2 = νax 1,u 3 = νax 1 (4.85). ν Poisson. ε 11,E 11 ε 11 = 1 (a + a) =a 2 (4.86) E 11 = 1 ( ) a + a + a 2 = 1 ( ) 2a + a (4.87)., 1 L 1 l. u = l L ε 11 = u L E 11 = 1 ( ) l 2 2 L 1 2 (4.88) (4.89).. l =1.01L, E 11 = ,ε 11 =0.01,. l =1.1L, E 11 =0.105,ε 11 =0.1. l =2L, E 11 =1.5,ε 11 =1.,,. 2,. u 1 X 2 = γ 0 (4.90) 0. u 1 = γx 2 (4.91) 0.,.. u 1 / X 2 = γ.

14 42 4 Green-Lagrange X 2 X : [ ] ε = 1 0 γ 2 γ 0 (4.92),, Green-Lagrange E [ ] E = 1 2 (F T F I) = 1 0 γ, (4.93) 2 γ γ Green-Lagrange 1 1 X 1 a θ Green-Lagrange. X 2 θ 1 a X : (X 1,X 2 ) (x 1,x 2 ) { } { } x 1 (1 + a)x 1 = X 2 x 2 (4.94)

15 4.6. Green-Lagrange 43 (x 1,x 2) θ (x 1,x 2 ) { } [ ]{ } { } { } x 1 cos θ sin θ x 1 x 1 = = cos θ x 2 sin θ (1 + a)x 1 cos θ X 2 sin θ x 2 sin θ cos θ x 2 x 1 sin θ + x 2 cos θ = (1 + a)x 1 sin θ + X 2 cos θ (4.95) u 1,u 2 { } { } u 1 X 1 ((1 + a)cosθ 1) X 2 sin θ = (4.96) X 1 (1 + a)sinθ + X 2 (cos θ 1) u 2. Green-Lagrange E 11 = 1 ( u1 + u 1 + u ) k u k (4.97) 2 X 1 X 1 X 1 X 1 = 1 ( u1 + u 1 + u 1 u 1 + u 2 u 2 + u ) 3 u 3 (4.98) 2 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 = 1 { ((1 + a)cosθ 1) + ((1 + a)cosθ 1) + ((1 + a)cosθ 1) 2 +(1+a)sin 2 θ +0 } 2 (4.99) = 1 2 (2a + a2 ) (4.100) E 22 = 1 ( u2 + u 2 + u ) k u k 2 X 2 X 2 X 2 X 2 = 1 ( u2 + u 2 + u 1 u 1 + u 2 u 2 + u ) 3 u 3 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 (4.101) (4.102) = 1 2 { (cos θ 1) + (cos θ 1) + ( sin θ) 2 +(cosθ 1) 2 +0 } (4.103) = 0 (4.104) E 12 = 1 ( u1 + u 2 + u ) k u k 2 X 2 X 1 X 1 X 2 = 1 ( u1 + u 2 + u 1 u 1 + u 2 u 2 + u ) 3 u 3 2 X 2 X 1 X 1 X 2 X 1 X 2 X 1 X 2 (4.105) (4.106) = 1 { sin θ +(1+a)sinθ + ((1 + a)cosθ 1)( sin θ)+(1+a)sinθ(cos θ 1) + 0} 2 (4.107) = 0 (4.108)

16 44 4 Green-Lagrange, Green-Lagrange.,., Green-Lagrange,. Green-Lagrange.

17 45 5 Cauchy.,,,,., σ.,, 3,,. 5.1?,,,,,,,.,,,. 5.1:,,.,,,

18 46 5 Cauchy.,,,,,.,,,,,.,,,,,,.,.,,,,.,.,, (a) (b),,,.,,,,,. (a) (b) (c) 5.2: 5.2 Cauchy.,.

19 5.2. Cauchy 47.,,,.,, F., Q,.,,.,,., Newton,. F F F Q F Q 5.3:, n. n., ds df n ( 5.2). df n n df(n), df n., t n. t n = df n (5.1) ds

20 48 5 Cauchy t l n mds df n 5.4:,,,,.. t n n.,,,. x 1. x 2 x 3 x 1 e 1, t 1 = F /A., x 1 x 2, x 3 e 3, t 3 =0. : n = e 1 t 1 =1 e 1 +0 e 2 +0 e 3 : n = e 2 t 2 =0 e 1 +0 e 2 +0 e 3 : n = e 3 t 3 =0 e 1 +0 e 2 +0 e 3 (5.2) x 3 x 2 F A x 1 n t 1 = F /A n t 3 =0 5.5:

21 5.3. Cauchy 4 Cauchy 49, n e 1, e 2, e 3, t 1, t 2, t 3. t 1, t 2, t 3 T ij. t 1 = T 11 e 1 + T 12 e 2 + T 13 e 3 (5.3) t 2 = T 21 e 1 + T 22 e 2 + T 23 e 3 (5.4) t 3 = T 31 e 1 + T 32 e 2 + T 33 e 3 (5.5) t i = T ij e j (5.6) T ij,, T 11,T 22,T 33, T 12,T 21,T 23,T 32,T 31,T ,,, (5.2)., 0,,, 2. : n = e 1 t 1 =0 e 1 +1 e 2 +0 e 3 : n = e 2 t 2 =0 e 1 +0 e 2 +0 e 3? : n = e 3 t 3 =0 e 1 +0 e 2 +0 e 3? (5.7) T ij e i e j T = T ij e i e j (5.8) Cauchy. Cauchy. Cauchy 2,,,.,. 5.3 Cauchy 4 Cauchy,,, Cauchy t n = T T n (5.9)

22 50 5 Cauchy. (5.15), T t i = T ij e j (5.10). (5.10), (5.15). 4 (Cauchy 4 ),. ABC n, t n. t n ABC,. Δs, t n ds = t n Δs (5.11) ABC., e 1, e 2, e 3 ABC t 1, t 2, t 3., OCB, OAC, OBA, OCB, OAC, OBA Δs 1, Δs 2, Δs 3 t 1 ds = t 1 Δs 1, t 2 ds = t 2 Δs 2, t 3 ds = t 3 Δs 3 (5.12) OCB OAC OBA x 3 x 2 C B t n t 1 Δs Δs 1 O Δs 3 Δs 2 A x 1 t 2 t 3 ρ, Δv, a, g, Cauchy 4. ρ(a g)δv = t n Δs t 1 Δs 1 t 2 Δs 2 t 3 Δs 3 (5.13)

23 5.3. Cauchy 4 Cauchy 51,., 4, 4. Δs, Δv/Δs Δs i /Δs = n i (5.14), n = n i e i Δs 1 t n = t 1 Δs + t Δs 2 2 Δs + t Δs 3 3 Δs = t i n i = T ij e j n i = T ij (e j e i )n k e k = T T n (5.15) Cauchy., T T n t n. Cauchy (5.15), (e i e j ) e k = δ jk e i t n = t i n i = T ij e j n i = T ij e j δ ik n k = T ij (e j e i )n k e k = T T n 5.3. A, B, C {a, 0, 0}, {0,b,0},{0, 0,c} CA = a, CB = b n a, b a 0 bc a b = 0 b = ca, n = 1 bc ca (5.16) c c ab b2 c 2 + c 2 a 2 + a 2 b 2 ab Δs 1 = 1 2 bc, Δs 2 = 1 2 ca, Δs 3 = 1 2 ab, Δs = 1 2 a b, Δs = 1 2 b2 c 2 + c 2 a 2 + a 2 b 2 (5.17) n 1 = Δs 1 Δs, n 2 = Δs 2 Δs, n 3 = Δs 3 Δs (5.18)

24 52 5 Cauchy,, n a, b 2 ΔS(= 2Δs. a, b θ, a b sin θ ΔS = a b sin θ = a b 1 cos 2 θ (5.19) { } 2 a b = a b 1 = a a b 2 b 2 (a b) 2 (5.20) = (a 2 + c 2 )(b 2 + c 2 ) c 4 = a 2 b 2 + c 2 a 2 + b 2 c 2 (5.21) 5.4,.. T 11 T 12 T 13 T 21 T 22 T 23 (5.22) T 31 T 32 T 33,, e i e j,,,,.. T 1, T 2, T 3, ē i, T 11 T 12 T T T 21 T 22 T 23 = 0 T2 0 T 31 T 32 T T3 (5.23),, T ij e i e j = T i ē i ē i (5.24) = T 1 ē 1 ē 1 + T 2 ē 2 ē 2 + T 3 ē 3 ē 3 (5.25),. T 11 ε x ε 11 T 22 ε y = ε 22 T 12 γ xy 2ε 12 (5.26)

25 5.5., 53,. {ε x,ε y,γ xy },...,,,,. 5.5,, 9.,.., σ y,, σ y.., σ ij σ = ( ) σ ij σ ij (5.27) σ ij = σ ij 1 3 σ kkδ ij (5.28) = σ ij 1 3 (σ 11 + σ 22 + σ 33 )δ ij (5.29),,,.,.

26 54 6 Gauss Cauchy 1 Gauss,,,.,., Cauchy Gauss, Cauchy 1., Navier-Stokes. Cauchy 1 Newton Navier-Stokes., Cauchy Cauchy Gauss Gauss ρ v S ds ds v v ds ( (a) ) ds n v ds = n vds

27 6.1. Gauss 55 ds n v v n ds n v n v ds v θ ds (a) (b) (c) (d) n (b) n v (c) n v θ v cos θ n =1 n v = n v cos θ n v n vds (d) v n cos θ<0 n v < 0 S S ρn vds (6.1) S v a n ads (6.2) S V V S a S S S V V μ(v ) μ(v )= n ads (6.3) μ(v ) V V = V 1 + V 2 S μ(v )=μ(v 1 + V 2 )=μ(v 1 )+μ(v 2 ) (6.4)

28 56 6 Gauss Cauchy 1 n 1 n 2 V 1 V 2 dv μ(dv ) dv a diva diva = dμ (6.5) dv V V divadv = V V divadv = Gauss dμ dv = μ(v ) (6.6) dv S n ads (6.7) 6.2 diva dx 1,dx 2,dx 3 P (x 1,x 2,x 3 ), Q 1 (x 1 +dx 1,x 2,x 3 ), Q 2 (x 1,x 2 +dx 2,x 3 ), Q 3 (x 1,x 2,x 3 +dx 3 ) PQ 1,PQ 2,PQ 3 3 dv diva divadv =divadx 1 dx 2 dx 3 (6.8) V n ads a S x 1 P, Q 1 a = a(x 1,x 2,x 3 ), a 1 = a(x 1 + dx 1,x 2,x 3 ) dx 1 a 1 (x 1 + dx 1,x 2,x 3 )=a 1 (x 1,x 2,x 3 )+ a 1 dx 1 x 1 (6.9) a 2 (x 1 + dx 1,x 2,x 3 )=a 2 (x 1,x 2,x 3 )+ a 2 dx 1 x 1 (6.10) a 3 (x 1 + dx 1,x 2,x 3 )=a 3 (x 1,x 2,x 3 )+ a 3 x 1 dx 1 (6.11)

29 n P n =( 1, 0, 0), Q 1 n 1 =(1, 0, 0) dx 2 dx 3 n ads S x 1 ( n adx 2 dx 3 + n 1 a 1 dx 2 dx 3 = a 1 dx 2 dx 3 + a 1 + da ) 1 dx 1 dx 2 dx 3 (6.12) dx 1 = da 1 dx 1 dx 1 dx 2 dx 3 (6.13) a a 1 n Q 3 n 1 Q 2 P Q 1 x 2,x 3 ( a1 n ads = + a 2 + a ) 3 dx 1 dx 2 dx 3 (6.14) x 1 x 2 x 3 S V divadv =divadx 1 dx 2 dx 3 (6.15) Gauss n ads = divadv S V ( a1 divadx 1 dx 2 dx 3 = + a 2 + a ) 3 dx 1 dx 2 dx 3 (6.16) x 1 x 2 x 3 diva diva = a 1 x 1 + a 2 x 2 + a 3 x 3 (6.17), Hamilton (nabla) x = x i e i (6.18) x a = a 1 x 1 + a 2 x 2 + a 3 x 3 =diva (6.19) Gauss x adv = n ads (6.20) V S

30 58 6 Gauss Cauchy Gauss Gauss (6.20) a 1 + a 2 + a 3 dv = n 1 a 1 + n 2 a 2 + n 3 a 3 ds (6.21) V x 1 x 2 x 3 S a 1,a 2,a 3 T 1j,T 2j,T 3j (j =1, 2, 3) T 1j + T 2j + T 3j dv = n 1 T 1j + n 2 T 2j + n 3 T 3j ds (6.22) V x 1 x 2 x 3 S T ij dv = n i T ij ds (6.23) x i V e j T ij e j dv = n i T ij e j ds (6.24) V x i S e k T ij e i e j dv = n k e k T ij e i e j ds (6.25) V x k S x T dv = n T ds = T T nds (6.26) V (6.21) T j1,t j2,t j3 (j =1, 2, 3) T x dv = T nds (6.27) V (6.26) ( ) (6.27) ( ) S S S S 6.4 Cauchy (6.26) T Cauchy 2 T T n 0 T T nds + b ρadv = 0 (6.28) S V

31 6.5. Cauchy 1 59 (6.26) (6.28) 1 ( x T + b ρa)dv = 0 (6.29) V ρa = x T + b (6.30) Cauchy 1 ρa j = T ij x i + b j (6.31) j 6.1 (6.30) x = x i e i 1 x T = x i e i T kl e k e l = T il x i e l = T ij x i e j Tji x j e i Cauchy 1 Cauchy 1 Gauss Cauchy 1 Gauss dx 1,dx 2 P (x 1,x 2 ), Q 1 (x 1 + dx 1,x 2 ), Q 2 (x 1,x 2 + dx 2 ) PQ 1,PQ 2 2 x 1 P, Q 1 t 1 n = P n =( 1, 0, 0),Q 1 n 1 =(1, 0, 0) t 1 (x 1,x 2 )= T 11 (x 1,x 2 )e 1 T 12 (x 1,x 2 )e 2 (6.32) t 1 (x 1 + dx 1,x 2 )=T 11 (x 1 + dx 1,x 2 )e 1 + T 12 (x 1 + dx 1,x 2 )e 2 (6.33)

32 60 6 Gauss Cauchy 1 dx 1 T 11 (x 1 + dx 1,x 2 )=T 11 + T 11 dx 1 x 1 (6.34) T 12 (x 1 + dx 1,x 2 )=T 12 + T 12 dx 1 x 1 (6.35) x 2 T 22 + T 22 x 2 dx 2 T 21 + T 21 x 2 dx 2 T 12 + T 12 x 1 dx 1 T 11 T 11 + T 11 x 1 dx 1 T 12 T 21 T 22 x 1 ( T 11 dx 2 + T 11 + T ) ( 11 dx 1 dx 2 T 21 dx 1 + T 21 + T ) 21 dx 2 dx 1 = 0 (6.36) x 1 x 2 dx 1 dx 2 x 2 T 11 x 1 dx 1 dx 2 + T 21 x 2 dx 2 dx 1 = 0 (6.37) T 11 x 1 + T 21 x 2 = 0 (6.38) T 12 x 1 + T 22 x 2 = 0 (6.39) T ij x i = 0 (6.40)

33 T 22 T Cauchy Cauchy 2 Cauchy 2 Cauchy T = T T (6.41) T 22 + T 22 x 2 dx 2 T 21 + T 21 x 2 dx 2 T 11 T 12 T 12 + T 12 x 1 dx 1 T 11 + T 11 x 1 dx 1 T 21 T22 T 11,T 22 T 12 T 11 T 12 T 11 T 21 T22 T 12 dx 2 dx 1 2 2=T 21dx 1 dx (6.42) T 12 = T 21 (6.43) Cauchy

34 Cauchy x X Cauchy 1 Cauchy x X 2.4 x X 4 Green-Lagrange u X Cauchy 1 x X Cauchy 1,2Piola-Kirchoff 11.1 Cauchy 1 ρa j = T ij x i + ρg j (11.1) T ij ρ m, v ρ = m v (11.2) u. X i dx i dx i dx 1,dX 2,dX 3 V = dx 1 dx 2 dx 3 6 v

35 Cauchy x X dx 3 dx 3 dx 2 dx 2 dx 1 dx 1 dx i,dx i dx 1 = x 1 dx 1 + x 1 dx 2 + x 1 dx 3 X 1 X 2 X 3 (11.3) dx 2 = x 2 dx 1 + x 2 dx 2 + x 2 dx 3 X 1 X 2 X 3 (11.4) dx 3 = x 3 dx 1 + x 3 dx 2 + x 3 dx 3 X 1 X 2 X 3 (11.5) dx 1 dx 2 dx = 3 e i x 1 X 1 x 1 X 2 x 1 X 3 x 2 X 1 x 2 X 2 x 2 X 3 x 3 X 1 x 3 X 2 x 3 X 3 dx 1 dx 2 dx 3 (11.6) dx 1 = x 1 dx 1 e 1 + x 1 dx 2 e 2 + x 1 dx 3 e 3 X 1 X 2 X 3 (11.7) dx 2 = x 2 dx 1 e 1 + x 2 dx 2 e 2 + x 2 dx 3 e 3 X 1 X 2 X 3 (11.8) dx 3 = x 3 dx 1 e 1 + x 3 dx 2 e 2 + x 3 dx 3 e 3 X 1 X 2 X 3 (11.9) V = dx 1 dx 2 dx 3 x 1 x X 1 dx 1 x 1 X 2 dx 1 2 X 3 dx x 1 x 1 x 1 3 X x v = 2 x X 1 dx 2 x 1 X 2 dx 2 1 X 2 X 3 x 2 X 3 dx 3 = 2 x 2 x 2 x 3 x X 1 dx 3 x 1 X 2 dx 3 X 1 X 2 X 3 dx 2 X 3 dx 3 x 3 x 3 x 3 1 dx 2 dx 3 = JV (11.10) X 1 X 2 X 3 ρ 0 = Jρ, ρ = 1 J ρ 0 (11.11) 11.1 a, b, c (a b) c a b a 1 b 1 e 1 a b = a 2 b 2 e 2 a 3 b 3 e 3 =(a 2b 3 a 3 b 2 )e 1 +(a 3 b 1 a 1 b 3 )e 2 +(a 1 b 2 a 2 b 1 )e 3 (11.12)

36 11.2. x X? 105 (a b) c (a b) c =(a 2 b 3 a 3 b 2 )c 1 +(a 3 b 1 a 1 b 3 )c 2 +(a 1 b 2 a 2 b 1 )c 3 (11.13) = a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 a 1 b 3 c 2 + a 2 b 1 c 3 + a 3 b 2 c 1 (11.14) a 1 b 1 c 1 = a 2 b 2 c 2 (11.15) a 3 b 3 c x X? A det A A ij Cayley-Hamilton det A A kl =(deta)a 1 lk (11.16) 11.2 A ij B ij det A (11.18) A A 1 ij = 1 det A B ij (11.17) (det A)A 1 ij = B ij (11.18) (det A)δ ij = A im B mj (11.19) i = j det A = A im B mi A kl (11.19) 11.2 (11.16) J x i det A = δ ik δ ml B mi = B lk A kl (11.20) =detaa 1 lk (11.21) J = J x i 2 x k X m X l X m x i X l x k (11.22)

37 Cauchy x X J x i = J F kl F kl x i = J X l x k 2 x k X m = J X m X l x i = JF 1 F kl lk x k = J X l x i X l x k (11.23) x i X m x k (11.24) X m x i X l X l x k (11.25) ( J 1 x ) i = 0 (11.26) x i X j 11.4 x i ( J 1 x ) i 2 J x i = J X j x i + J 1 2 x i (11.27) X j x i X j = J 1 2 x k X m X l x i + J 1 2 x i X m (11.28) X m X l x i x k X j X m X j x i = J 1 2 ( ) x k Xm x i Xl + J 1 2 x i X m (11.29) X m X l x i X j x k X m X j x i = J 1 2 x k X m X l + J 1 2 x i X m X m X l X j x k X m X j x i (11.30) = J 1 2 x k X l δ mj + J 1 2 x i X m X m X l x k X m X j x i (11.31) = J 1 2 x k X l + J 1 2 x i X m X j X l x k X m X j x i (11.32) = 0 (11.33) 11.4 P A A 0 Cauchy Piola-Kirchhoff Cauchy n ds df t n = df n ds, t n = T T n (11.34)

38 11.2. x X? 107 ds df n ds ds t = df n ds, t = Π T N (11.35) Π N n n = Π N df n t 0 df n N df n n ds ds t Nauson nds =(detf )F T NdS (11.36) F T N =(detf )NdS (11.37) df n = Π T NdS = 1 J ΠT F T nds (11.38) Cauchy df n /ds = t n = T T n T = 1 J F Π, Π = JF 1 T (11.39) T Π

39 Cauchy x X Piola-Kirchhoff Piola-Kirchhoff df n F 1 ds t = F 1 df n ds = F 1 t, t = S T N (11.40) S F df n F 1 S Nanson f n = F S T NdS = 1 J FST F T nds (11.41) Cauchy df n /ds = t n = T T n S T = 1 J F S F T, S = JF 1 TF T (11.42) t 0 N F 1 df n t n df n ds ds F 1

40 225 20? 20.1, A [B]. [B] A Ω, Ω Ω, Ω Ω D. t, ρg, u V., ρ, g, V. A t Ω D ρg Ω 20.1: [B] t, g, u V.

41 226 20? [[1]] (Cauchy 1 ) x T + ρg = 0 (20.1) X (S F ) T + ρ 0 g = 0 (20.2) [[2]] u = u on Ω D (20.3) T T n = t on Ω Ω D (20.4) ( S F T ) T N = t (20.5) [[3]] [[4]] [1], [2] [4] [3] [4] T T, u U. Ť T, ǔ U,. ( x Ť + ρg) ǔ dv = 0 (20.6) v,., s t,s u t, u s, s = s t + s u. Ť :(ǔ x )dv = t ǔ ds + n Ť u ds + ρg ǔdv (20.7) v s t s u v, s u w =0 w W. ǔ U, w W ǔ + w U. Cauchy T,. T :(ǔ x )dv = t ǔ ds + n T u ds + ρg ǔdv (20.8) v s t s u v T : {(ǔ+w) x }dv = t (ǔ+w)ds+ n T uds+ ρg (ǔ+w)dv (20.9) v s t s u v Cauchy T,. T :(ǔ x )dv = t ǔ ds + n T u ds + ρg ǔdv (20.10) v s t s u v

42 T : {(ǔ+w) x }dv = t (ǔ+w)ds+ n T uds+ ρg (ǔ+w)dv (20.11) v s t s u v. T :(w x )dv = t w ds + ρg wdv (20.12) v s t v. T : δa (L) dv = t w ds + v δv v ρg w dv (20.13) δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j (20.14) 2 x j x i S : δe dv = t w ds + ρg w dv (20.15) δe = F T δa L F V v δv T : δa L dv V dv = V v V S : δedv (20.16) 1 dv (20.17) J T = 1 J F S F T S ij = JF 1 im T mnf 1 jn (20.18) (F T δa L F ) ij = F ki δa Lkl F lj = x { ( k 1 δuk + δu )} l xl X i 2 x l x k X j = 1 ( xk δu k x l + x ) k δu l x l 2 X i x l X j X i x k X j = 1 ( xk δu k + x ) l δu l 2 X i X j X i X j = 1 {( ) u k δuk δ ki + δu l 2 X i X j X j = 1 ( δui + δu j + δu k 2 X j X i X i ( )} u k δ li X i u k X j + u k X i δu k X j = δe ij (20.19) )

43 228 20? V S : δedv = (F T δa L F ):(JF 1 T F T ) 1 v J dv = J(F ki δa Lkl F lj )(F 1 im T mnf 1 jn ) 1 v J dv = δ km δ ln A Lkl T mn dv v = T : δa L dv (20.20) v 20.3 T ij δe ij dv (20.21) T ij δe ij = {δe}{t } = {δu} T [B][D][B]{u} (20.22) {δe} =[B]{δu} (20.23) {T } =[D]{E} =[D][B]{u} (20.24) S ij δe ij dv (20.25) S ij δe ij = {δe}{s} = {δu} T [B]{S} (20.26) {δe} {δu} u {S} {E} {E} u E = 1 ( ui + u j + u ) k u k e i e j (20.27) 2 X j X i X i X j δe = 1 ( δui + δu j + δu k u k + u ) k δu k (20.28) 2 X j X i X i X j X i X j

44 Newton-Raphson Cauchy Cauchy 2Piola-Kirchhoff Newton-Raphson Newton-Raphson Newton-Raphson y = x 2 y =2, 3,, 10 x>0 a f(x)

45 Newton-Raphson f(x) =a (21.1) x a f(x) a a 10 0 <a 1 <a 2 < <a 10 = a a 1 x 1 a 2 x 2 x 9 a 10 (= a) x a a i 1.1 x (i) r r = a f ( x (i)) (21.2) x r =0 x (i) x (i) x r 1 r =0 a = 2 a 2 2 OS 2 2 bit r =0 ɛ ( ) r <ɛ x (i) x ɛ 15 ɛ = ɛ = ɛ r <ɛ x (i) 1.2 x (i) Δx x (i) k+1 = x k +Δx i (21.3)

46 k x k k +1 x k+1 a (i) x (i) k+1 = x k +Δx a (i) (21.4) Newton-Raphson f(x) f(x) f(x) 2.Newton-Raphson f (x) Newton-Raphson Newton-Raphson Newton [x, x + dx] Δx [x, x +Δx] f(x) a 1 f(x) =a 1 x 1 f(x) =a 2 x 2 x (1) 2 f (x 1 )Δx (1) 1 = a 2 f(x 1 ) (21.5) Δx (1) 1 1 = f (x 1 ) (a 2 f(x 1 )) (21.6) x (1) 2 = x 1 +Δx (1) 1 (21.7)

47 Newton-Raphson a 2 f(x (1) a 2 f(x (1) 2 ) 2 ) 2 ) f(x (2) a 2 f(x 1 ) Δx (2) 2 a 2 f(x (1) 2 ) a 1 Δx (1) 1 a 1 x 1 x (1) x (1) 2 x 1 x (2) 2 2 r (1) 2 r (1) 2 = a 2 f(x (1) 2 ) (21.8) r (1) 2 r x (2) 2 f (x (1) 2 )Δx(2) 2 = a 2 f(x (1) 2 ) (21.9) 1 Δx (2) 2 = f (x (1) 2 ) (a 2 f(x (1) 2 )) (21.10) x (2) 2 = x (1) 2 +Δx (2) 2 (21.11) x (i) 2 x(i+1) 2 f (x (i) 2 )Δx(i+1) 2 = a 2 f(x (i) 2 ) (21.12) 1 Δx (i+1) 2 = f (x (i) 2 ) (a 2 f(x (i) 2 )) (21.13) r (i+1) 2 <ε x (i+1) 2 = x (i) 2 +Δx (i+1) 2 (21.14) r (i+1) 2 = a 2 f(x (i+1) 2 ) (21.15)

48 Newton-Raphson 2 y = x 2 x 1 =1,y 1 =1 x =0,y =0 0 f (0) = 0 Newton-Raphson x 0 f (0) = 0 a 2 =2,x 1 =2 f(x) =x 2, df (x) dx =2x (21.16) df (1) dx =2, 2Δx(1) 1 =2 1 (21.17) Δx (1) 1 = 1 2 (21.18) a 2 =2,x (1) 2 = 3 2 x (1) 2 = x 1 +Δx (1) 1 = = 3 2 df ( 3 2 ) dx =3, f(3 2 )=9 4, 3Δx(2) 2 =2 9 4 =1.5 (21.19) (21.20) Δx (2) 2 = 1 12 (21.21) x (2) 2 = x (1) 2 +Δx (2) 2 = = 17 = (21.22) a 2 =2,x (2) 2 = df ( 17 ) 12 = 17 dx 6, f(17 12 )= , 17 6 Δx(3) 2 = (21.23) Δx (3) 2 = (21.24) x (3) 2 = x (2) 2 +Δx (3) 2 = = 577 = (21.25) a 2 =2,x (3) 2 = df ( ) dx = , f( )= , Δx(4) 2 = (21.26)

49 Newton-Raphson Δx (4) 2 = 1 (21.27) x (4) 2 = x (3) 2 +Δx (4) 2 = = = (21.28) do k =2,10 a k = k do i = 1, 100 df (i 1) k dx x (i) k Δx (i) k = x (i 1) k = a k f(x (i 1) k +Δx (i) k r (i) k = a k f(x (i) k ) if r (i) k <ε convergence flag = 1 exit loop else convergence flag = 0 end if end if convergence flag = 1 write x else write not converged exit end if end ) Δx (i) k i k bug k iincre(index of increment) i iiter(index of interation) nincre niter 1dim.f f(x) f(x) =cx(c )

50 df dx = c cδx = a cx k Δx = 1 c (a cx k) (21.29) x (1) k+1 = x k + 1 c (a cx k)= a c (21.30) r (1) k+1 = a ca c = 0 (21.31) a c K f(x) Ku KΔu = f Ku (21.32) u =0 f(x) Q(u) =f (21.33) Q Newton-Raphson u Newton-Raphson r 1,r 2 x 1,x 2 x i = N (1) (r 1,r 2 )x (1) i + N (2) (r 1,r 2 )x (2) i + N (3) (r 1,r 2 )x (3) i + N (4) (r 1,r 2 )x (4) i (21.34) x 1,x 2 r 1,r 2 Newton-Raphson 2 Jacobi dx 1 = x 1 r 1 dr 1 + x 1 r 2 dr 2 (21.35) dx 2 = x 2 r 1 dr 1 + x 2 r 2 dr 2 (21.36)

51 Newton-Raphson { } dx 1 dx 2 = [ x1 x 1 r 1 r 2 x 2 x 2 r 1 r 2 ]{ } dr 1 dr 2 (21.37) x 1,x 2 r 1 =0,r 2 =0 (x G 1,xG 2 ) x 1,x 2 (x G 1,xG 2 ) Δx <1> 1 = x 1 x G 1 (21.38) Δx <1> 2 = x 2 x G 2 (21.39) x 1,x 2 (x G 1,xG 2 ) (Δx 1, Δx 2 ) (Δr 1, Δr 2 ) Δr 1, Δr 2 { } Δr 1 = Δr 2 [ x1 x 1 r 1 r 2 x 2 x 2 r 1 r 2 ] 1 { } Δx 1 Δx 2 (21.40) r 1 <1> =0+Δr 1 (21.41) r 2 <1> =0+Δr 1 (21.42) (r <1> 1,r <1> 2 ) (x 1,x 2 ) (x 1 x G 1,x 1 x G 1 ) > (x 1 x <1> 1,x 1 x <1> 1 ) (21.43) r 1,r 2

52 T : δa (L) dv = v v t w ds + v ρg w dv (22.1) δa (L), w W Almange. δa (L)ij = 1 2 ( wi + w ) j x j x i (22.2) t 0 S : δe dv = t w ds + ρg w dv (22.3) V V updated Lagrange Total Lagrange Total Lagrange V 22.2 Ω.. Ω = e Ω e (22.4)

53 238 22,,. dω = dω (22.5) Ω e Ω e ds = ds (22.6) Ω e Ω e u N (i), u i. u i = N (n) u (n) i (22.7), u (i) i, (n). X i = N (n) X (n) i (22.8) δr. δr = δu k t k ds +. Ω Ω ρ 0 δu k g k dω (22.9) {δu} = {δu 1,δu 2,δu 3 } T (22.10) {t} = {t 1,t 2,t 3 } T (22.11) {g} = {g 1,g 2,g 3 } T (22.12), δr = {δu} T {t} ds + ρ 0 {δu} T {g} dω Ω Ω = [ ] {δu} T {t} ds + ρ 0 {δu} T {g} dω e Ω e Ω e (22.13).

54 [N i ]=, 3 3n [N]. {δu (n) } {δu (n) } = N (i) N (i) 0 (22.14) 0 0 N (i) [N] =[[N 1 ][N 2 ] [N n ]] (22.15) { } T δu (1) 1 δu(1) 2 δu(1) 3 δu (n) 1 δu(n) 2 δu(n) 3 (22.16), {δu} =[N] { δu (n)} (22.17), δr = e [ {δu } [ ]] (n) T [N] T {t} ds + ρ 0 [N] T {g} dω Ω e Ω e (22.18) δe ij S ij dω = δr (22.19) δe ij, S ij i, j, Ω δe ij S ij = δe 11 S 11 + δe 22 S 22 + δe 33 S 33 +2δE 12 S 12 +2δE 23 S 23 +2δE 31 S 31 =(δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 )(S 11 S 22 S 33 S 12 S 23 S 31 ) T (22.20),. {δe} = {δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 } T (22.21) {S} = {S 11 S 22 S 33 S 12 S 23 S 31 } T (22.22)

55 240 22, δe ij S ij dω = {δe} T {S} dω Ω Ω = {δe} T {S} dω = δr e Ω e δe ij, δe ij = 1 2 ( δui X j + δu j X i + δu k X i u k + u ) k δu k X j X i X j (22.23) [Z 1 ] 1+ u 1 u X u X X u 0 1 X u 2 u X X 2 0 u u X X u 3 X 3 u 1 X 2 1+ u 1 X u 2 u 2 u X 2 X u 3 X 2 X 1 0 u 0 1 u 1 u X 3 X X 3 1+ u 2 X u 3 u 3 X 3 X 2 u 1 X u 1 u 2 u X 1 X X 1 1+ u 3 X 3 0 u 3 X 1 (22.24) { } { } δu δu1 δu 1 δu 1 δu 2 δu 2 δu 2 δu 3 δu 3 δu T 3 (22.25) X X 1 X 2 X 3 X 1 X 2 X 3 X 1 X 2 X 3,. u i X j {δe} =[Z 1 ] { } δu X (22.26) u i = N(n) u (n) i (22.27) X j X j δu i X j δu i X j = N(n) δu (n) i (22.28) X j

56 { } δu X δu 1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 = N (1) X 1 N (1) X 2 N (1) X 3 N (1) X 1 N (1) N (n) X 1 N (n) X 2 N (n) X 3 N (n) X 1 X 2 N (n) N (1) X 3 N (1) X 1 N (1) X 2 N (1) X 3 X 2 N (n) X 3 N (n) X 1 N (n) X 2 N (n) X 3 δu (1) 1 δu (1) 2 δu (1) 3. δu (n) 1 δu (n) 2 δu (n) 3 (22.29). 9 3n [Z 2 ], { } δu =[Z 2 ]{δu (n) } (22.30) X [B]. [B] [Z 1 ][Z 2 ] (22.31) {δe} =[B]{δu (n) } (22.32) [B (n) ] u 1 N (n) X 2 X 2 + ( ) 1+ u 1 N (n) u 2 N (n) u 3 N (n) X 1 X 1 X 1 X 1 X 1 X 1 ( ) u 1 N (n) X 2 X 2 1+ u 1 N (n) u 3 X 2 X 2 N (n) X 2 X ( ) 2 u 1 N (n) u 2 N (n) X 3 X 3 X 3 X 3 1+ u 3 X 3 ( ) ( ) 1+ u 1 N (n) X 1 X 2 1+ u 2 N (n) X 2 u 1 N (n) X 3 X 2 + u 1 N (n) u 2 N (n) X 2 X 3 X 3 X 2 + ( ) ( ) 1+ u 2 N (n) X 2 X 3 1+ u 3 N (n) X 3 N (n) X 3 X 1 + u 2 N (n) u 3 N (n) X 1 X 2 X 2 X 1 + u 3 N (n) X 1 X 2 ( ) 1+ u 1 N (n) X 1 X 3 + u 1 N (n) u 2 N (n) X 3 X 1 X 1 X 3 + u 2 N (n) u 3 N (n) X 3 X 1 X 1 X 3 + ( ) 1+ u 3 X 3 X 2 + u 3 N (n) X 2 X 3 (22.33) N (n) X 1

57 [B (n) ], [B] = [ [B (1) ] [B (n) ] ] (22.34)., e Ω e {δe}{s} dω = e ] [{δu (n) } T [B] T {S} dω Ω e (22.35) total Lagrange ] [{δu (n) } T [B] T {S} dω = [ ]] [{δu (n) } T [N] T {t} ds + ρ 0 [N] T {g} dω e Ω e e Ω e Ω e (22.36),, Q = [B] T {S} dω (22.37) Ω e F = [N] T {t} ds + ρ 0 [N] T {g} dω (22.38) Ω e Ω e u = { u (n)} (22.39) [ T δuh (Q(u h ) F ) ] = 0 (22.40) e, find u h V h such that [ T δuh (Q(u h ) F ) ] = 0 (22.41) e for δu h V h, Newton-Raphson.

58 Newton-Raphson, K = Q u, dq dt = Q du u dt = K u (22.42),,. ( ) S ij δe ij dv = Ṡ ij δe ij + S ij δėijdω (22.43) Ω C ijkl Hooke Ω S ij = C ijkl E kl (22.44) Ṡ ij = C ijkl Ė kl (22.45) S ij = λ(tre ij )δ ij +2μE ij (22.46) C ijkl = λδ kl δ ij +2μδ ki δ jl (22.47) Ṡ ij δe ij + S ij δėijdω Ω = C ijkl Ė kl δe ij + S ij δėijdω Ω 1 ( = C ijkl Ė kl δe ij + S ij δf ki F kj + F Ω 2 ) ki δf kj dω ) = C ijkl Ė kl δe ij + S ij (δf ki F kj dω Ω S ij, Ė kl k, l (22.48) S ij = C ij 11 Ė 11 + C ij 22 Ė 22 + C ij 33 Ė (C ij 12 + C ij 21 )2Ė (C ij 23 + C ij 32 )2Ė (C ij 31 + C ij 13 )2Ė31 (22.49)

59 C ij kl 1 2 (C ij kl + C ij lk ) (22.50), S. S 11 C C11 22 C11 33 C11 12 C11 23 C11 31 S 22 C S C22 22 C22 33 C22 12 C22 23 C = C C33 22 C33 33 C33 12 C33 23 C33 31 S 12 C C12 22 C12 33 C12 12 C12 23 C12 31 S 23 C C23 22 C23 33 C23 12 C23 23 C23 31 S 31 C C31 22 C31 33 C31 12 C31 23 C31 31 Ė 11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31 (22.51) C ijkl 6 6 [D]. Cijkl, ij, kl, [D].,, {S} = {S 11 S 22 S 33 S 12 S 23 S 31 } T (22.52) {Ė} = {Ė11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31} T (22.53), δe ij S ij dω Ω = δe ij C ijkl Ė kl dω Ω T = {δe} [D]{Ė} dω (22.54) Ω { } { } T u (n) u (1) 1 u (1) 2 u (1) 3 u (n) 1 u (n) 2 u (n) 3 (22.55), {Ė} =[B] { u (n)} (22.56). Ė ij = 1 ( ui + u j + u k u k + u ) k u k 2 X j X i X i X j X i X j, 1 δe ij Ṡ ij dω = [ {δu } (n) T [B] T [D][B]dΩ { ] u (n)} Ω e Ω e (22.57) (22.58)

60 , δf ki S ij F kj S 11 S 12 S 13 δf ki S ij F kj = {δf 11 δf 12 δf 13 } S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 +{δf 21 δf 22 δf 23 } S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 +{δf 31 δf 32 δf 33 } S 21 S 22 S 23 S 31 S 32 S 33 F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 (22.59), [σ] = [Σ] = S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 [σ] [σ] [σ] (22.60) (22.61) {δf} = {δf 11 δf 12 δf 13 δf 21 δf 22 δf 23 δf 31 δf 32 δf 33 } T (22.62) { F } = { F 33 } T (22.63) F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32, δf ki S ij F kj = {δf} T [Σ]{ F } (22.64)

61 246 22, δf ij = δx i X j = δu i X j (22.65) F ij = ẋ i X j = u i X j (22.66), [Z 2 ] { } δu {δf} = =[Z 2 ] { δu (n)} (22.67) X { F } =[Z 2 ] { u (n)} (22.68), δf ki S ij F kj = { δu (n)} T [Z2 ] T [Σ][Z 2 ] { u (n)} (22.69) T [Z 2 ] T [Σ][Z 2 ] { N (i) [A ij ]= X 1 N (i) X 2 } N (i) S 11 S 12 S 13 S 21 S 22 S 23 X 3 S 31 S 22 S 33 [A 11 ] [A 12 ]... [A 1n ]. [A] = [A 21 ] [A n1 ] [A nn ], N (j) X 1 N (j) X 2 N (j) X (22.70) (22.71) [Z 2 ] T [Σ][Z 2 ]=[A] (22.72), 2 δf ki S ij F kj dω = [ {δu } (n) T [A]dΩ { u (n)} ] Ω e Ω e. δe ij Ṡ ij dω + δf ki S ij F kj dω Ω Ω = [ {δu } (n) T ( [B] T [D][B]+[A] ) dω { ] u (n)} e Ω e (22.73) (22.74)

62 ( [B] T [D][B]+[A] ) dω (22.75) Ω e e

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture nabe@sml.k.u-tokyo.ac.jp 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

Report98.dvi

Report98.dvi 1 4 1.1.......................... 4 1.1.1.......................... 7 1.1..................... 14 1.1.................. 1 1.1.4........................... 8 1.1.5........................... 6 1.1.6 n...........................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ ) 1 8 6 No-tension 1. 1 1.1................................ 1 1............................................ 5.1 - [B].................................. 5................................. 6.3..........................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

kou05.dvi

kou05.dvi 2 C () 25 1 3 1.1........................................ 3 1.2..................................... 4 1.3..................................... 7 1.3.1................................ 7 1.3.2.................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information