k- W707 1 / 39

Size: px
Start display at page:

Download "k- W707 1 / 39"

Transcription

1 k- W707 1 / 39

2 7/7 2 / 39

3 k- k- 3 / 39

4 1 k- k- k 2 k- 3 4 / 39

5 k- 5 / 39

6 k- k- 6 / 39

7 1 k- k- k 2 k- 3 7 / 39

8 k- {X i } n i=1 : (d ) k- (k-nearest neighbor) 1 k 1 2 x k {X (1), X (2),..., X (k) } X (k) 3 : ˆp(x) = k nv d x X (k) d. V d d ({x R d x 1}) V d = πd/2 Γ(d/2+1). x ˆp(x) ˆp(x) 8 / 39

9 k- k = 10 k- 9 / 39

10 k- x R S : S := {x R d x x R}. S P : P = p(x )dx. n k S ( ) n P( {X i S} = k) = P k (1 P) n k k [ ] k E = P, Var n S [ ] k = n n P(1 P). n P k n k S 10 / 39

11 R P = ( ) S p(x )dx V (S)p(x) V (S)p(x) k n p(x) k nv (S). R x X (k) k- V d V (S) = V d R d 11 / 39

12 k- knn Density Estimation p(x) x k = 100, n = / 39

13 k- k n = 100 knn Density Estimation knn Density Estimation knn Density Estimation p(x) p(x) p(x) x x x k = 1 k = 10 k = / 39

14 k- k n = knn Density Estimation knn Density Estimation knn Density Estimation p(x) p(x) p(x) x x x k = 1 k = 10 k = / 39

15 k- k n = knn Density Estimation knn Density Estimation p(x) p(x) x x k = 50 k = 500 k 13 / 39

16 1 k- k- k 2 k / 39

17 k- k knn Density Estimation p(x) knn with various k true k=10 k=200 k= x k 15 / 39

18 1 k- k- k 2 k / 39

19 k 1 k- ˆp(x) = k nv d x X (k) d ˆp x (Mean Squared Error) : MSE(ˆp(x), k) := E[(ˆp(x) p(x)) 2 ]. E[ ] {X i } n i=1 Q: k 17 / 39

20 n k MSE(ˆp(x), k) = p2 (x) k + c2 (x) p 4/d (x) ( ) ( 4/d k 1 + o n k + ( ) 1 d + 2 c(x) = 2(d + 2)π Γ2/d Tr[ f (x)]. 2. Biau et al. (2011) k f k 2+4/d (x)d = 4c 2 n 4/(d+4) n 4/(d+4) (x) ( ) ) 4/d k, n MSE(ˆp(x), k ) = O(n 4 d+4 ). ( pdf ) 18 / 39

21 MSE(ˆp(x), k ) = O ( ) n 4 d+4 d 19 / 39

22 1 k- k- k 2 k / 39

23 k- k- 21 / 39

24 k- {(X i, Y i )} n i=1 Rd {1,..., Q} Y i {1, 2,..., Q} Q x Q n 1, n 2,..., n Q : q ( Q q=1 n q = n) 1 x k {(X (1), Y (1) ), (X (2), Y (2) ),..., (X (k), Y (k) )} 2 k x : k q k q ( L q=1 k q = k) ˆq(x) = argmax q=1,...,q k q. 22 / 39

25 x q P(q x) p(x q)p(q) p(x q)p(q) P(q x) = Q = q=1 p(x q)p(q) p(x) p(x q) q p(x) x P(q) q 23 / 39

26 p(x) k- P(q) ( ): p(x q) k- ˆp(x q) = ˆP(q) = n q n. k q n q V d X (k) x d ( X (k) x k q ) ˆP(q x) = ˆp(x q)ˆp(q) ˆp(x) = k q n q V d X (k) nq x d n k nv d X (k) x d = k q k. ˆq(x) 24 / 39

27 k / 39

28 k- 15 nearest neighbour 25 / 39

29 Cross Validation k J-fold 1 J 2 J j I j : {(X i, Y i )} i Ij (j = 1,..., J). 3 ˆf(j) : R d {1, 2,..., Q} j I j 4 Ê(k) : J Ê(k) = 1 1[ˆf (j) (X i ) Y i ]. I j j=1 i I j 5 Ê(k) k 26 / 39

30 d k- ( ): X i,j X i,j /std(x :,j ). V d x X (k) d 27 / 39

31 1 k- k- k 2 k / 39

32 k- R k- knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE): FNN l use.all knn.dist KD k- kknn: kknn k- 29 / 39

33 k = 30 area e+07 4e+07 6e+07 8e+07 price 30 / 39

34 k = 30 0e+00 2e+07 4e+07 6e+07 8e k=30 price area / 39

35 estimated density k = 30 price area 30 / 39

36 estimated density 5e e 10 1e 10 ( ) area area e e 10 4e 10 3e 10 4e e e 10 2e+07 4e+07 6e+07 8e+07 price 0e+00 2e+07 4e+07 6e+07 8e+07 1e+08 price price area 31 / 39

37 1K, 1DK, 1LDK 2LDK k = e+07 4e+07 6e+07 8e area / 39

38 MNIST : , csv 33 / 39

39 / 39

40 k- k = % > res = knn(data.train_origin[,1:dimx], data.test[,1:dimx], data.train_origin[,dimy], k = 10, prob=false) > (clerr = mean(res!=data.test[,dimy])) #0.0335, 96.65% [1] > table(res,data.test[,dimy]) res / 39

41 / 39

42 k- 1 2 k 37 / 39

43 ( ) 1 autopoll.csv 2 x k (λ j ). Yk: k Lk: k (λ 1,..., λ k ) Vk: k 3 R princomp 4 ken-c-kakou.csv zip x <- read.csv("ken-c-kakou.csv",header=true) 5 (optional) 38 / 39

44 n R pdf ( tex ) action=t0300&gakubucd=100&gakkacd=15&kougicd=5522& Nendo=2015&Gakki=1&lang=JA&vid=03 dataanalysis.html 39 / 39

45 G. Biau, F. Chazal, D. Cohen-Steiner, L. Devroye, and C. Rodríguez. A weighted k-nearest neighbor density estimate for geometric inference. Electron. J. Statist., 5: , doi: /11-EJS606. URL 39 / 39

7/7 2 / 34

7/7 2 / 34 W707 s-taiji@is.titech.ac.jp 1 / 34 7/7 2 / 34 3 / 34 1 4 / 34 (...) 5 / 34 Kernel Density Estimation (gauss) p(x) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 3 2 1 0 1 2 3 x 6 / 34 O(n) 7 / 34 1 8 / 34 {X i } n i=1 :

More information

Bm18640 730 41.52 2DK 11 2 Bm17226 450 20.13 1R 11 11 Bm18475 320 15.87 1R 11 11 Bm18441 10,000 91.87 1LDK 40 39 13,230 Bm18581 81.69 2LDK 40 4 11,770

Bm18640 730 41.52 2DK 11 2 Bm17226 450 20.13 1R 11 11 Bm18475 320 15.87 1R 11 11 Bm18441 10,000 91.87 1LDK 40 39 13,230 Bm18581 81.69 2LDK 40 4 11,770 Bm18957 70.25 1LDK 15 12 10,750 16,370 Bm18859 109.85 4LDK 20 9 11,760 20,660 Bm18579 60.08 2LDK 30 7 2 Bm18639 75.32 2LDK 10 5 15,750 11,250 Bm15044 400 37.16 1LK 7 5 Bm18053 400 24.82 1K 7 7 Bm18122

More information

Taro13-第6章(まとめ).PDF

Taro13-第6章(まとめ).PDF % % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1

More information

2009 Aida et al. Caries Res 2006;40 2000 100 % 78.7 88.0 96.6 98.8 98.8 98.8 100.0 100.0 100 75 69.4 50 75.3 74.8 73.3 73.1 73.0 72.4 71.8 71.7 51.7 40.2 69.4 68.8 73.6 25 22.3 32.8 21.9 22.9 22.1

More information

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI 平均に対する平滑化ブートストラップ法におけるバンド幅の選択に関する一考察 (A Study about

More information

2002 16 02 15M 1. 98 2001 29% 2. 98 7 96 3. 2001 5,598 11.2 5 2001 2,255 13,000 17 98 107 2001 231 517 4. 1 78 3.6 m 2 2000 10.3 m 2 1 15m 2 2005 1 22m 2 2001 74 5. 2002 7 16 90 98 98 2001 29% 1998 1

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

レイアウト 1

レイアウト 1 1 1 3 5 25 41 51 57 109 2 4 Q1 A. 93% 62% 41% 6 7 8 Q1-(1) Q2 A. 24% 13% 52% Q3 Q3 A. 68% 64 Q3-(2) Q3-(1) 9 10 A. Q3-(1) 11 A. Q3-(2) 12 A. 64% Q4 A. 47% 47% Q5 QQ A. Q Q A. 13 QQ A. 14 Q5-(1) A. Q6

More information

10_11p01(Ł\”ƒ)

10_11p01(Ł\”ƒ) q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

 

  21 2418:00 19:30 19 1 18 20 2 3 4 15 5 21 6 35 2006 2007 25 2008 110 1,000 30 40 19 75 100 600 7 10 37 12 55 17 55 20 70 13 1.5 9 10 14 FJ 15 18 19 20 8 24 29 9 12 23 22 23 10 24 25 14 26 2055 1.32 11

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

ê ê ê 2007 ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê b b b b b b b b b b b ê ê ê b b b b ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê b

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Vol. 29, No. 2, 125 139 (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Information Systems and Mathematical Sciences, Faculty

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

kennsetusuijyunnakabane.xls

kennsetusuijyunnakabane.xls 75 50 35 25 20 12 8 6 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1,200 1,200 1,500 1,800 (1,100) (1,100) (1,450) 850 1,200 1,500 1,800 (800) (1,100) (1,450) 850 (800) 850 (800) 850 (800) 1,800 1 850 2 3 41 db AA

More information

1

1 1 1. 2 1-1. 2 3 1-2.2 4 2. 5 6 7 2-1 2-2 2-3 2-4 2-5 2-1 2-2 2-3 2-4 2-5 PDF PDF 8 P10 9 2-1. 10 2-1. 11 2-1. ( ( 12 2-1. 24 13 2-1. 3 3 14 2-1. 15 2-2. 16 17 2-2. 3 18 2-2. 19 2712 3 1000 20 2841 21 ...

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

28

28 y i = Z i δ i +ε i ε i δ X y i = X Z i δ i + X ε i [ ] 1 δ ˆ i = Z i X( X X) 1 X Z i [ ] 1 σ ˆ 2 Z i X( X X) 1 X Z i Z i X( X X) 1 X y i σ ˆ 2 ˆ σ 2 = [ ] y i Z ˆ [ i δ i ] 1 y N p i Z i δ ˆ i i RSTAT

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural SLC Internal tutorial Daichi Mochihashi daichi.mochihashi@atr.jp ATR SLC 2005.6.21 (Tue) 13:15 15:00@Meeting Room 1 Variational Bayesian methods for Natural Language Processing p.1/30 ? (EM),, EM? (, 2004/

More information

(lm) lm AIC 2 / 1

(lm) lm AIC 2 / 1 W707 s-taiji@is.titech.ac.jp 1 / 1 (lm) lm AIC 2 / 1 : y = β 1 x 1 + β 2 x 2 + + β d x d + β d+1 + ϵ (ϵ N(0, σ 2 )) y R: x R d : β i (i = 1,..., d):, β d+1 : ( ) (d = 1) y = β 1 x 1 + β 2 + ϵ (d > 1) y

More information

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser 1 EViews 2 2007/5/17 2007/5/21 4 OLS 2 4.1.............................................. 2 4.2................................................ 9 4.3.............................................. 11 4.4

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM kubo@ees.hokudai.ac.jp https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

untitled

untitled 0120-888-089 0120-919-498 160-83381-26-1TEL. 03-3349-3111 URL http://www.sjnk.co.jp/ 160-83381-26-1 TEL. 03-3349-3111 URL http://www.sompo-japan.co.jp/ 100-89653-7-3 TEL. 0120-919-498 URL http://www.nipponkoa.co.jp/

More information

農林金融2015年5月号

農林金融2015年5月号 4 5 4 4 4 4 2014 5 14 7 2050 1412 15 3 19 1800 1 1 2 2 2 126 2 3 1 2 1 2 3 4 1 1 2 2 1 1 2014 3 2 126 2 2 3 1 40 30 20 10 0 2014 26 287 339 393 399 361 2 2 11 1 3 25 4 4 5 5 19898993 96 3 2000 1 1 1 5

More information

表紙.PDF

表紙.PDF 2 3 4 2001 2010 33 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 H18 21 22 23 24 25 26 27 28 29 30 31 32 33 300 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 410-8601 055-934-4747 Fax 055-933-1412

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information