2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

Size: px
Start display at page:

Download "2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )"

Transcription

1 2011 () () (),,.,,.,, ,.. (. ), 1. ( ). ()(). : obata/,.,. () obata@math.is.tohoku.ac.jp amf/, (! ; ; ) () ()

2 ,, 1. : (), W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, , (Vol. 2!).. W. () : () B. V. Gnedenko: The Theory of Probability and the Elements of Statistics, AMS Chelsea Publishing Co., 6th ed R. Durrett: Probability: Theory and Examples, Duxbury Press, ,.,. 5. (), ,., (, ). 6.,, ,, (), 2000.,. 9. P. (, ) (),, ,. 10. (), (), [1,2]. 2

3 1 1.1 (), (, ),.,.,., 1,.,.,.,,, 1/2. 1,,,,..,,,., 98%, 2%.,,..,...,.,. (,.),,..,,.,,.,,. 1.1: 1, (K. Pearson). 1

4 1.2: 1.3: () A,B 2. A, B, 1, 1. 0, A + B. A,B.,? () (1 ).,? () A,B 2. 1, 1. A,B 0.,, (), ()?. 2

5 1.2.4 (),.,?, (),. 1,? 1.3 ()., x, y, z, t,...., 0 x 1, x 0 1.,,.,,.., X, Y, Z, T,...., X, X {1, 2, 3, 4, 5, 6},. P (X = 1) = P (X = 2) = = P (X = 6) = 1 6,., 1 x. X,., X, X., (), (),, S, S-. S.,,. 1.4, t.,, t {X(t)}, {X n ; n = 1, 2,... }..,,.,, {X(t) ; 0 t T }., t,,,,, (), n Z n., P (Z n = 1) = p, P (Z n = 0) = q. 3

6 , 0 p, q 1 p + q = 1.,, {Z 1, Z 2,... }., n P (Z 1 = ξ 1, Z 2 = ξ 2,..., Z n = ξ n ) = P (Z k = ξ k ) ξ 1, ξ 2,..., ξ n {0, 1}. (= ) p () ( )., t = 0 0,, (H) 1, (T) , : (p = q = 1/2) t = n, n. X n. X n, {Z n }., Z n ±1, P (Z n = 1) = p, P (Z n = 1) = q = 1 p,., n X n = Z k (1.1). {X n } 1. X n, P (X n = 2k n) =., X n. ( ) n p k q n k, k = 0, 1, 2,..., n, (1.2) k 4

7 2 2.1 ()., x, y, z, t,...., 0 x 1, x 0 1.,,.,,.., X, Y, Z, T,...., X, X {1, 2, 3, 4, 5, 6},. P (X = 1) = P (X = 2) = = P (X = 6) = 1 6,., 1 x. X,., X, X., (), (),, S, S-. S.,, X 1,. X {a 1, a 2,... }, X a i P (X = a i ) = p i X., p i = 1, p i 0 (2.1) i. p i = 0, X a i., p i = 0,. 1. ( N ),. 5

8 X, a 1, a 2,... p 1, p 2,.... X., a 1, a 2,... p 1, p 2,... (2.1), 1., µ = i p i δ ai, µ(dx) = i p i δ(x a i )dx,, R , X., X, a P (X = a) 0.,,, P (a X b). P (a X b) = b a f(x)dx, f(x), f(x) X ()., + f(x)dx = 1, f(x) 0, (2.2)., X 0, P (a < X < b)., µ(dx) = f(x)dx (2.3) X., f(x) (2.2), X.,, R 1 A, O X = OA [0, R]. O X a b 2.1: 1 X. 0 < a < R P (X = a). X = a, A O, a C(a).,,., P (X = a) = C(a) πr 2 = 0 πr 2 = 0 6

9 ., C(a), 1, C(a) 0., P (X = a), X., P (a X b). 0 a < b 1,., P (a X b) = πb2 πa 2 πr 2 = b2 a 2 R 2 P (a X b) = 1 R.,, b a 2xdx, 0 < a < b < R, 0, x 0, f(x) = 2x, 0 x 1, 0, x > 1,., x = 1 () ,., X, F (x) = F X (x) = P (X x), x R, X () ((probability) distribution function, pdf). ( R.) , X. X, 0 x < 1 1/6 1 x < 2 F (x) =.. 5/6 5 x < x x 7

10 ,, F (x) x , 0, x < 0, F X (x) = x 2, 0 x 1, 1, x > 1., x < 0 x 1, 0 x 1,. F X (x) = P (X x) = πx2 π = x2 x 2.2: ,, ( ) F (x). (1) () x 1 x 2 F (x 1 ) F (x 2 ). (2) lim F (x) = 0, lim x F (x) = 1. x + (3) () lim ϵ 0 F (x + ϵ) = F (x). X F X (x) , (i) (iii)., F (x) F (x) (),., X F (x), F (x) (). f(x) = F (x) 8

11 . f(x) 0, + f(x)dx = 1., F (x) = x, X [a, b] f(t)dt P (a X b) = F (b) F (a) = b a f(t)dt, a < b. F (x)., P (X = a) = F (a) F (a 0),. 1/6 x x 2.3: ) 2.3, X µ(dx). X, µ X = n p n δ xn µ X (dx) = n p n δ(x x n )dx. x 1, x 2,... p 1, p 2,.... p p p p i x x x x i 9

12 X f(x),. µ(dx) = f(x)dx X (mean value, expectation) E[X] = + xµ(dx). ( X,.) X, E[X] = i x i p i., X f(x), E[X] =., φ(x), E[φ(X)] = + + xf(x)dx φ(x)µ(dx)., m. E[X m ] = + x m µ(dx) X (variance).,. V[X] = + V[X] = E[(X E[X]) 2 ] = E[X 2 ] E[X] 2 (x E[X]) 2 µ(dx) = + ( + ) 2 x 2 µ(dx) xµ(dx) () p, 1, 0, (1 p)δ 0 + pδ 1. p (Bernoulli distribution). p, p(1 p). 10

13 2.4.2 () 0 p 1, n 1, n ( ) n p k (1 p) n k δ k k (binomial distribution), B(n, p). k=0 B(100, 0.4) p n, X, X B(n, p). B(n, p) np, np(1 p) () 0 p 1, p(1 p) k 1 δ k p (geometric distribution). 2 p, (). p 1 p, 1 p () λ > 0, k=0 λ λk e k! δ k λ (Poisson distribution). λ λ, λ () a < b. 1 f(x) = b a, a x b, 0, 2,, k {0, 1, 2,... }, X p(1 p) k δ k k=0., p,.,. 11

14 [a, b] (uniform distribution). [a, b] a + b (b a)2, b a a b x () λ > 0. λe λx, x 0, f(x) = 0, λ. λ λ 1, λ 2. λ x () σ > 0, m R, { } 1 exp (x m)2 2πσ 2 2σ 2 (2.4), m, σ 2 (normal distribution) (Gaussian distribution), N(m, σ 2 )., N(0, 1). 12

15 ,, (2.4).,, m = σ 2 = 1 2πσ 2 1 2πσ (x m)2 x exp { 2σ 2 (x m) 2 exp {, m σ 2. } dx, } (x m)2 2σ 2 dx 1 1 1, X. (1) X,,,. (2) S = πx 2,. 2 L, 2., X, X,,,. 3 a, b, 0 p 1, q = 1 p, 2 pδ a + qδ b. 0, () {0, 1, 2,... } µ = µ. G(z) = (1) µ m σ 2. (2). p k z k k=0 m = G (1), σ 2 = G (1) + G (1) {G (1)} 2 (3). 5 (1) t, +., n = 0, 1, 2, e tx2 dx = + 0 π 2 t, t > 0 x 2n e x2 dx p k δ k, (2) f(x) = ax 2 e x2 a,. k=0 13

16 , 1,0. n Z n, P (Z n = 1) = p, P (Z n = 0) = q = 1 p, 0 < p < 1, (3.1)., p., p n., Z n p. 2, P (Z 1 = 1, Z 2 = 1) = p 2 = P (Z 1 = 1)P (Z 2 = 1), P (Z 1 = 1, Z 2 = 0) = pq = P (Z 1 = 1)P (Z 2 = 0), P (Z 1 = 0, Z 2 = 1) = qp = P (Z 1 = 0)P (Z 2 = 1), P (Z 1 = 0, Z 2 = 0) = q 2 = P (Z 1 = 0)P (Z 2 = 0),., n P (Z 1 = ξ 1, Z 2 = ξ 2,..., Z n = ξ n ) = P (Z k = ξ k ) (3.2)., p Z 1, Z 2,..., (3.2).,.,, Z 1, Z 2,....,, Z n, (3.1). p. 2,,. 3.2, () A 1, A 2,... (pairwise independent), 2 A i1, A i2 (i 1 i 2 ) P (A i1 A i2 ) = P (A i1 )P (A i2 ). 14

17 3.2.2 () A 1, A 2,... (independent), A i1,..., A in (i 1 < i 2 < < i n ) P (A i1 A i2 A in ) = P (A i1 )P (A i2 ) P (A in ) , A B , 2, 3, 4, 5, 6,., 1 2 A, 3 4 B, 5 6 C , 121, 211, , A 1, 10 1 A 2, 1 1 A 3., A 1, A 2, A A 2 A, A,, P (A A) = P (A)P (A)., P (A) = 0 P (A) = 1.,, Ω. (P (A) = 0 A =, P (A) = 1 A = Ω.) A, A # A A c.. (1) 2 A B, A # B #. (2) A 1, A 2,..., A # 1, A# 2,.... (1). (2) () X 1, X 2,..., X i1,..., X in (i 1 < i 2 < < i n ) a 1,..., a n P (X i1 a 1, X i2 a 2,..., X in a n ) = P (X i1 a 1 )P (X i2 a 2 ) P (X in a n ) (3.3)., X 1, X 2,..., a 1, a 2,... A 1 = {X 1 a 1 }, A 2 = {X 2 a 2 },..., A n = {X n a n },... ( 3.2.2). 15

18 X 1, X 2,..., (3.3), P (X i1 = a 1, X i2 = a 2,..., X in = a n ) = P (X i1 = a 1 )P (X i2 = a 2 ) P (X in = a n ) () X 1, X 2, Ω = {(x, y) ; a x b, c y d} 1. x X, y Y, X, Y. 3.4 n X 1, X 2,..., X n X = (X 1, X 2,..., X n ) n ()., F X (x 1, x 2,..., x n ) = P (X 1 x 1, X 2 x 2,..., X n x n ) n F X X = (X 1,..., X n )., X i F Xi (x) = P (X i x) X i. 1,., lim x 2 + x n + F X (x 1, x 2,..., x n ) = F X1 (x 1 ). X i,, X. n X = (X 1, X 2,..., X n ), X 1,..., X n, F X,.,, F X (x 1,..., x n ) = P (X 1 = x 1, X 2 = x 2,..., X n = x n ) x1 xn f X (s 1,..., s n )ds 1 ds n, n f X X = (X 1,..., X n )., 1 R,.,. + + f X (x 1, x 2,..., x n )dx 2... dx n = f X1 (x 1 ) n (X 1,..., X n ), F (x 1,..., x n ), X i F i (x i )., X 1,..., X n,. F (x 1,..., x n ) = n F i (x i ) i=1 16

19 3.4.2 n (X 1,..., X n ) f(x 1,..., x n ), X i f i (x i )., X 1,..., X n, f(x 1,..., x n ) =. n f i (x i ), n (X 1,..., X n )., X 1,..., X n, (X 1,..., X n ) ( 3.4.1), X 1,..., X n. i=1 3.5 X. m X = E(X) = + xµ X (dx) () X, Y a, b, E(aX + by ) = ae(x) + be(y ) () X 1, X 2,..., X n, E[X 1 X 2 X n ] = E[X 1 ] E[X n ]. (3.4), X k = 1 Ak (). X 1,..., X n A 1,..., A n., E[X 1 X n ] = E[1 A1 A n ] = P (A 1 A n ) = P (A 1 ) P (A n ) = E[X 1 ] E[X n ]., (3.4).,, X k ( ). X k,,. X. X µ(dx),. V(X) = σ 2 X = V(X) = E[(X m X ) 2 ] = E[X 2 ] E[X] 2 + (x m X ) 2 µ(dx) = + ( + ) 2 x 2 µ(dx) xµ(dx) X, Y. σ XY = E[(X E(X))(Y E(Y ))] = E[XY ] E[X]E[Y ] X, Y. (, σ XX = σx 2 X.) σ XY = 0 X Y., σ XY > 0, σ XY < 0, X Y. 17

20 3.5.4 X, Y,. X, Y, E[XY ] = E[X]E[Y ], σ XY = E[XY ] E[X]E[Y ] = X P (X = 1) = P (X = 1) = 1 4, P (X = 0) = 1 2, Y = X 2., X, Y, σ XY = 0., () X 1, X 2,..., X n, 2, [ n ] n V X k = V[X k ] X, Y σ X > 0, σ Y > 0, X, Y. ρ XY = σ XY σ X σ Y X, Y, 1 ρ XY 1., σ X > 0, σ Y > 0. X, Y, X = X E[X], Ȳ = Y E[Y ],. E[ X 2 ] = V[X] = σ 2 X, E[Ȳ 2 ] = V[Y ] = σ 2 Y, (3.5)., t R (t X + Ȳ )2 0, 0 E[(t X + Ȳ )2 ] = t 2 E[ X 2 ] + 2tE[ XȲ ] + E[Ȳ 2 ]., 2 E[ XȲ ]2 E[ X 2 ]E[Ȳ 2 ] 0. (3.5), E[ XȲ ]2 E[ X 2 ]E[Ȳ 2 ] = σxσ 2 Y 2., ρ 2 XY = σ2 XY σ 2 X σ2 Y = E[(X E(X))(Y E(Y ))]2 σ 2 X σ2 Y = E[ XȲ ]2 σ 2 X σ2 Y 1. 18

21 , 1 ρ XY 1. 2 X, Y 1 1., Y = ax + b, a > 0, a < 0, ρ XY = 1 ρ XY = X E[X] V[X]. n X = (X 1, X 2,..., X n ),, m X = (E[X 1 ], E[X 2 ],..., E[X n ]) σ X1 X 1 σ X1 X 2 σ X1 X n σ X2 X Σ X = 1 σ X2 X 2 σ X2 X n σ Xn X 1 σ Xn X 2 σ Xn X n. σ XiX i = σx 2 i = V[X i ] X i., X 1, X 2,..., X n. 6 ρ 1. (r, θ) (0 r ρ, 0 θ < 2π)., R, Θ, R, Θ. 7 2 L, S. (, L = S.), (1) σ LS r LS. (2) L, S. 8 a > 0, b > 0. Ω = {(x, y) ; 0 bx + ay ab, x 0, y 0},. x X, y Y, (1) (X, Y ) X, Y, X, Y. (2) X, Y. 19

22 n X n, 1, X n = 0, (4.1)., S n =, n., S n n = 1 n n n, n..,.,, n S n /n 1/2.. X k X k 4.1:,,, S n lim n n = 1 (4.2) 2., S n /n, 1, 0,, {0, 1/n, 2/n,..., 1}. n 20

23 , 1/2., ω = (ω 1, ω 2,... ) S 1 (ω), S 2(ω), S 3(ω),..., S n(ω) 2 3 n,...., ω = (1, 1, 1,... ), S n /n 1, ω = (0, 0, 0,... ), S n /n 0., 0 t 1, S n /n t ω,, S n /n ω., ω (4.2).,, (4.2) () X 1, X 2,..., m, σ 2 (, )., X 1, X 2,..., ϵ > 0,., 1 n lim P n ( 1 n ) n X k m ϵ = 0 n X k m , X 1, X 2,..., () X m, σ 2, ϵ > 0,., P ( X m ϵ) σ2 ϵ 2 m = E[X] = X(ω) P (dω), Ω σ 2 = E[(X m) 2 ] = (X(ω) m) 2 P (dω)., 2. σ 2 = (X(ω) m) 2 P (dω) Ω = (X(ω) m) 2 P (dω) +,. X m ϵ X m ϵ X m ϵ (X(ω) m) 2 P (dω) ϵ 2 P (dω) = ϵ 2 P ( X m ϵ). Ω X m <ϵ (X(ω) m) 2 P (dω) 21

24 (),., Y = Y n = 1 n E[Y ] = 1 n n X k n E[X k ] = m.. E[X k X l ] = E[X k ]E[X l ] (k l),, E[Y 2 ] = 1 n 2,,. n k,l=1 E[X k X l ] = 1 n n 2 E[X 2 k] + E[X k X l ] k l = 1 n ( V[Xk n 2 ] + E[X k ] 2) + E[X k ]E[X l ] = 1 n 2 { nσ 2 + nm 2 + (n 2 n)m 2} = σ2 n + m2. k l V[Y ] = E[Y 2 ] E[Y ] 2 = σ2 n. P ( Y m ϵ) V[Y ] ϵ 2 = σ2 nϵ 2. lim P ( Y n m ϵ) = 0. n /2., 1, n, X n = 0, n,. X 1, X 2,...,, m = 1 2, σ2 = 1 4., ϵ > 0, ( ) lim P 1 n X k 1 n n 2 ϵ = 0., 1 n n X k n,. 1/2 ϵ n 0., 1/2. 22

25 4.3, ϵ > 0, ϵ () X 1, X 2,..., m (, )., X 1, X 2,..., ( ) 1 n P lim X k = m = 1 n n.,. 1 lim n n n X k = m 4.3.2,.,,., N. Etemadi (1981).,., Durrett. a.s. 4.4,. B(n, p) m = np, σ 2 = np(1 p), B(n, p) N(np, np(1 p)) (4.3)., n. 4.2: B(100, 0.4) (4.3).,., B(n, p) S, P (S x) 1 2πσ 2 x e (t m)2 /2σ 2 dt, m = np, σ 2 = np(1 p) 23

26 .,. P (S x) 1 (x m)/σ e t2 /2 dt 2π ( S m P (S x) = P σ, (x m)/σ x, ( ) S np P x np(1 p) x m ) σ 1 2π x e t2 /2 dt (4.4). N(0, 1), n. (4.3) n, n (4.4)., () ( ) 0 < p < 1. B(n, p) S n,. lim P n ( ) S n np x np(1 p) = 1 2π x e t2 /2 dt (4.5), B(n, p) n, N(np, np(1 p)). 4.5, p Z 1, Z 2,..., n S n = B(n, p)., Z k Z k = Z k Z k p p(1 p), Z 1, Z 2,... 0, 1., S n np = 1 np(1 p) n., (4.5), ( lim P n 1 n n n Z k x Z k p = 1 p(1 p) n ) = 1 2π x n Z k e t2 /2 dt., () X 1, X 2,..., 0, 1., x R, ( n ) lim P 1 X k x = 1 x n n 2π., 1 n n e t2 /2 dt X k n N(0, 1). 24

27 , X, φ(z) = E[e izx ], z R φ(z). X µ(dx), φ(z) = + e izx µ(dx), z R. µ(dx)..,., () 1 µ 1, µ 2,..., µ φ 1, φ 2,..., φ. z C lim n φ n (z) = φ(z), µ n µ. µ 1, µ 2,..., µ, F x,. lim F n(x) = F (x) n,., F 1, F 2,..., F x R, ) { } eix (1 + ix + (ix)2 x 3 min 2! 6, x 2. () 1 n n k=0 X k φ n (z) = E [ exp { iz n n k=0 X k } ] (4.6)., N(0, 1) e z2 /2 (??).,, z R, lim φ n(z) = e z2 /2 n (4.7). X 1, X 2,... φ(z) = E[e izx 1 ].,, (4.6) φ n (z) = n [ { }] iz ( z ) n E exp X k = φ n (4.8) n 25

28 ., e i n z X 1 z = 1 + i X 1 z2 n 2n X2 1 + R n (z), E[X 1 ] = 0, V[X 1 ] = 1,., (4.8),., ( z ) φ n = E [ e i n z X 1 ] z 2 = 1 2n + E[R n(z)] φ n (z) =, ( 34),, (4.7). ) n (1 z2 2n + E[R n(z)] (4.9) lim ne[r n(z)] = 0 (4.10) n ) n lim φ n(z) = lim (1 z2 n n 2n + E[R n(z)] = e z2 /2, (4.10) , { 1 R n (z) min z 3 } 6 X 1, z 2 n X 1. n n,, ne[r n (z)] E[n R n (z) ] z 2 E { } z min 6 n X 1 3, X 1 2 X 1 2 [ { }] z min 6 n X 1 3, X 1 2. (4.11), E[ X 1 2 ] <,, [ { }] [ { }] z z lim E min n 6 n X 1 3, X 1 2 = E lim min n 6 n X 1 3, X 1 2, (4.11), lim ne[r n(z)] = 0. n, (4.10)., E[ X 1 3 ] <. E[ X 1 3 ] <,, (4.10). = 0. 9 p {Z k }, { Z k }., S n np = 1 np(1 p) n., n, - ( ). n Z k 26

29 10 (1) x R, n e ix (ix) k k! k=0 = in+1 n! x 0 (x t) n e it dt. (2) x R, eix. n (ix) k k! x n+1 (n + 1)! k=0 (3) (1), x R, n (ix) k eix k! 2 x n n!. k=0 ( ().) 11 f(x) [0, 1]. x 1, x 2,... [0, 1], 1 n 1 0 n f(x k ) f(x)dx ().,. 27

30 5.,.,, 1., ()., 1, p, q (p > 0, q > 0, p + q = 1)., p, q. q p n X n. 0., X 0 = 0. n X n { n, n + 2,..., n 2, n}.,. {Z n } (iid) P (Z n = 1) = p, P (Z n = 1) = q. ( {0, 1} )., n, X n = Z 1 + Z Z n, X 0 = 0,. {X n } X n { n, n + 2,..., n 2, n},, ( ) n P (X n = n 2k) = p n k q k, k = 0, 1, 2,..., n. k k = 0, 1, 2,..., n. X n = Z 1 + Z Z n = n 2k = (n k) k 28

31 , Z i = 1 i k, Z i = 1 i n k. Z 1, Z 2,..., Z n p n k q k., ( ) n P (X n = n 2k) = p n k q k k E[X n ] = (p q)n, V[X n ] = 4pqn., E[Z k ] = p q, V[Z k ] = 4pq ().,, n E[X n ] = E[Z k ] = (p q)n., {Z n },, n V[X n ] = V[Z k ] = 4pqn. n X n. (p q)n, n, X n,., n, X n ( ). x (p q)n 0 n 5.2.,.,., p, q, n {X n }.., 2n () p 2n, ( ) 2n p 2n = P (X 2n = 0) = p n q n = (2n)! n n!n! pn q n, n = 1, 2,..., (5.1) 29

32 ., p 0 = 1. R ( ) R = P {X 2n = 0} n=1.,, R p 2n., 2n 0 q 2n = P (X 2 0, X 4 0,..., X 2n 2 0, X 2n = 0) n = 1, 2,...,. p 2n., T = inf{n 1 ; X n = 0} (5.2), q 2n = P (T = 2n) (5.3) (5.2) inf{n 1 ; X n = 0},, X n = 0 n., inf min. {n 1 ; X n = 0},, inf{n 1 ; X n = 0} = +., T (), +., R = q 2n (5.4) n=1.., q 2n, R ()., {p 2n } {q 2n } n p 2n = q 2k p 2n 2k, n = 1, 2,..., (5.5)., 2n,. 2 {p 2n } {q 2n } g(z) = p 2n z 2n, h(z) = q 2n z 2n (5.6) n=0 n=1. z 1. (5.5) z 2n, n, n g(z) 1 = q 2k z 2k p 2n 2k z 2n 2k = n=1 n=0 = h(z)g(z). q 2k z 2k p 2n z 2n 30

33 , n=0 h(z) = 1 1 g(z). (5.7), g(z) ( 12)., ( ) 2n g(z) = p 2n z 2n = p n q n z 2n 1 = n 1 4pqz 2, (5.7), z 1 0, R = h(1) = n=0 h(z) = 1 1 g(z) = 1 1 4pqz 2. (5.8) q 2n = 1 1 4pq = 1 p q n=1 ( 13)., R,. R = 1 p q,., R = 1, R < 1,.,, , p = q = 1/2 ( ). p q., T. E(T ), E(T ) =, p = q = 1/2, (5.6) (5.8), h(z) = q 2n z 2n = 1 1 z 2.,, z 1 0, E(T ) = h (z) = 2nq 2n = n=1,. n=1 n=1 2nq 2n. (5.9) n=1 2nq 2n z 2n 1 z =. 1 z 2 lim z 1 0 h (z) = lim z 1 0 z 1 z 2 = +. 31

34 5.2.5,. 12 α. (1 + x) α = n=0 ( ) α x n n,. n=0 ( ) 2n z n 1 =, z < 1 n 1 4z 4, 13 a n 0, f(x) = a n x n. 1,, =. n=0 lim f(x) = x 1 0 n=0 a n 5.3,. ( 19.),.,, (?).,,.,. n 1, (ϵ 1, ϵ 2,..., ϵ n ) ±1 n., { 1, 1} n., ϵ 1 0 ϵ 1 + ϵ 2 0 ϵ 1 + ϵ ϵ n 1 0 ϵ 1 + ϵ ϵ n 1 + ϵ n = 0, n., n C n., C 0 = 1., C 0 = C 1 = 1, C 2 = 2, C 3 = 5, C 4 = 14, C 5 = 42, C 6 = 132,

35 ,. n n, (0, 0) xy-., ±1 (ϵ 1, ϵ 2,..., ϵ n ), ϵ k = +1 u k = (1, 0) ϵ k = 1 u k = (0, 1), (0, 0), u 1, u 1 + u 2,..., u 1 + u u n 1, u 1 + u u n 1 + u n., ϵ 1 + ϵ ϵ n 1 + ϵ n = 0, u 1 + u u n 1 + u n = (n, n),, (0, 0) (n, n) (0, 0) (n, n) y = x () C n = (2n)!, n = 0, 1, 2,..., (n + 1)!n! n = 0, 0! = 1. n 1,, ( ) ( ) 2n 2n C n = = (2n)! n n + 1 n!(n + 1)! C n, f(z) = n=0 C n z n = 1 1 4z 2z (5.10). 33

36 14.,. xy-. (0, 0), (1, ϵ 1 ), (2, ϵ 1 + ϵ 2 ),..., (n 1, ϵ 1 + ϵ ϵ n 1 ), (n, ϵ 1 + ϵ ϵ n 1 + ϵ n ), 0 0 2n 0, y 0., n n 0, y 0 C n p, q 1 {X n }, q 2n = P (X 2 0, X 4 0,..., X 2n 2 0, X 2n = 0) = 2C n 1 (pq) n, n = 1, 2,....., R, R = 1 p q , R = q 2n = 2C n 1 (pq) n n=1 n=1,, R = 2pqf(pq) = 2pq 1 1 4pq 2pq = 1 1 4pq = 1 p q,. 14 C n. n (1) C n = C k 1 C n k. (2) (1), f(z) = (3) f(z). (4) (3) C n. C n z n f(z) 1 = z{f(z)} 2. n=0 15 m m + n, (0, 0) (m, m), (0, 0) (m + n, m),. (m + n)! (m + 1)!n! 34

37 16 {X n } p, q = 1 p, X 0 = 0., n = 1, 2,..., P (X 1 0, X 2 0,..., X 2n 1 0) n 1 = P (X 1 0, X 2 0,..., X 2n 0) = 1 q C k (pq) k., C k.,,. k=0 1 q P ( n 1 X n 0 ) = p, p > q, 0, p q,, 1. : (), W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 1, Vol. 2, Wiley, ,,,.. W. () : () B. V. Gnedenko: The Theory of Probability and the Elements of Statistics, AMS Chelsea Publishing Co., 6th ed B. V. (): I, II,, 1971, R. Durrett: Probability: Theory and Examples, Duxbury Press, (), R. B. ):,, Z. Brzeźniak and T. Zastawniak: Basic Stochastic Processes, Springer, F. Spitzer: Pronciples of Random Walk, Springer, 2nd Ed., K. L. Chung: Markov Chains, Springer,

38 5.4 {X n }., {Z n } P (Z n = +1) = P (Z n = 1) = 1 2, n X 0 = 0, X n = Z k.,, X 0, X 1, X 2,..., X , 2., ± (X 10000, ± ± 50.),,? X 0, X 1,..., X 2n. X i 0 X i+1 0, [i, i + 1], X i 0 X i+1 0, [i, i + 1]. [0, 2n], 2k W (2k 2n), k = 0, 1,..., n, n = 1, 2,..., p 2n P (X 2n = 0) = ( 2n n )( 1 2 ) 2n n = 1, 2,..., f 2n P (X 1 > 0, X 2 > 0,..., X 2n 1 > 0, X 2n = 0) = C n 1 ( 1 2 ) 2n = 1 4n p 2n n = 1, 2,..., P (X 1 0, X 2 0,..., X 2n 1 0, X 2n 0) = p 2n. 36

39 ., p 2n 2 p 2n = 2f 2n = 1 2n p 2n n = 1, 2,..., P (X 1 0, X 2 0,..., X 2n 1 0, X 2n 0) = p 2n.., p 2n 2 p 2n = 2f 2n = 1 2n p 2n n = 1, 2,...,, W (2k 2n) = p 2k p 2n 2k = W (2k 2n) = k r=1 ( 2k k )( 2n 2k n k )( 1 2 ) 2n, k = 0, 1,..., n. n k f 2r W (2k 2r 2n 2r) + f 2r W (2k 2n 2r)., k, n ( 17). n. 0 < a < b < 1, P (a < < b) = = = bn k=an r=1 W (2k 2n) n χ [an,bn] (k)w (2k 2n) k=0 n ( k χ [a,b] n k=0 )( 2k k )( 2n 2k n k χ I (x) I, x I 1, 0.,, n! ( ) n n 2πn n, e ( 2k k )( 1 2 ) 2k 1 πk P (a < < b) = k=0 k=0 1 )( 1 2 n ( ) k 1 χ [a,b] n π k(n k) n ( ) k 1 χ [a,b] n k π n (1 k n ) 0 dx χ [a,b] (x) π x(1 x). 1 n ) 2n. 37

40 5.4.6 dx π x(1 x). 0 < x < 1, (arcsine law). F (x) = x 0 dt π t(1 t) = 2 π arcsin x = π arcsin(2x 1)., F (0.9) = 2 π arcsin ,, 90% 1 F (0.9) 0.205! ,.,,. ( 2n n )( 1 2 ) 2n 1 πn 5.5 n = 0 0 Z., A B (A 1, B 1),, (, ).. 0 < p < 1 Z 1, Z 2,..., X 0, X 1, X 2,.... X n 1 + Z n, A < X n 1 < B, X 0 = 0, X n = A, X n 1 = A, (5.11) B, X n 1 = B. {X n }. 38

41 B 0 A., ( ) R = P ( n X n = A) = P {X n = A}, n=1 ( ) S = P ( n X n = B) = P {X n = B}.. R, S. X 0 = 0., A k B k, X 0 = k X n (k). X n = X n (0). X n (k) A, B R k, S k. R = R 0, S = S 0. n= {R k ;, A k B}. R k = pr k+1 + qr k 1, R A = 1, R B = 0. (5.12), {S k ;, A k B}. S k = ps k+1 + qs k 1, S A = 0, S B = 1. (5.13) A 1, B 1. {X n } A B (5.11)., (q/p) A (q/p) A+B P ( n X n = A) = 1 (q/p) A+B, p q, B A + B, p = q = 1 2, 1 (q/p) A, p q, P ( n X n = B) = 1 (q/p) A+B A A + B, p = q = 1 2,., 1., (the gambler s ruin problem). A,B 2. A, B, 1., 1 39

42 , 1., 0, A + B. A,B. n A A + X n, X n, {X n } , A,B P (A), P (B), P (A) = A A + B, P (B) = B A + B (5.14),., A = 1, B = 100 P (A) = 1/101, P (B) = 100/101, A., , 0.,,. (5.14).., {X n } A q p A + B 1 (q/p) A, p q, q p 1 (q/p) A+B AB, p = q = 1 2., 0 k ( A k B), Y k. Y k = min{j 0 ; X (k) j E(Y 0 ).,. A < k < B, = A X (k) j = B }. E(Y A ) = E(Y B ) = 0 (5.15) E(Y k ) = , (5.16), jp (Y k = j) (5.16) j=1 P (Y k = j) = pp (Y k+1 = j 1) + qp (Y k 1 = j 1) E(Y k ) = p jp (Y k+1 = j 1) + q jp (Y k 1 = j 1) j=1 j=1 = pe(y k+1 ) + qe(y k 1 ) + 1. (5.17), E(Y k ) (5.17) (5.15)., A + k E(Y k ) = q p A + B 1 (q/p) A+k, p q, q p 1 (q/p) A+B (A + k)(b k), p = q =

43 . k = 0,., p = q = 1/2, A = 1, B = 100 AB = 100. A (, A 1/101 ), 100,.,, , A 1, B 1, A B.,,.. 0 < p < 1 Z 1, Z 2,..., X 0, X 1, X 2,.... X n 1 + Z n, A < X n 1 < B, X 0 = 0, X n = A + 1, X n 1 = A, (5.18) B 1, X n 1 = B. 19 t = 0 0, {0, 1, 2,... }., 0. t = 2n P n. 41

44 6,,.. (),.,., ().,,. 1. (),.. (?) A, B, P (B) > 0 P (A B) = P (A B) P (B), B A., B A A, B 5. (i) A B. (ii) P (B A) = P (B). (ii ) P (A B) = P (A). (iii) P (B A) = P (B A c ). (iii ) P (A B) = P (A B c ).,,. (). A B, (i) (ii) (iii). (i) (ii) (ii) = (iii)., P (B A c ) = P (Ac B) P (A c ) P (A B) = P (A)P (B), = P (B) P (A)P (B) 1 P (A) = = P (B) P (A B) 1 P (A) P (B)(1 P (A)) 1 P (A). = P (B). 42

45 , P (B A c ) = P (B) = P (B A). (iii) = (ii)., P (B A) =, P (A B) P (A), P (B A c ) = P (Ac B) P (A c ) P (A B) P (A) = = P (B) P (A B) 1 P (A), P (A B) = P (A)P (B), A, B. P (B) P (A B) 1 P (A) P (A B) = P (A), B A., () A 1, A 2,..., A n, P (A 1 A 2 A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 )... P (A n A 1 A 2 A n 1 ). (6.1). (6.1)., 2 A, B., P (A B).. P (A) P (A c ) A A c P (B A) P (B c A) P (B A c ) A B A B c A c B P (B c A c ) A c B c 6.1:. ( A B), A B., ( 1, 2, ). 20 () A 1,..., A n Ω, n Ω = A k, A j A k = (j k)., B.. n P (B) = P (A k )P (B A k ) 43

46 6.2 () S {X n ; n = 0, 1, 2,... }. S R, S = {1, 2,..., N} S = {0, 1, 2,... }. S., S S {X n ; n = 0, 1, 2,... }, 0 i 1 < i 2 < < i k < n a 1, a 2,..., a k, a S, P (X n = a X i1 = a 1, X i2 = a 2,..., X ik = a k ) = P (X n = a X ik = a k ), {X n } S S {X n }, P (X n+1 = j X n = i) n (i j )., n ()., p ij = p(i, j) = P (X n+1 = j X n = i),., P = [p ij ]. (., S.), i S p(i, j) = P (X n+1 = j X n = i) = 1. j S j S, S P = [p ij ], 2. (i) p ij 0. (ii) j S p ij = ( ).,.., p(i, j) > 0 i j (2 ) 2 {0, 1}, p(0, 1) = p, p(0, 0) = 1 p, p(1, 0) = q, p(1, 1) = 1 q 44

47 ., [ 1 p p q 1 q.. p = p ] p = 1p p = 1q p = q (Z 1 ), p, j = i + 1, p(i, j) = q = 1 p, j = i 1, 0,., : q 0 p 0 0 q 0 p 0 0 q 0 p 0. 0 q 0 p () A > 0, B > 0. A B S = { A, A + 1,..., B 1, B}.. A < i < B, p, j = i + 1, p(i, j) = q = 1 p, j = i 1, 0,. i = A i = B, 1, j = A, 1, j = B, p( A, j) = p(b, j) = 0,, 0,., q 0 p q 0 p q 0 p q 0 p

48 6.2.8 () A > 0, B > 0. A B S = { A, A + 1,..., B 1, B}.. A < i < B, p, j = i + 1, p(i, j) = q = 1 p, j = i 1, 0,. i = A i = B, 1, j = A + 1, 1, j = B 1, p( A, j) = p(b, j) = 0,, 0,., q 0 p q 0 p q 0 p q 0 p n, p n (i, j) = P (X m+n = j X m = i), i, j S,. (, m.), 0 r n, p n (i, j) = p r (i, k)p n r (k, j) (6.2) k S. -. p n (i, j) = P (X m+n = j X m = i) = k S P (X m+n = j, X m+r = k X m = i)., P (X m+n = j, X m+r = k X m = i) = P (X m+n = j, X m+r = k, X m = i) P (X m+r = k, X m = i),, P (X m+r = k, X m = i) P (X m = i) = P (X m+n = j X m+r = k, X m = i)p (X m+r = k X m = i). P (X m+n = j X m+r = k, X m = i) = P (X m+n = j X m+r = k) P (X m+n = j, X m+r = k X m = i) = P (X m+n = j X m+r = k)p (X m+r = k X m = i).,, P (X m+n = j, X m+r = k X m = i) = p n r (k, j)p r (i, k). 46

49 , (6.2). (6.2), 1 p 1 (i, j) = p(i, j), p n (i, j) = p(i, k 1 )p(k 1, k 2 ) p(k n 1, j). (6.3) k 1,...,k n 1 S, n p n (i, j) n (i, j) P (X m+n = j X m = i) = p n (i, j) = (P n ) ij , -, P n = P r P n r. (, P 0 = E ().) {X n }, n i S π i (n) = P (X n = i). π(n) = [ π i (n) ], X n., X 0 π(0) , π(n) = π(0)p n π i (n) = π j1 (0)p(j 1, j 2 )p(j 2, j 3 )... p(j n 1, j n )p(j n, i). j 1,j 2,...,j n, π i (n) = P (X n = i) = k S P (X n = i X 0 = k)p (X 0 = k) = k S π k (0)p n (k, i). p n (k, i) = (P n ) ki,., π i (n) = (π(0)p n ) i., π(n) = π(0)p n. 21 A B,., A 30% B, B 20% A., A 80%, B 20%., B?,,. 47

50 6.3, S () {X n } i, j S, p n (i, j) > 0 n 0, i j., i. 2 i, j S, i j j i,, p n (i, j) > 0 p m (j, i) > 0 m 0 n 0, i, j i, j S,, i j., S., (i) i i; (ii) i j j i; (iii) i j j k i k.. ). (i), (ii). (iii) ( i, 1, j = i p(i, j) = 0,,., , i S, i (, first hitting time) T i = inf{n 1 ; X n = i} 48

51 ., X n = i n 1 T i =. P (T i < X 0 = i) = 1, i., P (T i = X 0 = i) > 0,., i, i, i 1., i S, p n (i, i) =. n=0 (1.), p n (i, j) = P (X n = j X 0 = i), n = 0, 1, 2,..., f n (i, j) = P (T j = n X 0 = i) = P (X 1 j,..., X n 1 j, X n = j X 0 = i), n = 1, 2,...,. p n (i, j) n., f n (i, j) i n j., i n j, j, n p n (i, j) = f r (i, j)p n r (j, j), i, j S, n = 1, 2,.... (6.4) r=1.,. G ij (z) = p n (i, j)z n, n=0 F ij (z) = f n (i, j)z n, n=1. (6.4),, G ij (z) = p 0 (i, j) + F ij (z)g jj (z) (6.5). (6.5) i = j, G ii (z) = 1 + F ii (z)g ii (z).,, n=0 G ii (z) = 1 1 F ii (z). G ii (1) = p n (i, i), F ii (1) = f n (i, i) = P (T i < X 0 = i), F ii (1) = 1 G ii (1) =.,. n=1 49

52 6.3.8 i, p n (i, i) < n=0,. 1 p n (i, i) = 1 P (T i < X 0 = i) n= (Z )., p 2n (0, 0),. 2n,,., p 2n (0, 0) = (2n)! n!n! pn q n, p + q = 1. (, 6 (5.1.1).) n! ( n ) n 2πn (6.6) e,., p q, p = q = 1 2, p 2n (0, 0) 1 πn (4pq) n p 2n (0, 0) <. n=0 n=0 p 2n (0, 0) =., 1, p q, p = q = 1 2. a n 22 (1) a n, b n. lim = 1, a n b n ( n b n )., c 1 > 0, c 2 > 0 c 1 a n b n c 2 a n. (2) (1), a n b n. n=1 n=1 (3) Z, (Z 2 ) ()., p 2n (0, 0),. 2 50

53 , x y 2, 2n x 2i y 2j., p 2n (0, 0) = ( ) 2n (2n)! 1 i!i!j!j! 4 i+j=n = (2n)! ( ) 2n 1 n!n! n!n! 4 i!i!j!j! i+j=n ( ) ( ) 2n 2n 1 n ( ) 2 n = n 4 i., (),., (), n i=0 p 2n (0, 0) = ( ) 2 n = i ( 2n n i=0 ( ) 2n n ) 2 ( 1 4 p 2n (0, 0) 1 πn p 2n (0, 0) = n=1 ) 2n ()., (Z 3 ).. 3, x, y, z 3, p 2n (0, 0) = i+j+k=n = (2n)! n!n! ( 2n = n ( 1 6 ) ( 1 6 (2n)! i!i!j!j!k!k! ) 2n i+j+k=n ) 2n i+j+k=n ( ) 2n 1 6 n!n! i!i!j!j!k!k! ( n! ) 2 i!j!k!., 2., (), i+j+k=n (6.7) n! i!j!k! = 3n. (6.8), M n = max i+j+k=n n! i!j!k!, n 3 1 i, j, k n M n 3 3 2πn 3n. 51

54 ,., p 2n (0, 0) ( 2n n ) ( 1 6 ) 2n 3 n M n 3 3 2π π n 3/2 p 2n (0, 0) < n=1, 3., ( ( ) ). i P (T i < X 0 = i) = 1., E(T i X 0 = i). 1,.. E(T i X 0 = i) <, i ,,,.,,,, S {X n }. p = p p = 1p p = 1q, P (T 0 = 1 X 0 = 0), P (T 0 = 2 X 0 = 0), P (T 0 = 3 X 0 = 0), P (T 0 = 4 X 0 = 0)., P (T 0 = n X 0 = 0), p = q P (T 0 = n X 0 = 0), n=1 np (T 0 = n X 0 = 0) n=1. 24, O T 6. t = 0 O, 1/2., T, T. (1). (2)? (3) t = 12. (4) t. 52

55 S P. π = [ π i ] π i 0, S. S π π i = 1 i S π = πp (6.9), ()., (2 ) [ ] 1 p p P = q 1 q. π = [π 0 π 1 ], (6.9) [ ] 1 p p [π 0 π 1 ] = [(1 p)π 0 + qπ 1 pπ 0 + (1 q)π 1 ] = [π 0 π 1 ] q 1 q.,. pπ 0 qπ 1 = 0 π 0 + π 1 = 1. p + q > 0, π 0 = q p + q, π 1 = p p + q,. p = q = 0, π π 0 + π 1 = 1.. (, ) , 2 : (i). 53

56 (ii)., π,. π i = 1 E(T i X 0 = i), i S, S ( ), S 1 π., i S π i > (2 ) [ ] 1 p p P = q 1 q, P n., p + q > 0., 1, 1 p q. p + q > 0, 2., [ ] 1 p T = 1 q,.,, n, P T = T P n = T lim P n = T n [ p q [ (1 p q) n [ ] ] ] T 1 [ T 1 = 1 q p + q q ] p. p, π(0) = [π 0 (0) π 1 (0)] n π(n), , π(n) = π(0)p n. n, [ lim π(n) = 1 n p + q [π q 0(0) π 1 (0)] q ] p p = 1 [ q [q p] = p + q p + q ] p. p + q, π., 2 p + q > 0,,, X n π.,,., (, ),. 54

57 [ ] 0 1 P = 1 0., ()., π(0), lim π(n). n S π ( 1 )., {X n }, j S. lim n P (X n = j) = π j,, ,,. 25.,. 26., (1 25 )

58 7 T R, {X(t) ; t T }. T = [0, 1] T = [0, ). t T, X(t), ω Ω., X(t, ω) X t (ω). ω Ω, X(t, ω), t X(t, ω) X(t).,., ()., (), t {X t }., {X t } {0, 1, 2,... }, (counting process).,., E., : (i) (ii) (iii) (iv) (v) (vi) (vii) t = 0, t E X t., E t 1, t 2,...,. 0 t t t tn 2. 56

59 (i) t E X t., {X t, t 0}. (ii) n 1 n T n (, T 1 E )., {T n ; n = 1, 2,... }, [0, ) ( ). X t T n T T 0 t 0 t t t tn (i), ()., t > 0, [0, t] n. t = t n,. t 1 2 n 0 t E : (1) E, λ > 0, P (E 1 ) = λ t + o( t), P (E ) = 1 λ t + o( t), P (E 2 ) = o( t),. (2) E. ( 1, ). (1) P (E 2 ) = o( t), t, E 2., E., P (E 1 ) = λ t + o( t), t, E. (2), E 57

60 ,.,., i E Z i, Z 1, Z 2,..., Z n, P (Z i = 0) = 1 λ t + o( t), P (Z i = 1) = λ t + o( t), P (Z i 2) = o( t),. [0, t] E, n i=1. t, t 0 n, X t = lim Z i t 0 i=1 n Z i (7.1) X t, {X t }., t. λ. (7.1) Z i t ( n ). t, n,, Z i 0,., ( n ) P Z i = k = i=1 ( ) n (λ t) k (1 λ t) n k + o( t), k, t = t n.,, (λt) k ( n(n 1)... (n k + 1) P (X t = k) = lim t 0 k! n k 1 λt ) n k = (λt)k e λt. n k!, X t λt , B(n, p), n p, np ( ) {X t ; t 0}. (1) () X t {0, 1, 2,... }. (2) X 0 = 0. (3) () 0 s t X s X t (4) () 0 t 1 < t 2 < < t k, X t2 X t1, X t3 X t2,..., X tk X tk 1,. (5) () 0 s < t, h 0, X t+h X s+h X t X s. 58

61 (6) λ > 0, P (X h = 1) = λh + o(h), P (X h 2) = o(h). (1) X t λt.,. (2). (3) s = m t, t = n t, m < n,. X s = lim t 0 i=1 m Z i lim (4) t 1 = n 1 t,..., t k = n k t, n 1 < < n k,., X t2 X t1 X t2 X t1 = lim n 2 t 0 i=1 Z i lim t 0 i=1 n 1 t 0 i=1 n Z i = X t Z i = lim n 2 Z i t 0 i=n 1 +1 [t 2, t 1 ) Z i., X t2 X t1,..., X tk X tk 1 Z i. {Z i }, X t2 X t1,..., X tk X tk 1. (5) X t+h X s+h X t X s, Z i, Z i,. (6) X h λh., P (X h = 0) = e λh = 1 λh + = 1 λh + o(h), P (X h = 1) = λhe λh = λh(1 λh +... ) = λh + o(h)., P (X h 2) = 1 P (X h = 0) P (X h = 1) = o(h) (1), 2. (2), 2. (3) 2, 1 2. t X t. λ = 2. (1) P (X 2 = 0). X 2 2λ = 4, P (X 2 = 0) = 40 0! e (2) t 0,, P (X t0 +2 X t0 = 0).,, (1). P (X t0 +2 X t0 = 0) = P (X 2 X 0 = 0) = P (X 2 = 0) 59

62 (3) P (X 2 = 0, X 3 X 2 = 2). X 2 X 3 X 2, P (X 2 = 0, X 3 X 2 = 2) = P (X 2 = 0)P (X 3 X 2 = 2), = P (X 2 = 0)P (X 1 = 2) = 40 0! e ! e ,. (1) 2 1. (2) 2 1, 3 2. (3) {X t }. 0 < s < t, ( ) n (s ) k ( P (X s = k X t = n) = 1 s ) n k, k = 0, 1,..., n, k t t λ {X t ; t 0}., X 0 = 0, 1., t., T 1 = inf{t 0 ; X t 1} (7.2)., E. T 2 E 2., T 2 = inf{t 0 ; X t 2} T 1., T n = inf{t 0 ; X t n} T n 1, n = 2, 3,..., (7.3), T n n 1 E E λ {X t }, T n (7.2) (7.3)., {T n ; n = 1, 2,... } λ. t = n t, t. Z i. P (T 1 > t) = lim t 0 P (Z 1 = = Z n = 0) = lim (1 λ t)n t 0 ( = lim 1 λt ) n t 0 n = e λt 60

63 , P (T 1 t) = 1 e λt., T 1 λ. T 2, E 1,, T 1., T 3, λ {X t } E(X 1 ) = λ.,., 1/λ , λ, 1/λ.,. 29 () λ, E n S n = T 1 + T T n. T n P (S 2 t), S 2. [, S n.] 7.3 (7.1),.,, {X t }., (Ω, F, P )? {T n }., λ > 0 {T n ; n = 1, 2,... } (, (Ω, F, P ) )., S 0 = 0, S n = T T n, n = 1, 2,...,, t 0, X t = max{n 0 ; S n t}., t 0 X t ({T n } )., {X t ; t 0}. λ M/M/1/. A/B/c/K/m/Z. A:, B:, c:, K:, m:, Z: (,, ). M/M/1/,,,.,. 61

64 . 1,,.,.,,,.,,.. t ( ) X(t). X(t),,. 2., λ > 0, µ > 0. 1/λ, 1/µ., λ, µ., t t + t. t 1.,,,., λ t, µ t, 1 λ t µ t. λ t n n n µ t n t t + t, P (X(t) = n) : P (X(t + t) = n) = P (X(t + t) = n X(t) = n 1)P (X(t) = n 1) + P (X(t + t) = n X(t) = n)p (X(t) = n) + P (X(t + t) = n X(t) = n + 1)P (X(t) = n + 1) = λ tp (X(t) = n 1) + (1 λ t µ t)p (X(t) = n) + µ tp (X(t) = n + 1), P (X(t + t) = 0) = (1 λ t)p (X(t) = 0) + µ tp (X(t) = 1). p n (t) = P (X(t) = n), p n(t) = λp n 1 (t) (λ + µ)p n (t) + µp n+1 (t), n = 1, 2,..., p 0(t) = λp 0 (t) + µp 1 (t).,. t () p n. t p n (t) p n 62

65 ., 0,, λ µ, λp n 1 (λ + µ)p n + µp n+1 = 0 n = 1, 2,..., λp 0 + µp 1 = 0. p n = A ( ) n λ (A ) µ., λ = µ, p n = A (). p n, p n = 1, λ < µ, n=0 p n = ( 1 λ ) ( ) n λ, n = 0, 1, 2,... µ µ.,,.,. np n = λ/µ 1 λ/µ = λ µ λ n=0, λ µ ρ = λ µ. ρ 1. ρ < 1, (1 ρ)ρ n, n = 0, 1, 2,...,., 1 ρ, ρ. ρ. ρ/(1 ρ) ATM 3, 5., λ = 1 5, µ = 1 3, ρ = 3 5., ATM, 1 ρ = 2 5., ATM,, = 6 25., ATM,, = 9 25 = X(t),. 63

66 8,,., (Robert Brown) (1827)., 1905 () (Albert Einstein),,.,, (Marian Smoluchowski, ). 1906,, ().,. (Norbert Wiener, ) (Paul Lévy, ) , (Kiyoshi Itô, ) ().,,.,. 8.1., t = 0 0, t, (H) ϵ, (T) ϵ. 1/2 {Z n }, t = n t X n, X n =. n ϵz k x t ε t 64

67 , P (Z k = 1) = P (Z k = 1) = 1 2 Z 1, Z 2,..., X n () : n E(X n ) = ϵ E(Z k ) = 0, (8.1) 8.1 (8.1) (8.3). V(X n ) = ϵ 2 n, (8.2) m n Cov (X m, X n ) = ϵ 2 Cov (Z j, Z k ) = min {ϵ 2 m, ϵ 2 n}. (8.3) j=1 8.2 n, t nt., t n t = 1, t, t., t X t (t)., nt X t (t) = ϵz k. (8.4) t 0 1 t, n t = 1, t 0, n, (8.4)., X t (t) V(X t (t)) = ϵ 2 nt = ϵ2 t t, ϵ 2 α () (8.5) t., t, 1 ϵ. (8.5)., (8.5) α = 1. t X t (t). ( t 0).,, nt B(t) = lim X t (t) = lim ϵz k (8.6) n t = 1, ϵ 2 t = 1 65

68 , n, t 0, ϵ 0.,, (8.1) (8.3) :, (8.6) E(B(t)) = 0, (8.7) V(B(t)) = E(B(t) 2 ) = t, (8.8) Cov (B(s), B(t)) = min{s, t}. (8.9) B(t) = lim ϵ 2 nt 1 nt Z k = t lim 1 nt nt nt., - (), B(t) 0, t N(0, t). {B(t)}. 8.2 (8.7) (8.9). 30 Z k {B t ; t 0} : (1) () {B t },, a 1 B t1 + + a n B tn, a i R, t i 0,. (2) () E[B t ] = 0 (3) () Cov(B s, B t ) = E[B s B t ] = min{s, t} (4) () B 0 = 0 (5) () t B t 1. (6) () 0 t 1 < t 2 < < t n,. B t1, B t2 B t1, B t3 B t2,..., B tn B tn 1 66

69 (2) (6). t B t N(0, t). (6) (1) ( ).,,,. (Ω, F, P )?,,, (1 3) {B t ; t 0}., (4) (6)., (1) (5) (). (5), (1) (3) ,. 8.3 x = x(t) dx dt = f(t, x), x(0) = x 0 () (8.10). x = x(t)., α, dx dt = αx, x(0) = x 0 (8.11), t x x(t)., (8.11)., (8.10) dx(t) = f(t, x)dt, x(0) = x 0 (8.12). t t + t, x(t) x(t + t) x(t) = f(t, x(t)) t + o( t) (8.13). (8.12), (8.10) (8.12). x(t) = x 0 + t 0 f(s, x(s))ds (8.14), 2 f(t, x) (), (8.10).,, t = 0, x = x(t). x(t) x(t + t) 67

70 ,., (8.13). x(t + t) x(t) = f(t, x(t)) t + (), x(t) ().,. x(t) x(t + t) {B t }, x(t + t) x(t) = f(t, x(t)) t + (B(t + t) B(t)),.,,, x(t + t) x(t) = f(t, x(t)) t + g(t, x(t))(b(t + t) B(t)). {B(t)} {x(t)}.,, x(t) X(t). t 0, dx(t) = f(t, X(t))dt + g(t, X(t))dB t, X(0) = x 0 () (8.15)., X(t) = x 0 +. t f(s, X(s))ds + t 0 0 g(s, X(s))dB s (8.16) (8.15) {X(t)}..,,.,, db t. db t, ( ).. 8.4, (8.15) (8.16), (8.16). 2, 3 db t. (, )., {B t } (, ) {G(t)}, : I(t) = t 0 G(s)dB s. 68

71 {I(t)} {B t }., (8.15) {B t } {X(t)} (8.16)., {X(t)} X(t) = x 0 + t F (s)ds + t 0 0 G(s)dB s, (Itô process). dx = F ds + GdB. X(t) f(t, x) Y (t) = f(t, X(t))., Y (t) = y 0 + t F 1 (s)ds + t 0 0 G 1 (s)db s dy = F 1 dt + G 1 db. F 1 (s) G 1 (s) : () 2 f(t, x) t 1, x 2,,, dy = f f (t, X(t))dt + t x (t, X(t))dX dx = F dt + GdB, (dx) 2 = G 2 dt. 2 f (t, X(t))(dX)2 x2 F 1 = f f (t, X(t)) + t x (t, X(t)) F (t) f 2 x 2 (t, X(t)) G(t)2, F 2 = f (t, X(t)) G(t) x.,, : (dt)(dt) = (db)(dt) = (dt)(db) = 0, (db)(db) = dt. 8.3 F 1, F γ > 0, σ > 0. dx = γxdt + σdb, X 0 = x 0 (8.17) (Langevin equation). dx = γxdt, x(0) = x 0, 69

72 γ ( x 0 ).,, ()., (8.17).,. (f(t, x) = e γt x.),, dy = γe γt Xdt + e γt dx Y (t) = e γt X(t) = γe γt Xdt + e γt ( γxdt + σdb) = e γt σdb e γt X(t) = x 0 + X(t) = x 0 e γt + σ. (σ = 0), t 0 t 0 x(t) = x 0 e γt e γs σdb s e γ(t s) db s., 0.,, t., lim E[X t] = 0, t, X(t) N lim E[Xt 2 ] = σ2 t 2γ ) (0, σ2. 2γ α R, σ > 0. dx = αxdt + σxdb, X 0 = x 0 (8.18). (, σ = 0), dx = αxdt, x(0) = x 0., x(t) α, α > 0, α < 0. α (), x(t) ()., (8.18), dx = (αdt + σdb)x,, α,., (8.18)., X(t) = Y (t)e σb t 70

73 ., (8.18),, dx = dy e σb t + Y d(e σb t ) = dy e σb t + Y dy e σbt + Y, ) (σe σb t db + σ2 2 eσb t dt. ) (σe σbt db + σ2 dt = αy e 2 eσbt σbt dt + σy e σbt db. Y = K exp dy = ) (α σ2 Y dt 2 ) } {(α σ2 t, K:, 2., (8.18), ) } X(t) = x 0 exp {(α σ2 t + σb t 2 (8.19)., a, b, exp(at + bb t ). (8.19) (8.18). {X(t)} (X(t), α, σ)., (Black-Scholes model). (1997 ),. 8.1: ()., 1. B.,, ,, Z.Brzeźniak and T. Zastawniak: Basic Stochastic Processes, Springer,

74 9,. (Galton-Watson branching process),.,, ( ) ().,,., F. Galton 1873, Galton Watson,., Irénée-Jules Bienaymé ( ), 1845,, Bienaymé BGW. 9.1 n = 0, 1, 2,..., n X n..,.,,,., Y, P (Y = k) = p k, k = 0, 1, 2,.... Y, Y 1, Y 2,...., n i 1, n + 1 j () ( i ) p(i, j) = P (X n+1 = j X n = i) = P Y k = j, i 1, j 0, 72

75 . 0,, 0, j 1, p(0, j) = 1, j = 0., 0. p(i, j) {0, 1, 2,... } {X n }., {X n } Y {p k ; k = 0, 1, 2,... }., {X n }., X 0 = 1 ( 1 ). 9.1 p 0 + p 1 = 1, (X 0 = 1 )?, q 1 = P (X 1 = 0), q 2 = P (X 1 0, X 2 = 0),..., q n = P (X 1 0,..., X n 1 0, X n = 0),..., ( ) P = {X n = 0} = P ( n 1 X n = 0 ). n= {X n },.,. p 0 + p 1 < 1, p 2 < 1,..., p k < 1,... (9.1) 9.2 {p k ; k = 0, 1, 2,... } {X n }., X 0 = 1. f(s) = p k s k (9.2). s 1., f 0 (s) = s, f 1 (s) = f(s), f n (s) = f(f n 1 (s)),. k= p(i, j) p(i, j)s j = [f(s)] i, i = 1, 2,.... (9.3) j=0, p(i, j) = P (Y Y i = j) = k 1 + +k i =j k 1 0,...,k i 0 P (Y 1 = k 1,..., Y i = k i ) 73

76 , Y 1,..., Y i, p(i, j) = P (Y 1 = k 1 ) P (Y i = k i ) = k 1 + +k i =j k 1 0,...,k i 0 k 1 + +k i =j k 1 0,...,k i 0 p k1 p ki., p(i, j)s j = p k1 p ki s j j=0 = j=0 k 1+ +k i=j k 1 0,...,k i 0 p k1 s k1 p ki s ki k 1 =0 k i =0 = [f(s)] i n p n (i, j) p n (i, j)s j = [f n (s)] i, i = 1, 2,.... (9.4) j=0, p 1 (i, j) = p(i, j), f 1 (s) = f(s), n = 1, p(i, j)s j = [f(s)] i, i = 1, 2,.... (9.5) j=0., n 1, (9.4) n., p n+1 (i, j)s j = p(i, k)p n (k, j)s j.,, j=0 j=0 k=0 p n (k, j)s j = [f n (s)] k j=0 p n+1 (i, j)s j = p(i, k)[f n (s)] k j=0 k=0, (9.5) s f n (s), p n+1 (i, j)s j = [f(f n (s))] i = [f n+1 (s)] i j=0.. X 0 = 1, P (X n = j) = P (X n = j X 0 = 1) = p n (1, j),, P (X 1 = j) = P (X 1 = j X 0 = 1) = p 1 (1, j) = p(1, j) = p j. 74

77 9.2.3, m = kp k < k=0 E[X n ] = m n., (9.2), f (s) = kp k s k 1, s < 1, (9.6). s 1 0, m.,, (9.4) i = 1, k=0 lim f (s) = m. s 1 0 p n (1, j)s j = f n (s) = f n 1 (f(s)). (9.7) j=0, s 1 0, f n(s) = jp n (1, j)s j 1 = f n 1(f(s))f (s). (9.8) j=0 lim f n(s) = s 1 0 jp n (1, j) = lim f n 1(f(s)) lim f (s) = m lim f n 1(s). s 1 0 s 1 0 s 1 0 j=0,., j=0 lim f n(s) = m n s 1 0 E(X n ) = jp (X n = j) = jp n (1, j) = m n j=0., n E(X n ) n, m < 1 0, m > 1, m = 1., m = V[Y ] = σ , σ 2 m n 1 (m n 1), m 1, V[X n ] = m 1 nσ 2, m = 1,. 75

78 9.3 {X n } n, {X n = 0} n., q, ( ) q = P {X n = 0} n=1.,., {X 1 = 0} {X 2 = 0} {X n = 0}... q = lim n P (X n = 0) (9.9). q = 1, (), q < 1, 1 q > 0., q = f(s), n f n (s) = f(f n 1 (s)), q = lim n f n(0)., q, q = f(q) (9.10)., 9.2.2, f n (s) = p n (1, j)s j j=0 f n (0) = p n (1, 0) = P (X n = 0 X 0 = 1) = P (X n = 0)., X 0 = 1. (9.9),., f(s) [0, 1] f(t). (, (9.1).) (1) f(s)., 0 s 1 s 2 1, f(s 1 ) f(s 2 ). (2) f(s),, 0 s 1 < s 2 1, 0 < θ < 1, f(θs 1 + (1 θ)s 2 ) < θf(s 1 ) + (1 θ)f(s 2 ). (1) f(s) 0. (2) f (s) > (1) m 1, 0 s < 1 f(s) > s. (2) m > 1, 0 s < 1 f(s) = s s 1. 76

79 9.3.4 f 1 (0) f 2 (0) q q, s = f(s), 0 s 1, s., m 1 q = 1, m > 1 q < 1., m < 1, m = 1, m > 1, (subcritical), (critical), (supercritical). m, m = p 0 < p < 1., p 0 = 1 p, p 1 = 0, p 2 = p, p 3 = p 4 = = 0., P (X 1 0,..., X n 1 0, X n = 0), P (X n = 0), lim n P (X n = 0),,. 32 b, p b > 0, 0 < p < 1, b + p < 1. p k = bp k 1, k = 1, 2,..., p 0 = 1, f(s)., m = 1, f n (s). p k q = 9/10,?., 1. R. B. ):,, K. B. Athreya and P. E. Ney: Branching Processes, Dover 2004 (original version, Springer 1972) 77

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

i

i i 1 1 1.1..................................... 1 1.2........................................ 3 1.3.................................. 4 1.4..................................... 4 1.5......................................

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

( ) (Appendix) *

( ) (Appendix) * 2006 10 1 Frisch Slutzky 1930 = 1990 3 4 1 2 3 ( ) 4 1 ( ) (Appendix) *1 1 2 2 5 2.1........................................ 5 2.2.......................................... 7 2.3..........................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information