Size: px
Start display at page:

Download ""

Transcription

1 ( ) ( 2.8 MN )

2 Friedman WIMP

3 GPS (km/s)

4 1 1: c c x 45 O O v Ō O Ō v v = x t = tan θ 2: O Ō Ō a x = 0 x = 0 c = 1 ±1 3 Ō a 3: 4

5 4: Ō 4 O Ō O 45 4 a a Ō x O Ō 1.5 s 2 = t 2 + x 2 + y 2 + z 2 (1) = t 2 + r 2 (2) t O c = r t = 1 s 2 = 0 (3) r Ō c = t = 1 s 2 = 0 (4) s 2 = s 2 = 0 (5) x x s 2 = Φ(v) s 2 (6) Φ(v) = 1 ( ) 5 y P L 5 5

6 5: O s 2 = t 2 + r 2 (7) = P L 2 (8) = y 2 (9) O x v Ō O t = 0 A B 5 A P L B Ō P, L (6) s 2 = r 2 (10) (Ō ) Φ(v)(O ) Φ(v) = Φ( v ) (11) Ō v Ō O s 2 = Φ(v) s 2 (12) s 2 = Φ(v) s 2 (13) s 2 = Φ(v) 2 s 2 (14) Ō O s 2 = s 2 (15) Φ(v) 2 = 1 (16) Φ(v) = 1 (17) 6

7 O t x = 0 t = 1 Ō t x = 0 t = 1 6 O Ō 6: 1.6 Ō r = 0 s 2 = t 2 = τ 2 (18) τ O s 2 = t 2 + x 2 + y 2 + z 2 = s 2 = τ 2 τ 2 = t 2 (1 v 2 ) τ = t 1 v 2 t = τ (19) 1 v 2 O Ō 1 (19) Ō O Ō Ō 1 v 2 O Ō GPS 7

8 1.7 Ō Ō O x t = 0 t = 0 x = l s 2 = l 2 (20) s 2 = s 2 v = x t l 2 = t 2 + x 2 x = = x 2 (1 v 2 ) l 1 v 2 (21) 7: Ō l 2 = x 2 (1 v 2 ) (22) x = l 1 v 2 (23) t t = vl 1 v 2 (24) BA x t = v x t = x A x B t A t B = v (25) t B = 0 x B = x A vt A (26) = l v2 l 1 v 2 1 v 2 (27) (28) = l 1 v 2 (28) 8

9 : O Ō t x Ō O x v t = αt + βx x = γt + σx ȳ = y z = z t x v vt x = 0 vx t = 0 t = α(t vx) x = σ(x vt) ȳ = y z = z t x α σ (1) t = α(t vx) x = α(x vt) t 2 + x 2 = t 2 + x 2 (29) 1 α = ± 1 v 2 (30) v = 0 Ō O 9

10 t = x = t vx 1 v 2 1 v 2 vt + x 1 v 2 1 v 2 (31) (32) ȳ = y (33) z = z (34) v v 1.9 x Ō W = t O W = x t Ō O v x t = t = 0 W = 1 1 v ( x + v t) v 2 ( t + v x) = W + v 1 + W v (35) W = v W W = v W = W v W v x ( t, x, y, z) (36) O O O x O { x α } (37) α 0 3 x 0 = t x 1 = x x 2 = y x 3 = z 10

11 (37) i j k 1 3 x Ō x Ō { xᾱ} (38) 3 xᾱ = Λᾱβ x β (39) β=0 Λᾱβ O Ō 3 β=0 xᾱ = Λᾱβ x β (40) 3 β= A Ō U 9: U = eō (41) ( MCR ) ( 10) 9 10, A MCR eō U O U α = Λ ᾱ β ( e ō) = Λ ᾱ o (42) U 0 = (1 v 2 ) 1 2 U 1 = v(1 v 2 ) 1 2 (43) U 2 = 0 U 3 = 0 11

12 10: 1.12, ( ),. p = m U (44). p 0 = m(1 v 2 ) 1 2 p 1 = mv(1 v 2 ) 1 2 p 2 = 0 p 3 = 0 (45) O p (E, p 1, p 2, p 3 ), O.,. ( ). n p a k (46) k=1,1 i A 2 = (A 0 ) 2 + (A 1 ) 2 + (A 2 ) 2 + (A 3 ) 2 (47) = (A 0 ) 2 + (A 1 ) 2 + (A 2 ) 2 + (A 3 ) 2,.,.,,,,.,.,.,.,,. A B = A 0 B 0 + A 1 B 1 + A 2 B 2 + A 3 B 3 (48) 12

13 ,.., (48),.,( ).. O e α e β = 0 (α β) (49), Ō. eᾱ e β = 0 (ᾱ β) (50). 11: t x, Ō.,, ,. p p = m 2 U U = m 2 (51), p p = E 2 + (p 1 ) 2 + (p 2 ) 2 + (p 3 ) 2 3 = E 2 + (p i ) 2 (52) i=1. 3 E 2 = m 2 + (p i ) 2 (53) i=1 0,E = m, c = 1 c, E = mc 2,,,. 13

14 T A B φ T( A, B) = φ (54) ( 0) 2 x y 12: ( ) ( ) ( ) ( 0 1 ) 2.3 s 2 = t 2 + x 2 + y 2 + z 2 (55) 14

15 s 2 = x x (56) s 2 = g( x, d) (57) = g ij x i x j (58) g g ij x i x j g ij = η ij η ij i = j = 0 1 i = j = 1, 2, 3 +1 g ij 2.4. p p α p α = p( e α ) e α,. A, e β p p( A) = p(a α e α ) = A α p( e α ) (59) = A α p α = A 0 p 0 + A 1 p 1 + A 2 p 2 + A 3 p 3 (60) p β p( e β) = p(λ ᾱ β e α) = Λ ᾱ β p( e α) = Λ ᾱ β p α, O Ō.. p( A) = Aᾱpᾱ = Λ µ ᾱλᾱβ Aβ p µ = δ µ β Aβ p µ = A β p β (61) δ µ β = { 1 µ = β 0 µ β Ō O p( A),.,,. { ω α }. p = p α ω α (62) 15

16 , p( A) = p α A α (63), p( A) = p α A α = p α ω α ( A) = p α ω α (A β e β ) = p α A β ω α ( e β ). ω α ( e β ) = δβ α (64). α e β., O ω 0 (1, 0, 0, 0) ω 1 (0, 1, 0, 0) ω 2 (0, 0, 1, 0) ω 3 (0, 0, 0, 1).,. (61) p = p α ω α = p β ω β p α ω α = Λ α β p β ω β p α ω α Λ α β p α ω β = 0 p α ( ω α Λ α β p α ω β ) = 0 (65) p α p α. ω α Λ α β ω β = 0 ω α = Λ α β ω β (66),,. 2.5 φ x φ,x φ x α φ,α (67) 16

17 2.6 ( 0 2 ) ( 0 2 ) p( A) q( B) p q( A, B) (68). ( 0 2 ) ( 02 ) f αβ f( e α, e β ) (69) A, B f( A, B) = f(a α e α, B β e β ) = A α B β f( e α, e β ) (70) = A α B β f αβ f = f αβ ω αβ (71) (69) f µν = f( e µ, e ν ) (72) (71) f µν = f αβ ω αβ ( e µ, e ν ) (73) ω αβ ( e µ, e ν ) = δ α µδ β ν (74) (74) δ α µ e µ ω α δ β ν e ν ω β ω αβ ω αβ = ω α ω β (75) ( 0 2 ) ( 02 ) f = f αβ ω α ω β (76). f( A, B) = f( B, A) (77) A = e α, B = e β f αβ = f βα (78) (77) ( 0 2 ) h(s) h (s) ( A, B) = 1 2 h( A, B) h( B, A) (79) A = e α, B = e β h (s)αβ = 1 2 (h αβ + h βα ) (80) 17

18 h (αβ) = 1 2 (h αβ + h βα ) (81) ( 0 2 ) A = e α, B = e β f( A, B) = f( B, A) f αβ = f βα (82) h (A) ( A, B) = 1 2 h( A, B) 1 2 h( B, A) (83) h (A)αβ = 1 2 (h αβ h βα ) (84) h [αβ] = 1 2 (h αβ h βα ) (85) ( 0 2 ) h αβ = 1 2 (h αβ + h βα ) (h αβ h βα ) = h (αβ) + h [αβ] (86) ( 0 2 ) g( A, B) = A B = A 0 B 0 + A 1 B 1 + A 2 B 2 + A 3 B 3 = B A = g( B, A) (87) 2.7 V g g( V, ) Ṽ g( V, ) Ṽ ( ) (88) A Ṽ ( A) g( V, A) = V A (89) g g(, V ) Ṽ ( ) (90) Ṽ e α V α Ṽ ( e α) = V e α = e α V = e α (V β e β ) = ( e α e β )V β. (91) 18

19 V α = η αβ V β (92) 1 µ = β = 0 η αβ = 1 µ = β = 1, 2, 3 0 µ β α = 0 V 0 = η 0β V β = ( 1) V V V V 3 (93) = V 0 α = 1 V 0 = 0 + V 1 (1) = V 1 (94) V (a, b, c, d) (95) Ṽ ( a, b, c, d) (96) η αβ ( 0) 2 ηαβ (η αβ 0) η αβ Ã A (190 A α η αβ A β (97) A β = η βα A α (98) g A α A β 1 1 dφ φ V 0 V φ = dφ = dφ V = 0 (99) η αβ η 00 = 1,η 0i = 0,η ij = δ ij η αβ η αβ p 2 = p 2 = η αβ p α p β A α = η αβ A β p 2 = η αβ (η αµ p µ )(η βν p ν ) η αβ η βν η αβ η βν = δ ν α 19

20 p 2 = (p 0 ) 2 + (p 1 ) 2 + (p 2 ) 2 + (p 3 ) 2 (100) p q = 1 2 [( p + q)2 p 2 q 2 ] = p 0 q 0 + p 1 q 1 + p 2 q 2 + p 3 q 3 (101) 2.8 ( M) N V p V ( p) p( V ) p α V α < p, V > (102) ( M) 0 ( M) ( 0 M 20 ) V W V ( p) W ( p) p( V ) q( W ) V α p α W β q β (103) V W V α W β ( 2) 0 eα e β ( M) 0 ω α ( M) 0 ( M) ( N MN ) M N R ( 1) R( p; A) R( ω α ; e β ) = Rβ α (104) Ō Rᾱ β = R( ωᾱ; e β) = R(Λᾱµ ω µ ; Λ ν β e ν ) = ΛᾱµΛ ν βr µ ν (105) 2.9 ( M) ( N M 1 ) ( N + 1 M + 1 N 1) ( 2) 1 T αβ γ Tβγ α Tαγ β η βµ T αµ γ η αµ T µβ γ (106) α β ( 1) 2 T α βγ T γ ( 2) ( 1 12 ) 0 1, 2, 3 η αµ η µβ,. η αµ η µβ = η α β (107) η µβ ηβ α = η αµ 20

21 2.10 ( 0 0 ) ( 00 ) ( 0 1 ) ( 11 ) T T = T α β ω β ẽ α (108) T dt dτ = lim T(τ + τ) T(τ) τ 0 τ (109) ω α (τ + τ) = ω α (τ) (110) T dt ( dt α ) dτ = β ω β e α (111) dτ dt α β dτ = T α β,γu γ (112) (111),(112) ( 1 1 ) dt dτ = (T α β,γ ω β e α )U γ (113) T T α β,γ ω β ω γ e α (114) ( ) 21

22 : F G = m G g F I = m I a m g m I m G = m I ( ) 22

23 3.3 ABCD 14: 14 V x β V x β = V α x β e α + V α e α x β (115) 0 e α x β = Γµ αβ e µ (116) Γ α β µ V x β = V α x β e α + V α Γ µ αβ e µ (117) 23

24 V V α + V µ Γ α x β x β µβ V V α x β = ( V x β + V µ Γ α µβ) e α (118) V α ;β ( V ) α β (119) ( β V α ) (120) V α,β + V µ Γ α µβ (121) V x β = V α ;β e α (122) V α ;β = V α,β 3.4 φ dφ = φ (123) φ = p α V α (124) β ( ) p β φ = φ,β = p α x β V α + p α V α x β (125) = p α x β V α + p α V α ;β p α V µ Γ α µβ (126) = ( p α x β p µγ µ αβ )V α + p α V;β α ( β p) α ( p) αβ p α;β = p α,β p µ Γ µ αβ (127) β φ = β (p α V α ) = p α;β V α + p α V α ;β Γ Γ 24

25 3.5 φ φ φ,β φ φ,β;α ( 0 2 ) φ,β;α x α x β φ (128) α β φ,β,α = φ,α,β φ,β;α = φ,α;β (129) φ,β;α φ,µ Γ µ αβ = φ,α;β φ,µ Γ µ βα (130) Γ µ αβ φ,µ = Γ µ βα φ,µ (131) Γ µ αβ = Γµ βα (132) g Γ 2 g αγ g αβ,µ = Γ ν αµg νβ + Γ ν βµg αν (133) g αµ,β = Γ ν αβg νµ + Γ ν µβg αν (134) g βµ,α = Γ ν βαg νµ Γ ν µαg βν (135) g αβ,µ + g αµ,β g βµ,α (136) = (Γ ν αµ Γ ν µα)g νβ + (Γ ν αβ Γ ν βα)g νµ + (Γ ν βµ + Γ ν µβ)g αν (137) = 2g αν Γ ν βµ (138) Γ γ βµ = 1 2 gαγ (g αβ,µ + g αµ,β g βµ,α ) (139) Γ ( ) 3.6 ABCD R δ 1 δ 2 A i δa i : Āi (R 2 ) Āi (R 1 ) = RjklA i j δ 1 x k δ 2 x l (140) 25

26 15: Rjkl i ( 1) 3 δ P Q A Ā i (Q s ) = A i (P ) Γ i jk(p )A j (P )δ s x k (141) s 1, 2 Āi (R 1 ) Āi (R 2 ) Ā i (R 1 ) = A i (Q 1 ) Γ i jk(q 1 )A j (Q 1 )(δ 1 x k + δ 2 x k ) (Γ i jl,k(q 1 ) Γ i nl(q 1 )Γ n jk(q 1 ))A j (Q 1 )δ 1 x k δ 2 x l Ā i (R 2 ) = A i (Q 2 ) Γ i jk(q 2 )A j (Q 2 )(δ 1 x k + δ 2 x k ) (Γ i jk,l(q 2 ) Γ i nk(q 2 )Γ n jl(q 2 ))A j (Q 2 )δ 1 x k δ 2 x l (142) Rjkl i δa i = Āi (R 2 ) Āi (R 1 ) = (Γ i jl,k Γ i jk,l + Γ i nkγ n jl Γ i nlγ n jk)a j δ 1 x k δ 2 x l Rjkl i = Γ i jl,k Γ i jk,l + Γ i nkγ n jl Γ i nlγ n jk (143),R jkl i R ijkl = R klij = R [ij][kl] (144) R i[jkl] = 0 (145) R ij := Rilj l (146) R := g ij R ij (147) G ij G ij := R ij 1 2 gij R (148) 26

27 3.7 ρ ρc 2 p p ρ T ij = 0 p p 0 (149) p = ( ρ + p ) U i U j + pη ij (150) c = U U λ U α = dxα dλ U β = dxβ dλ U U = 0 (151) U β U α ;β = U β U α,β + Γ α µβu µ U β = 0 (152) d (dx α ) + Γ α dx µ dλ dλ µβ dλ dx β dλ = 0 (153). 3.9 (1) (2) ( 2 φ = 4π F = m φ 27

28 (1) 1 2. ( ) ( ), (2) ds 2 = (1 + 2φ)dt 2 + (1 2φ)(dx 2 + dy 2 + dz 2 ) (154). φ U = d x dτ (155) p = m U (156) U U = 0 (157) U α U µ ;α = 0 = U α U µ,α + Γ µ αβ U α U β (158) d (dx α ) + Γ α dx µ dλ dλ µβ dλ dx β dλ = 0 (159) λ, m τ m U p p = p α p µ,α + Γ µ αβ pα p β (160) = 0 (161) p α p 0,α + Γ 0 αβp α p β = 0 (162) 28

29 2 p 0 >> p i p α α = mu α α = m d dτ ( α = (162) x α ), m d dτ p0 + Γ 0 00(p 0 ) 2 = 0 (163) Γ µ βγ = 1 2 gµα (g αβ,γ + g αγ,β g γβ,α ) (164) Γ 0 00 = 1 2 g0α (g α0,0 + g α0,0 g 00,α ) (165) g αβ g αβ g 0α α = 0 0 Γ 0 00 = 1 2 g00 g 00,0 = 1 ( φ = 1 ( φ = (φ), φ ) ( (1 + 2φ)),0 ) ( 2φ),0 = φ,0 + O(φ 2 ) (166) O(φ 2 ) (163) p 0 = m(1 v 2 ) 1 2 m (167) m d dτ p0 + Γ 0 00(p 0 ) 2 = 0 m d dτ p0 = m 2 (φ,0 + O(φ 2 )) d dτ p0 mφ,0 = m φ τ φ τ p 0 p 0 p 0 1,2 (168) p α p i,α + Γ i αβp α p β = 0 (169) m d dτ pi + Γ i 00(p 0 ) 2 = 0 d dτ pi = mγ i 00 (170) Γ i 00 = 1 2 giα (g α0,0 + g α0,0 g 00,α ) (171) g iα g iα = 1 1 2φ δiα (172) 29

30 δ i0 = 0 g j0 = 0 Γ i 00 = φ δiα (2g j0,0 g 00,j ) (173) Γ i 00 = 1 2 g 00,jδ ij 1 O(φ 2 ) = 1 2 g 00,jδ ij + O(φ 2 ) (174) g 00,j = (1 + 2φ),j = ( 2φ),j (170) Γ i 00 = 1 2 ( 2φ),jδ ij (175) d dτ pi = mφ,j δ ij (176) F = m φ F = ma 1,2 1,2 (1) 3.11 (1) (2) (1) 0 (2) 3.12 p p α p β;α = p α p β,α Γ γ βα pα p γ = 0 (177) m dp β dτ = Γγ βα pα p γ (178) Γ γ βα pα p γ = 1 2 gγν (g να,β + g νβ,α g αβ,ν )p α p γ = 1 2 (g να,β + g νβ,α g αβ,ν )p α p ν (179) 30

31 p α p ν ν α ( ) ν α Γ γ βα pα p γ = 1 2 gγν 2g να,β p α p ν (180) m dp β dτ = 1 2 gγν 2g να,β p α p ν (181) g να x β g να p β p p p = m 2 U U = m 2 (182) = g αβ p α p β φ << 1, p << m = (1 + 2φ)(p 0 ) 2 + (1 2φ)((p 1 ) 2 + (p 2 ) 2 + (p 3 ) 2 ) (183) (p 0 ) 2 = [ m 2 + (1 2φ)p 2] (1 + 2φ) 1. (184) (p 0 ) 2 m 2 (1 2φ + p2 m 2 ) (185) p 0 m(1 φ + p2 2m 2 ) (186) p 0 = g 0α p α = g 00 p 0 = (1 + 2φ)p 0 (187) p 0 m(1 + φ + p2 2m 2 ) = m + mφ + p2 2m m mφ p2 2m p 0 (188) 3.13 (2) G φ 2 φ = 4πGρ (189) T 00 T 31

32 O(g) = kt (190) O g ( 0 2 ) gµν,λσ, g µν,λ, g µν, µ Λ 2 (190) O αβ = R αβ + µg αβ R + Λg αβ (191) T αβ,β = 0 (192) T αβ ;β = 0 (193) O αβ ;β = 0 (194) (191) (R αβ + µg αβ R) ;β = 0 (195) 0 G αβ = R αβ 1 2 gαβ R = G βα (196) G αβ ;β = 0 (197) µ = 1 2 (198) G αβ + Λg αβ = kt αβ (199) G + Λg = kt (200) (1) 2 φ = 4πG (2) (3) 32

33 4 4.1 Galilei X Hubble Hubble ( ) Hubble Hubble point Hubble Hubble z λ 0 λ e λ e (201) ( λ e λ 0 33

34 v 1 + v/c z = 1 v/c 1 (202) ( v c v ( d1 ) m 1 m 2 = 5 log 10 d 2 ( m i d i (202) (203) (203) 16: Hubble Hubble v = H 0 d (204) ( H 0 Hubble (s 1 )) (204) 17: 34

35 A, B A, B v OA = H 0 doa (205) v OB = H 0 dob (206) v AB = H 0 ( d OB d OA ) (207) = H 0 dab (208) Hubble Hubble Hubble H 0 = 72±8(km s 1 Mpc 1 ) (209) = (s 1 ) (210) pc 1pc m t = d(t 0) v(t 0 ) = H 0 1 = (yr) yr (m) (m/yr) (yr) = (m) = (km) = 4.2(Gpc) Hubble Hubble :pc 1AU 1pc 1AU 1 1AU = (m) (211) 4.4 point 1/4 35

36 18: pc 4.5 point Hubble 36

37 4.6 Friedman point Mpc Robertson-Walker ( ) ( ) ( ) 19: dl 2 = dr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 (212) dl 2 = dl 2 = dr 2 1 r 2 /R 2 + r2 dθ 2 + r 2 sin 2 θdφ 2 (213) dr r 2 /R 2 + r2 dθ 2 + r 2 sin 2 θdφ 2 (214) 37

38 R dl 2 = dr2 1 Kr 2 + r2 dθ 2 + r 2 sin 2 θdφ 2 (215) K = 0 K = 1 R 2 K = 1 R 2 K θ = π 2 dr = dθ = 0 l dl 2 = r 2 dφ 2 (216) l = 2π dθ = dφ = 0 0 dl (217) = 2πr (218) dl 2 = 0 r D D = = dr2 1 Kr 2 (219) r 0 r 0 dl (220) dr 1 Kr 2. (221) K (215) a(t) 20: dtdr dtdθ dl 2 = dt 2 + a(t) 2( dr 2 1 Kr 2 + r2 dθ 2 + r 2 sin 2 θdφ 2) (222) Robertson-Walker 38

39 4.6.3 Friedman Robertson-Walker Einstein Friedman Einstein G µν = 8πGT µν + Λg µν (223) Λ Einstein T µν = (ρ + p)u µ U ν + pg µν (224) 0 U µ = U ν = ( 1, 0, 0, 0) (225) Robertson-Walker Friedman G 00 = a(t),00 = 4 a(t) 3 πg(ρ + 3p) + Λ 3 ( a(t),0 ) 2 8πG G ii = = a(t) 3 ρ K a(t) 2 + Λ 3 (251) Einstein (254) (254) t (251) (226) (227) ρ,0 + 3(ρ + p) a(t),0 a(t) p<ρ ( 1 ) ρ = ρ 0 a(t) 3 = 0 (228) p r = ρ r 3 ( 1 ) ρ = ρ 0 a(t) 4 (251) (254) (259) Friedman T µν ;ν (251) ρ p Λ ρ + 3p Λ (254) (229) (230) (230) (229) (230) 4.7 point Hubble Hubble 39

40 4.7.1 Hubble Hubble Hubble d 0 d(t) = a(t 0) a(t) (231) d 0 d(t) a(t 0 ) ( ) a(t) ( ) v(t) (231) v(t) = d dt d(t) = d 0 da(t) a(t 0 ) dt = 1 a(t) d(t)da(t) dt = a(t),0 d(t) (232) a(t) H(t) = a(t),0 a(t) (233) v(t) = H(t)d(t) (234) Hubble H(t) Hubble Hubble Hubble Hubble Hubble 72±8(km s 1 Mpc 1 ) a(t) a(t) 0 a(t) 2 Hubble 1 2 a(t)2,0 = 1 a(t) G4 3 πa(t)3 ρ (235) H(t) 2 = 8 πgρ (236) 3 ρ = 3H(t)2 8πG (237) 40

41 21: (critical) cr ρ cr = 3H(t)2 8πG 0. (238) Ω 0 = ρ 0 ρ cr0 (239) = 8πGρ 0 3H 0 2 (240) Hubble Hubble ρ cr0 = 3H2 0 8πG (241) = 3 ( ) 2 8 π (kg m 3 ) (242) = (kg m 3 ) (243) = (g cm 3 ) (244) = (g m 3 ) (245) g 1m Hubble H(t) Ω 0 Friedman 41

42 Friedman ρ = ρ 0 ( 1 a(t) 3 ) ( a(t),0 ) 2 8πG = a(t) 3 ρ K a(t) 2 + Λ (246) 3 ( = H0 2 Ω0 a(t) 3 K a(t) 2 H0 2 + Λ ) 3H0 2 (247) ( = H0 2 Ω0 a(t) 3 k ) 0 a(t) 2 + Ω Λ0 (248) k 0 = K H0 2 Ω Λ0 = Λ 3H 2 0 (249) (250) ρ Λ,Ω Λ0 ρ Λ = Ω Λ0 = Λ 8πG = Λ 3H 2 0 (251) (252) Λ 8πGρ cr0 (253) = ρ Λ ρ cr0 (254) Ω Λ0 Hubble H(t 0 ) = H 0 (255) a(t 0 ) = 1 (256) ( a(t),0 ) 2 = H 2 a(t) 0 = 1 = Ω 0 a(t 0 ) 3 k 0 a(t 0 ) 2 + Ω Λ0 (257) = Ω 0 k 0 + Ω Λ0 (258) k 0 = K H 2 0 = Ω 0 + Ω Λ0 1 (259), K Ω 0 + Ω Λ0 1 Hubble H(t) Ω 0 + Ω Λ point

43 4.8.2 ( ) δρ ( ) a(t), 22: 43

44 4.8.4 E = mc MACHO W IMP point M pc 3 40 ( ) kpc 44

45 23: 24: ρ(r) r m M M(r) = 2π r 0 ρ(r )r dr (260) m v F = G Mm r 2 (261) F = m v2 r (262) F = F M(r) = v2 G r (263) M r r M(r) m F = G Mm r 2 (264) 45

46 v F = m v2 r (265) F = F G Mm r 2 = m v2 r M r = v2 G G M(r) (266) 46

47 (CDM ) (CDM) ( ) (HDM) MACHO WIMP MACHO MACHO MACHO MACHO ( ) MACHO MACHO MACHO

48 ( ) 4.11 WIMP WIMP 20 WIMP HDM CDM 0.5 CDM (Axion) CDM (LHC) CDM CMB CDM HDM CDM ( ) MACHO WIMP point

49 4.13 Ia Ia Ia Ia Hubble 5. Hubble Ia 1. Ia 2. Ia 3. Ω M = 0.25 Ω Λ = 0.75 Ω Λ = 0.73 Ia 60 Ia SCP HZSS 49

50 Einstein 250 Einstein T µν 0 ( ) ρ p ρ = wpc 2 (267) w w w=-1 w 0 w w Ia w w w ( ) ( ) 50

51 X 6 [1] BERNARD F.SCHUTZ,,,1988 [2],,,1996 [3],,,1996 [4],,,1998 [5],, II-,,2007 [6],,,

52 [7],,,2005 [8],,

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

C10-075 26 2 12 1 1 4 1.1............................. 4 1.2............................ 5 1.3................................... 5 2 6 2.1............................ 6 2.2......................... 6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

77

77 O r r r, F F r,r r = r r F = F (. ) r = r r 76 77 d r = F d r = F (. ) F + F = 0 d ( ) r + r = 0 (. 3) M = + MR = r + r (. 4) P G P MX = + MY = + MZ = z + z PG / PG = / M d R = 0 (. 5) 78 79 d r = F d

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information