Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx

Size: px
Start display at page:

Download "Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx"

Transcription

1 数値流体力学への応用 ( 支配方程式 CPU プログラム ) 長岡技術科学大学電気電子情報工学専攻出川智啓

2 今回の内容 支配方程式 Taylor Gree 渦 Cavty 流れ 798

3 数値流体力学 数値計算を利用して 流体の挙動を計算 Computatoal Flud Dyamcs( 略して CFD) 計算機の性能向上に伴い 必要不可欠な設計ツールとなっている 流体を取り扱う機器の性能評価 流体中を移動する物体が受ける抵抗の評価など 提案された当初は COLORFUL Flud Dyamcs と揶揄されていた 799

4 支配方程式 次元直交 (x y) 座標系 x 方向速度を u y 方向速度を v と記述 非圧縮性流れ 流体の密度 が変化しない 水は圧縮性 一般にマッハ0.3 以下では非圧縮と見なす 粘性流れ 流体の粘り気により運動が妨げられる 800

5 支配方程式 80 連続の式および Naver Stokes 方程式 質量と運動量の保存式に対応 運動エネルギの保存は運動量保存式が兼ねる x y 方向速度 u v 圧力 p の 3 変数を連立 0 y v x u y v x v y p y v v x v u t v y u x u x p y u v x u u t u 連続の式 ( 質量保存式 ) Naver Stokes 方程式 ( 運動量保存式 )

6 支配方程式 80 Naver Stokes 方程式の回転を計算 v に関する式を x で偏微分した式から u に関する式を y で偏微分した式を引く 時間 空間的に連続であることを考慮して微分の順序を交換 密度一定のため衝撃波のような不連続は発生しない y u x u x p y u v x u u t u y y v x v y p y v v x v u t v x

7 支配方程式 渦度 (Vortcty) 流体粒子の回転 v x u y u y v x 流れ関数 (Streamfucto) 二つの流れ関数の等高線 ( 流線 ) 間を通過する流量 y x u v x v u y 803

8 支配方程式 804 渦度方程式 渦度の移流 拡散方程式 流れ関数の Posso 方程式 流れ関数の定義式を渦度の定義式に代入 変数の数が流れ関数 渦度の 個に低減 y x y v x u t y x y y x x y u x v 渦度の移流渦度の拡散

9 計算手順. 渦度方程式を計算して渦度を求める. 渦度を基に流れ関数の Posso 方程式を解いて流れ関数を求める 3. 流れ関数の定義式から速度を求める 4. に戻って計算を繰り返す 805

10 渦度方程式の離散化 806 時間に前進差分 空間に中心差分を適用 Δy Δx Δy v Δx u Δt Δy Δx Δt Δy v Δx u Δt

11 流れ関数の Posso 方程式の離散化 807 中心差分による離散化 時刻 + における流れ関数と渦度の関係 流れ関数の定義式の離散化 Δy Δx Δx v Δy u

12 計算条件 Taylor Gree 渦 セル状の渦が流体の粘性により減衰移流と圧力勾配が釣り合うため 粘性の影響しか現れない 計算条件 拡散方程式の安定条件を満たすように諸条件を設定 境界条件 流れ関数 渦度とも 0 808

13 計算条件 Taylor Gree 渦 セル状の渦が流体の粘性により減衰移流と圧力勾配が釣り合うため 粘性の影響しか現れない 計算条件 拡散方程式の安定条件を満たすように諸条件を設定 境界条件 流れ関数 渦度とも 0 s xs y 809

14 パラメータ設定 #clude<stdo.h> #clude<stdlb.h> #clude<math.h> #defe ERR_TOL e #defe Accel.7 #defe Lx (.0*M_PI) #defe Ly (.0*M_PI) #defe Nx 0 #defe Ny Nx #defe Nbytes (Nx*Ny*szeof(double)) #defe dx (Lx/(Nx )) #defe dy (Ly/(Ny )) #defe Kvsc (0.) #defe dx (dx*.0) #defe dy (dy*.0) #defe dxdx (dx*dx) #defe dydy (dy*dy) #defe dxdxdydy (dxdx*dydy) #defe dxdy (.0*(dxdx+dydy)) #defe dt (0.0) #defe Nt (t)(.0/dt) taylor_gree.c 80

15 メイン t ma(vod){ double *vrtx[]*stmf*u*v; t curr=0ext=; vrtx[curr] = (double *)malloc(nbytes); stmf = (double *)malloc(nbytes); u = (double *)malloc(nbytes); v = (double *)malloc(nbytes); vrtx[ext] = (double *)malloc(nbytes); //Posso 方程式を満たす初期状態を計算 t(vrtx[curr]stmfuvvrtx[ext]); computestreamfucto_rbsor (stmfvrtx[curr]);// 流れ関数 computevelocty(stmfuv); // 速度 // 時間積分 for(t =;<=Nt;++){ // 渦度の計算 computevortcty (vrtx[curr]stmfuvvrtx[ext]); // 流れ関数の計算 computestreamfucto_rbsor (stmfvrtx[ext]); // 速度の計算 computevelocty(stmfuv); curr = ext; ext = curr; free(vrtx[curr]); free(stmf); free(u); free(v); free(vrtx[ext]); retur 0; taylor_gree.c 8

16 初期化 vod t(double *vrtx double *stmf double *u double *v double *vrtx_ext){ t ; for(=0;<ny;++){ for(=0;<nx;++){ double x = (double)*dx; double y = (double)*dy; vrtx[+nx*] =.0*s(.0*M_PI*x/Lx)*s(.0*M_PI*y/Ly); stmf[+nx*] = 0.0; v[+nx*] = 0.0; u[+nx*] = 0.0; vrtx_ext[+nx*] = 0.0; taylor_gree.c 8

17 渦度方程式の計算 ( 時間積分 ) vod computevortcty (double *vrtx double *stmf double *u double *vdouble *vrtx_ext){ t ; t mpmp; double covvsc; for(=;<ny ;++) for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; m = +Nx*( ); p = +Nx*(+); // 移流項の計算 cov = u[]*(vrtx[p] vrtx[m])/dx + v[]*(vrtx[p] vrtx[m])/dy; // 粘性項の計算 vsc = Kvsc*( (vrtx[m].0*vrtx[]+vrtx[p])/dxdx +(vrtx[m].0*vrtx[]+vrtx[p])/dydy); // 時間積分 vrtx_ext[] = vrtx[] + dt*( cov+vsc); taylor_gree.c 83

18 流れ関数の計算 (RB-SOR 法 ) vod computestreamfucto_rbsor (double *stmf double *vrtx){ t te_sor=0; double err_err_derr_relatve; double d_s; t pmmp; do{ err_ = 0.0; err_d = 0.0; for(t =;<Ny ;++){ for(t =+%;<Nx ;+=){ = +Nx*; p = (+)+Nx*( ); m = ( )+Nx*( ); p = ( )+Nx*(+); m = ( )+Nx*( ); d_s =( (stmf[m]+stmf[p])/dxdx +(stmf[m]+stmf[p])/dydy ( vrtx[]) // 右辺が ω なのでマイナス付き )*dxdxdydy/dxdy stmf[]; stmf[] += Accel*d_s; err_ += d_s*d_s; err_d += stmf[]*stmf[]; taylor_gree.c 84

19 流れ関数の計算 (RB-SOR 法 ) for(t =;<Ny ;++){ for(t = %;<Nx ;+=){ = +Nx*; p = (+)+Nx*( ); m = ( )+Nx*( ); p = ( )+Nx*(+); m = ( )+Nx*( ); d_s =( (stmf[m]+stmf[p])/dxdx +(stmf[m]+stmf[p])/dydy ( vrtx[]) // 右辺が ωなのでマイナス付き )*dxdxdydy/dxdy stmf[]; stmf[] += Accel*d_s; err_ += d_s*d_s; err_d += stmf[]*stmf[]; whle(err_relatve > ERR_TOL); f(err_d<e 0)err_d=.0; err_relatve = sqrt(err_/err_d); te_sor++; taylor_gree.c 85

20 流れ関数の計算 ( 共役勾配法 ) vod computestreamfucto_cg (double *stmf double *vrtx){ double err; t pmmp; double *p*r*ap; double alphbetarrpapbb; p = (double *)malloc(nbytes); r = (double *)malloc(nbytes); Ap = (double *)malloc(nbytes); for(t =0;<Ny;++) for(t =0;<Nx;++){ = +Nx*; p [] = 0.0; r [] = 0.0; Ap[] = 0.0; alph=0.0; beta=0.0; bb = 0.0; rr = 0.0; for(t =;<Ny ;++) for(t =;<Nx ;++){ = +Nx*; p = (+)+Nx*( ); m = ( )+Nx*( ); p = ( )+Nx*(+); m = ( )+Nx*( ); r[] = vrtx[]// 右辺が ω なのでマイナス付き ( (stmf[m] *stmf[]+stmf[p])/dxdx +(stmf[m] *stmf[]+stmf[p])/dydy); rr += r[]*r[]; bb += vrtx[]*vrtx[]; taylor_gree.c 86

21 流れ関数の計算 ( 共役勾配法 ) do{ for(t =0;<Ny;++) for(t =0;<Nx;++){ = +Nx*; p [] = r[] + beta*p[]; pap = 0.0; for(t =;<Ny ;++) for(t =;<Nx ;++){ = +Nx*; p = (+)+Nx*( ); m = ( )+Nx*( ); p = ( )+Nx*(+); m = ( )+Nx*( ); Ap[] = (p[m] *p[]+p[p])/dxdx +(p[m] *p[]+p[p])/dydy; pap += p[]*ap[]; alph = rr/pap; rr = 0.0; for(t =0;<Ny;++) for(t =0;<Nx;++){ = +Nx*; stmf[] = stmf[] + alph* p[]; r [] = r [] alph*ap[]; rr += r[]*r[]; err = sqrt(rr/bb); beta = rr/(alph*pap); whle(err > ERR_TOL); free(r); free(p); free(ap); taylor_gree.c 87

22 プログラム ( 速度の計算 ) vod computevelocty (double *stmf double *u double *v){ t ; t mpmp; t mpmp; // 計算領域内部 for(=;<ny ;++) for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; m = +Nx*( ); p = +Nx*(+); u[] = (stmf[p] stmf[m])/dy; v[] = (stmf[p] stmf[m])/dx; // 下境界 =0; for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; p = +Nx*(+); p = +Nx*(+); u[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dy; v[] = (stmf[p] stmf[m])/dx; // 上境界 =Ny ; for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; m = +Nx*( ); m = +Nx*( ); u[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dy; v[] = (stmf[p] stmf[m])/dx; taylor_gree.c 88

23 プログラム ( 速度の計算 ) for(=;<ny ;++){ // 左境界 =0; = +Nx*; m = +Nx*; p = ++Nx*; p = ++Nx*; p = +Nx*(+); m = +Nx*( ); u[] = (stmf[p] stmf[m])/dy; v[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dx; // 右境界 =Nx ; = +Nx*; m = +Nx*; m = +Nx*; p = ++Nx*; p = +Nx*(+); m = +Nx*( ); u[] = (stmf[p] stmf[m])/dy; v[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dx; // 左下角 =0 ;=0; = +Nx*; p = ++Nx*; p = ++Nx*; p = +Nx*(+); p = +Nx*(+); u[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dy; v[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dx; taylor_gree.c 89

24 プログラム ( 速度の計算 ) // 右下角 =Nx ;=0; = +Nx*; m = +Nx*; m = +Nx*; p = +Nx*(+); p = +Nx*(+); u[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dy; v[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dx; // 左上角 =0 ;=Ny ; = +Nx*; p = ++Nx*; p = ++Nx*; m = +Nx*( ); m = +Nx*( ); u[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dy; v[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dx; // 右上角 =Nx ;=Ny ; = +Nx*; m = +Nx*; m = +Nx*; m = +Nx*( ); m = +Nx*( ); u[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dy; v[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dx; taylor_gree.c 80

25 速度の計算 計算する位置に応じて差分に使う点が変化 計算領域内は x y 方向とも中心差分 for(=;<ny ;++) for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; m = +Nx*( ); p = +Nx*(+); u[] = (stmf[p] stmf[m])/dy; v[] = (stmf[p] stmf[m])/dx; 8

26 速度の計算 計算する位置に応じて差分に使う点が変化 下方向の境界 x 方向は中心差分 y 方向は片側差分 (++ を参照 ) =0; for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; p = +Nx*(+); p = +Nx*(+); u[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dy; v[] = (stmf[p] stmf[m])/dx; 8

27 速度の計算 計算する位置に応じて差分に使う点が変化 上方向の境界 x 方向は中心差分 y 方向は片側差分 ( を参照 ) =Ny ; for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; m = +Nx*( ); m = +Nx*( ); u[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dy; v[] = (stmf[p] stmf[m])/dx; 83

28 速度の計算 計算する位置に応じて差分に使う点が変化 左方向の境界 x 方向は片側差分 (++ を参照 ) y 方向は中心差分 for(=;<ny ;++){ =0; = +Nx*; m = +Nx*; p = ++Nx*; p = ++Nx*; p = +Nx*(+); m = +Nx*( ); u[] = (stmf[p] stmf[m])/dy; v[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dx; 84

29 速度の計算 計算する位置に応じて差分に使う点が変化 右方向の境界 x 方向は片側差分 ( を参照 ) y 方向は中心差分 for(=;<ny ;++){ =Nx ; = +Nx*; m = +Nx*; m = +Nx*; p = ++Nx*; p = +Nx*(+); m = +Nx*( ); u[] = (stmf[p] stmf[m])/dy; v[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dx; 85

30 速度の計算 計算する位置に応じて差分に使う点が変化 左下の境界 x 方向は片側差分 (++ を参照 ) y 方向は片側差分 (++ を参照 ) =0 ;=0; = +Nx*; p = ++Nx*; p = ++Nx*; p = +Nx*(+); p = +Nx*(+); u[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dy; v[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dx; 86

31 速度の計算 計算する位置に応じて差分に使う点が変化 右下の境界 x 方向は片側差分 ( を参照 ) y 方向は片側差分 (++ を参照 ) =Nx ;=0; = +Nx*; m = +Nx*; m = +Nx*; p = +Nx*(+); p = +Nx*(+); u[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dy; v[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dx; 87

32 速度の計算 計算する位置に応じて差分に使う点が変化 左上の境界 x 方向は片側差分 (++ を参照 ) y 方向は片側差分 ( を参照 ) =0 ;=Ny ; = +Nx*; p = ++Nx*; p = ++Nx*; m = +Nx*( ); m = +Nx*( ); u[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dy; v[] = ( 3.0*stmf[]+4.0*stmf[p] stmf[p])/dx; 88

33 速度の計算 計算する位置に応じて差分に使う点が変化 右上の境界 x 方向は片側差分 ( を参照 ) y 方向は片側差分 ( を参照 ) =Nx ;=Ny ; = +Nx*; m = +Nx*; m = +Nx*; m = +Nx*( ); m = +Nx*( ); u[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dy; v[] = ( 3.0*stmf[] 4.0*stmf[m] +stmf[m])/dx; 89

34 計算結果 流れ関数 渦度 速度 (u v) 830

35 計算条件 次元正方キャビティ流れ 正方形断面のくぼみに水が満たされているくぼみにフタが置かれ フタが一定速度 Uで移動 U 計算条件 レイノルズ数 :Re=UL/=000 計算時間間隔 : Ut/x=0. 計算時間 :Ut/L=00まで L 83 L

36 境界条件 流れ関数 流れ関数の定義式から計算 全ての壁上で=cost.( 一定値として0を採用 ) v x 0 より =cost. u y 0 より =cost. u y 0 より =cost. v x 0 より =cost. 83

37 境界条件 渦度 流れ関数の定義式と流れ関数の Posso 方程式から計算 側壁面の境界条件 x y 壁面上で =0 より x Δx 離散化されたPosso 方程式と流れ関数の定義式を連立すると 0 v 0 Δx Δx Δx Δx o Left Wall o Rght Wall 833

38 境界条件 834 渦度 流れ関数の定義式と流れ関数の Posso 方程式から計算 y x y Δy 0 Δy u 下壁面の境界条件壁面上で =0 より離散化された Posso 方程式と流れ関数の定義式を連立すると 0 o Bottom Wall Δy Δy

39 境界条件 835 渦度 流れ関数の定義式と流れ関数の Posso 方程式から計算 y x y Δy U Δy u ΔyU 上壁面の境界条件壁面上で =0 より離散化された Posso 方程式と流れ関数の定義式を連立すると 0 Wall o Top Δy ΔyU Δy U

40 境界条件 Δy 0 Δx 0 Δx 0 Δy ΔyU

41 パラメータ設定 #clude<stdo.h> #clude<stdlb.h> #clude<math.h> #defe Re 000 // レイノルズ数 #defe Lx 0.0 // 溝の幅 (= 高さ ) #defe Ly Lx #defe Uwall 0. // 移動壁の速度 #defe Kvsc (Lx*Uwall/Re) #defe Nx 8 #defe Ny Nx #defe Nbytes (Nx*Ny*szeof(double)) #defe dx (Lx/(Nx )) #defe dy (Ly/(Ny )) #defe dx (dx*.0) #defe dy (dy*.0) #defe dxdx (dx*dx) #defe dydy (dy*dy) #defe dxdxdydy (dxdx*dydy) #defe dxdy (.0*(dxdx+dydy)) #defe dt (0.) //CFL 条件 #defe dt (dt*dx/uwall) // 時間刻み #defe edt (00.0) // 終了時間 ( 無次元 ) #defe Nt (t)(edt/dt*lx/uwall) #defe ERR_TOL e #defe Accel.7 cavty.c 837

42 初期化 vod t(double *vrtx double *stmf double *u double *v double *vrtx_ext){ t ; for(=0;<ny;++) for(=0;<nx;++){ double x = (double)*dx; double y = (double)*dy; vrtx[+nx*] = 0.0; stmf[+nx*] = 0.0; v[+nx*] = 0.0; u[+nx*] = 0.0; vrtx_ext[+nx*] = 0.0; // 速度の境界条件. 上壁面に速度 Uwall を与える =Ny ; for(=0;<nx;++){ u[+nx*] = Uwall; cavty.c 838

43 渦度方程式の計算 ( 時間積分 ) vod computevortcty (double *vrtx double *stmf double *u double *vdouble *vrtx_ext){ t ; t mpmp; double covvsc; for(=;<ny ;++){ // 左壁面 =0; = +Nx*; p = ++Nx*; vrtx[] =.0*stmf[p]/dxdx; vrtx_ext[] = vrtx[]; // 右壁面 =Nx ; = +Nx*; m = +Nx*; vrtx[] =.0*stmf[m]/dxdx; vrtx_ext[] = vrtx[]; Δx Δx cavty.c 839

44 渦度方程式の計算 ( 時間積分 ) // 下壁面 =0; for(=0;<nx;++){ = +Nx* ; p = +Nx*(+); vrtx[] =.0*stmf[p]/dydy; vrtx_ext[] = vrtx[]; // 上壁面 ( 移動壁 ) =Ny ; for(=0;<nx;++){ = +Nx* ; m = +Nx*( ); vrtx[] =.0*(stmf[m]+Uwall*dy)/dydy; vrtx_ext[] = vrtx[]; U Δy ΔyU Δy cavty.c 840

45 渦度方程式の計算 ( 時間積分 ) // 計算領域内部 for(=;<ny ;++) for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; m = +Nx*( ); p = +Nx*(+); // 移流項を計算 cov = u[]*(vrtx[p] vrtx[m])/dx + v[]*(vrtx[p] vrtx[m])/dy; // 粘性項を計算 vsc = Kvsc*( (vrtx[m].0*vrtx[]+vrtx[p])/dxdx +(vrtx[m].0*vrtx[]+vrtx[p])/dydy); // 時間積分 vrtx_ext[] = vrtx[] + dt*( cov+vsc); cavty.c 84

46 プログラム ( 速度の計算 ) vod computevelocty(double *stmf double *u double *v){ t ; t mpmp; t mpmp; // 境界条件は初期設定の際に設定済み // 壁の移動速度は時間で変化しないので何もしなくてよい for(=;<ny ;++) for(=;<nx ;++){ = +Nx*; m = +Nx*; p = ++Nx*; m = +Nx*( ); p = +Nx*(+); u[] = (stmf[p] stmf[m])/dy; v[] = (stmf[p] stmf[m])/dx; cavty.c 84

47 計算結果 流れ関数 渦度 速度 (u v) 843

偏微分方程式の差分計算 長岡技術科学大学電気電子情報工学専攻出川智啓

偏微分方程式の差分計算 長岡技術科学大学電気電子情報工学専攻出川智啓 偏微分方程式の差分計算 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 差分法 階微分 階微分に対する差分法 次元拡散方程式 guplot による結果の表示 分岐の書き方による実行時間の変化 高速化に利用できるいくつかのテクニック 7 前回授業 ビットマップを使った画像処理 配列の 要素が物理的な配置に対応 配列の 要素に物理的なデータが定義 B G R 7 数値計算 ( 差分法 ) 計算機を利用して数学

More information

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx 偏微分方程式の差分計算 ( 移流方程式 ) 長岡技術科学大学電気電子情報工学専攻出川智啓 今日の内容 差分法 1 次関数の差分 共有メモリの利用 次元移流方程式 gnuplot による結果の表示 ダブルバッファリング 589 先端 GPGPUシミュレーション工学特論 数値計算 計算機を利用して数学 物理学的問題の解を計算 微積分を計算機で扱える形に変換 処理自体はあまり複雑ではない 精度を上げるために計算量が増加

More information

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx 偏微分方程式の差分計算 拡散方程式 ) 長岡技術科学大学電気電子情報工学専攻出川智啓 今日の内容 シミュレーションの歴史と進歩 差分法 1 階微分 階微分に対する差分法 1 次関数の差分 次元拡散方程式 付録 共有メモリの典型的な使い方 49 先端 GPGPUシミュレーション工学特論 数値計算 計算機を利用して数学 物理学的問題の解を計算 微積分を計算機で扱える形に変換 処理自体はあまり複雑ではない

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講?

今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講? 今後の予定 6/29 パターン形成第 11 回 7/6 データ解析第 12 回 7/13 群れ行動 ( 久保先生 ) 第 13 回 7/17 ( 金 ) 休講 7/20 まとめ第 14 回 7/27 休講? 数理生物学演習 第 11 回パターン形成 本日の目標 2 次元配列 分子の拡散 反応拡散モデル チューリングパタン 拡散方程式 拡散方程式 u t = D 2 u 拡散が生じる分子などの挙動を記述する.

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

で通常 0.1mm 程度であるのに対し, 軸受内部の表面の大きさは通常 10mm 程度であり, 大きさのスケールが100 倍程度異なる. 例えば, 本研究で解析対象とした玉軸受について, すべての格子をEHLに用いる等間隔構造格子で作成したとすると, 総格子点数は10,000,000のオーダーとなる

で通常 0.1mm 程度であるのに対し, 軸受内部の表面の大きさは通常 10mm 程度であり, 大きさのスケールが100 倍程度異なる. 例えば, 本研究で解析対象とした玉軸受について, すべての格子をEHLに用いる等間隔構造格子で作成したとすると, 総格子点数は10,000,000のオーダーとなる 論文の内容の要旨 論文題目 転がり軸受における枯渇弾性流体潤滑とマクロ流れのマルチスケール連成解析手法の開発 氏名柴﨑健一 転がり軸受は, 転動体が, 外輪および内輪上の溝を転がることにより, 軸を回転自在に支持する機械要素であり, 長寿命化, 低摩擦化が強く求められている. 軸受の摩耗や焼付を防ぎ, 寿命を延ばすため, 通常は潤滑油またはグリースなどの潤滑剤が用いられる. 潤滑油は, 転がり接触する二表面間に表面粗さよりも厚い膜を形成し,

More information

Microsoft PowerPoint - 第5章_H27(MAC).ppt [互換モード]

Microsoft PowerPoint - 第5章_H27(MAC).ppt [互換モード] 講義予定. 第 回目 阿部数値シミュレーションの手続き. 第 回目 9 阿部差分方程式と差分スキーム. 第 回目 6 田中方程式の代数化 連立 次方程式の解法. 第 回目 田中並列計算法 5. 第 5 回目 阿部 MC 法など差分の計算方法 6. 第 6 回目 田中有限要素法 7. 第 7 回目 田中有限要素法 8. 第 8 回目 田中有限要素法 N-S プログラムによる実習 9. 第 9 回目 阿部乱流

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

微分方程式 モデリングとシミュレーション

微分方程式 モデリングとシミュレーション 1 微分方程式モデリングとシミュレーション 2018 年度 2 質点の運動のモデル化 粒子と粒子に働く力 粒子の運動 粒子の位置の時間変化 粒子の位置の変化の割合 速度 速度の変化の割合 加速度 力と加速度の結び付け Newtonの運動方程式 : 微分方程式 解は 時間の関数としての位置 3 Newton の運動方程式 質点の運動は Newton の運動方程式で記述される 加速度は力に比例する 2

More information

Microsoft PowerPoint - 第8章

Microsoft PowerPoint - 第8章 講義予定 案. 9/ 数値シミュレーションの手続き テキスト第 章. 9/ 9 偏微分方程式と解析解 テキスト第 章 3. 9/6 休講 4. 9/30 差分方程式とそのスキーム テキスト第 3 章 変換 テキスト第 4 章 5. 0/ 7 計算 テキスト第 5 章 連立一次方程式の解法 テキスト第 6 章 6. 0/ 流れ関数 ポテンシャルによる解法 テキスト第 7 章 7. 0/8 流速 圧力を用いた解法

More information

untitled

untitled 熱対流現象 山中透 2005 年 3 月 概要 流体を熱源に接触させ, 流体に温度傾度を与えたときを考える. 流体の温度傾度が小さいときは, 熱拡散のみが起こるが, 流体の温度傾度が閾値を越えると, 熱拡散だけでは温度傾度を解消できなくなって不安定となり, 対流が生じる. これをベナール対流とよぶ. ここでは, ベナール対流を記述する非線型方程式の線型安定性の解析によって, 流体が不安定化する条件を求め,

More information

<4D F736F F F696E74202D208BAB8A458FF08C8F82CC8AEE916282C68C8892E896402E707074>

<4D F736F F F696E74202D208BAB8A458FF08C8F82CC8AEE916282C68C8892E896402E707074> No.07-131 講習会 ( 流体工学部門企画 ) 境界条件の基礎と決定法 千葉科学大学 戸田和之 講演の流れ 数値解析とは何か 境界条件の役割と目的 境界の分類 計算法による 設定の違い 非圧縮流れ解析における境界条件の設定法 乱流解析における境界条件の設定法 圧縮性流れ解析における境界条件の設定法 1 流れの数値解析とは 偏微分型で書かれた基礎方程式を解く作業 連続の式 υ = 0 υ: 速度ベクトル

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている

More information

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の 7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

偏微分方程式、連立1次方程式、乱数

偏微分方程式、連立1次方程式、乱数 数値計算法 011/6/8 林田清 大阪大学大学院理学研究科 常微分方程式の応用例 1 Rutherford 散乱 ( 原子核同士の散乱 ; 金の薄膜に α 粒子をあてる ) 1 クーロン力 f= 4 0 r r r Ze y からf cos, si f f f y f f 粒子の 方向 y方向の速度と座標について dv Ze dvy Ze y, 3 3 dt 40m r dt 40m r d dy

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二 OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 勉強会 @ 富山富山県立大学中川慎二 * OpenFOAM のソースコードでは, 基礎式を偏微分方程式の形で記述する.OpenFOAM 内部では, 有限体積法を使ってこの微分方程式を解いている. どのようにして, 有限体積法に基づく離散化が実現されているのか,

More information

PowerPoint Presentation

PowerPoint Presentation 06 年 8 月 日 ( 月 )-6 日 ( 金 ) 千葉大学総合校舎 号館 4 階情報演習室 宇宙磁気流体 プラズマシミュレーションサマースクール 差分法の基礎 三好隆博 広島大学大学院理学研究科 時限目の目標 線形移流方程式 コンピュータ を計算機で解く! 内容 はじめに 差分法 移流方程式の差分法 高次精度風上差分法 はじめに はじめに 微分方程式 未知関数とその導関数を含む方程式 自然現象などを記述する基礎方程式

More information

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード]

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード] ロボットの運動学 順運動学とは 座標系の回転と並進 同次座標変換行列 Denavit-Hartenberg の表記法 多関節ロボットの順運動学 レポート課題 & 中間試験について 逆運動学とは ヤコビアン行列 運動方程式 ( 微分方程式 ) ロボットの運動学 動力学 Equation of motion f ( ( t), ( t), ( t)) τ( t) 姿勢 ( 関節角の組合せ ) Posture

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1 オープン CAE 勉強会 @ 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3 [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 ESI@ 新宿 1 数値流体力学 輪講に関して 目的 数値流体力学の知識 ( 特に理論ベース を深め OpenFOAM の利用に役立てること 本輪講で学ぶもの 数値流体力学の理論や計算手法の概要

More information

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要 差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要になる その一つの方法が微分方程式を差分方程式におき直すことである 微分方程式の差分化 次の 1 次元境界値問題を考える

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード]

Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード] 地震時の原子力発電所燃料プールからの溢水量解析プログラム 地球工学研究所田中伸和豊田幸宏 Central Research Institute of Electric Power Industry 1 1. はじめに ( その 1) 2003 年十勝沖地震では 震源から離れた苫小牧地区の石油タンクに スロッシング ( 液面揺動 ) による火災被害が生じた 2007 年中越沖地震では 原子力発電所内の燃料プールからの溢水があり

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード]

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード] 第 7 章自然対流熱伝達 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

スライド 1

スライド 1 5.5.2 画像の間引き 5.1 線形変換 5.2 アフィン変換 5.3 同次座標 5.4 平面射影変換 5.5 再標本化 1. 画素数の減少による表現能力の低下 画像の縮小 変形を行う際 結果画像の 画素数 < 入力画像の 画素数 ( 画素の密度 ) ( 画素の密度 ) になることがある この場合 結果画像の表現力 < 入力画像の表現力 ( 情報量 ) ( 情報量 ) 結果的に 情報の損失が生じる!

More information

2018年度 2次数学セレクション(微分と積分)

2018年度 2次数学セレクション(微分と積分) 08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical calculation method of the gradient as a differential

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

平成18年度

平成18年度 平成 18 年度 修士論文 粒子法によるキャビティ流れの数値シミュレーション 高知工科大学大学院工学研究科基盤工学専攻知能機械システム工学コース知能流体力学研究室 矢野敦大 目次 第 1 章 緒言 -1-1. 1 はじめに -1-1. 差分法と粒子法の比較 -- 1. 3 研究目的 -3- 第 章 基礎方程式 -4-. 1 オイラーの方法とラグランジュの方法 -4-. 基礎方程式 -5-. 3 無次元化

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

スライド 1

スライド 1 非線形数理秋の学校 パターン形成の数理とその周辺 - 反応拡散方程式理論による時 空間パターンの解析を中心に - 2007 年 9 月 25 日 -27 日 モデル方程式を通してみるパターン解析ー進行波からヘリカル波の分岐を例としてー 池田勉 ( 龍谷大学理工学部 ) 講義概要, 講義資料, 講義中に使用する C 言語プログラムと初期値データ, ヘリカル波のアニメーションをウェブで公開しています :

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

大気環境シミュレーション

大気環境シミュレーション 第 3 回 (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.0 () 0 =.5 (3) 0 =.0 締切 04 年 月 6 日 ( 月 ) 夕方まで 提出先 347 室 オーバーフロー失敗ゴメンなさい (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.330 () 0 =.33 (3) 0

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

2014 年 10 月 2 日 本日の講義及び演習 数値シミュレーション 2014 年度第 2 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 ) テイラー展開の利用 1 階微分項に対する差分式 2 階微分項に対する差分式 1 次元熱伝導方程式に適用して差分式を導出

2014 年 10 月 2 日 本日の講義及び演習 数値シミュレーション 2014 年度第 2 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 ) テイラー展開の利用 1 階微分項に対する差分式 2 階微分項に対する差分式 1 次元熱伝導方程式に適用して差分式を導出 04 年 0 月 日 本日の講義及び演習 数値シミュレーション 04 年度第 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 テイラー展開の利用 階微分項に対する差分式 階微分項に対する差分式 次元熱伝導方程式に適用して差分式を導出 Ecel を利用した温度変化シミュレーション 永野 ( 熱流体システム研究室 hagao@tc.ac.p 重要! 熱の伝わり方 ( 伝熱モード

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三

流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三 流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三 http://ovd.aori.u-tokyo.ac.jp/fujio/205chiba/ fujio@aori.u-tokyo.ac.jp F C F A 旋衡風 : 遠心力

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft Word 卒業論文2.doc

Microsoft Word 卒業論文2.doc 平成 6 年度 卒業論文 狭窄部を有する血管内の血流の有限要素解析 高知工科大学工学部知能機械システム工学科知能流体力学研究室 清水昌彦 目次 第 章緒言 - 本研究を行う背景と目的 - 血液の性質 -3 数値計算 - 有限要素法の概要 第 章基礎方程式 - 支配方程式 -- 連続の式 5 -- コーシーの運動方程式 6 --3 血液の構成方程式 6 - 無次元化 7 第 3 章解析手法 3- 有限要素解析

More information

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越 7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越している そこで 回転成分に着目して大気の運動を論じる 7.1 渦度 大気の回転成分を定量化する方法を考えてみる

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

数学 IB まとめ ( 教科書とノートの復習 ) IB ということで計算に関する話題中心にまとめました 理論を知りたい方はのみっちー IA のシケプリを参考にするとよいと思います 河澄教授いわく テストはまんべんなく出すらしいです でも 重積分 ( 特に変数変換使うもの ) 線積分とグリーンの定理は

数学 IB まとめ ( 教科書とノートの復習 ) IB ということで計算に関する話題中心にまとめました 理論を知りたい方はのみっちー IA のシケプリを参考にするとよいと思います 河澄教授いわく テストはまんべんなく出すらしいです でも 重積分 ( 特に変数変換使うもの ) 線積分とグリーンの定理は 数学 IB まとめ ( 教科書とノートの復習 ) IB ということで計算に関する話題中心にまとめました 理論を知りたい方はのみっちー IA のシケプリを参考にするとよいと思います 河澄教授いわく テストはまんべんなく出すらしいです でも 重積分 ( 特に変数変換使うもの ) 線積分とグリーンの定理はほぼ間違いなく出ると思うんで 時間がない人はこのあたりに絞ってやるとよいと思います 多分 前にも書きましたが

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

ヤコビ楕円関数とはなにか

ヤコビ楕円関数とはなにか ヤコビ楕円関数とはなにか December 8, 0 Aio Arimoto. 非線形微分方程式ヤコビの楕円関数 n,cn,dn の一番分かりやすい導入は次の微分方程式の解とするもので 3 dx ある 0 として 上での初期値問題 yz dt, dy xz dt, dz xy dt, x0 0, y 0 z0の解の各成分 x t, yt, zt はそれぞれ,, コビの楕円関数と呼ばれる 命題. x

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

浅水方程式 順圧であるためには, 静水圧近似が必要 Dw Dt + コリオリ力 = 1 p + 粘性 g ρ z w が u, v に比べて小さい 運動の水平距離に対して水深が浅い 浅水 海は深いが, 水平はさらに広い 最大 1 万 km 浅水方程式 : u, v, の式 水平 2 次元の解 D D

浅水方程式 順圧であるためには, 静水圧近似が必要 Dw Dt + コリオリ力 = 1 p + 粘性 g ρ z w が u, v に比べて小さい 運動の水平距離に対して水深が浅い 浅水 海は深いが, 水平はさらに広い 最大 1 万 km 浅水方程式 : u, v, の式 水平 2 次元の解 D D 流体地球科学第 11 回 東京大学大気海洋研究所准教授藤尾伸三 ttp://ovd.aori.u-tokyo.ac.jp/ujio/2015ciba/ ujio@aori.u-tokyo.ac.jp 2016/1/8 順圧流の運動方程式 流体の密度が一様ならば, 圧力 静水圧 の水平勾配は鉛直一様 海面の高さによる水平圧力勾配のみ ηx,y px, y, z = ρ g dz = ρgη z p x

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

輸送現象まとめファイル2017_01

輸送現象まとめファイル2017_01 第 4 章物理量の保存式 ある系内で生じるマクロとミクロ物質輸送 熱輸送 運動量輸送についてのバランス式を考える これを解く事により 流速 温度 濃度等の量を決定できる ある量 X( 運動量 熱量 質量 成分量 ) の蓄積量変化が 流れ込む量と生産量 ( あるいは消失量 ) の和から流れ出す量を引いたものに等しくなることから次のバランス式を得る (X の蓄積量 )/ 時間 =( 流れ込み量 )/ 時間

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓

N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓 N 体問題 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 天体の運動方程式 天体運動の GPU 実装 最適化による性能変化 #pragma unroll 855 計算の種類 画像処理, 差分法 空間に固定された観測点を配置 観測点 ( 固定 ) 観測点上で物理量がどのように変化するかを追跡 Euler 型 多粒子の運動 観測点を配置せず, 観測点が粒子と共に移動 Lagrange 型 観測点

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

§6

§6 6. 代数方程式 [ 第 回 ] 6. ベアストウ法 3 の代数方程式の数値解を求める方法の一つにベアストウ法がある. fz () z + az +! + a z+ a 0 この式を 次式 : z + pz +q で割ると一般に, 3 fz () ( z + pz+ q)( "###############$# z + bz +! ############## + b 3z+ b ) + #%# Rz

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

オープン CAE 関東 数値流体力学 輪講 第 6 回 第 3 章 : 乱流とそのモデリング (5) [3.7.2 p.76~84] 日時 :2014 年 2 月 22 日 14:00~ 場所 : 日本 新宿 2013/02/22 数値流体力学 輪講第 6 回 1

オープン CAE 関東 数値流体力学 輪講 第 6 回 第 3 章 : 乱流とそのモデリング (5) [3.7.2 p.76~84] 日時 :2014 年 2 月 22 日 14:00~ 場所 : 日本 新宿 2013/02/22 数値流体力学 輪講第 6 回 1 オープン CAE 勉強会 @ 関東 数値流体力学 輪講 第 6 回 第 章 : 乱流とそのモデリング (5) [.7. p.76~84] 日時 :04 年 月 日 4:00~ 場所 : 日本 ESI@ 新宿 本日 日程パート部分ページ 04.0 第 章 : 乱流とそのモデリング担当セクション :.7. p.76~84 今回は北風が担当しました ご質問 記述ミス等に関するご指摘がありましたら 以下までご連絡下さい

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧 2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@mail.sci.okudai.ac.jp 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

Microsoft Word - Freefem減ページ原稿.doc

Microsoft Word - Freefem減ページ原稿.doc 月刊下水道 2015 11 月号 VOL.38 No.13 有限要素法 (FreeFem++) による三次元流体解析 - 手軽に流れを観察するその2 - 中日本建設コンサルタント ( 株 ) 中根進 1. まえがき筆者は 本誌 Vol.36.No.10 (2013 年増刊号 ) で 格子ボルツマン法による下水流れの可視化 - 手軽に流れを観察する- と題して フリーソフト(Blender:Fluid)

More information

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動 2. 浅水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である. 連続する n 個のデータを平均して, 中央のデータの値に置き換える平滑化が,

More information

<4D F736F F F696E74202D208D E9197BF288CF68A4A B8CDD8AB B83685D>

<4D F736F F F696E74202D208D E9197BF288CF68A4A B8CDD8AB B83685D> 離散化手法とスキームの基礎 と選択法 007//6 宇宙航空研究開発機構情報 計算工学センター嶋英志 本講習の目的 基礎的な計算法の性質を述べ 各手法の持つ長所短所を理解することによって 手法の背景を理解した正しい選択に近づくこと クーラン数 風上差分 等の広い範囲の CFD 技術に共通の概念について その意味とイメージを把握すること 本講習の方針 様々な流体方程式の基礎となる移流方程式を用いて色々な計算法の特徴を計算例を示しながら解説する

More information

Microsoft Word - cavitation.doc

Microsoft Word - cavitation.doc 音響キャビテーション ヤング ラプラスの式 A B dl g C ヤングは 二つの流体の境界に厚さの無視できる架空の膜が存在し しかもこの膜には張力が作用するというモデルを考えた. すなわち 図に示すように 気泡表面と交わる平面 ABC を考えたとき 表面の接線方向の単位長さ dl 当たり g の力が作用していると考え この力を表面張力とよんだ. 次元は [N/m][J/m] となる. 気相と液相が接する界面には表面張力が働く

More information

技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy

技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy 技術資料 176 OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiyoshi ITO 1. はじめに自動車排出ガスの環境影響は, 道路沿道で大きく, 建物など構造物が複雑な気流を形成するため, 沿道大気中の自動車排出ガス濃度分布も複雑になる.

More information

NS NS Scalar turbulence 5 6 FEM NS Mesh (A )

NS NS Scalar turbulence 5 6 FEM NS Mesh (A ) 22 3 2 1 2 2 2 3 3 4 NS 4 4.1 NS............ 5 5 Scalar turbulence 5 6 FEM 5 6.1 NS.................................... 6 6.2 Mes A )................................... 6 6.3.....................................

More information

×××××××××× ×××××××××××××××

×××××××××× ××××××××××××××× Hoizon-penetating Tansonic Accetion Disks aound Rotating Black Holes with Causal Viscosity 高橋労太 ( 東大総合文化 ) ホライズンの内側まで解かれた ADAF の遷音速流のサンプル解 (4 元速度の 成分 ) 要旨 ブラックホール周りの定常降着流の遷音速解を外側の領域からホライズンの中まで計算できるようになった

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Microsoft Word - kogi10-12.doc

Microsoft Word - kogi10-12.doc 第 14 回作用変数 断熱不変量 1, 7/1, 915-1145, 3-348 前回 位相空間で 運動の軌跡は 特異点以外では交わらない ということを お話しました それでは 特異点とは いったいどのような点なのでしょうか 一般に (, ) の一点を与えればその後の運動は 全て決まってしまうのですか ら それにもかかわらず 軌跡が交わるということは その後の運動が一意に 決まらない という状況に対応します

More information