Dehn 手術による 3 次元多様体の構成 Lickorish-Wallace の定理 B 久家正樹指導教員古宇田悠哉広島大学理学部数学科卒業論文 2017 年 2 月 10 日

Size: px
Start display at page:

Download "Dehn 手術による 3 次元多様体の構成 Lickorish-Wallace の定理 B 久家正樹指導教員古宇田悠哉広島大学理学部数学科卒業論文 2017 年 2 月 10 日"

Transcription

1 Dehn 手術による 3 次元多様体の構成 Lickorish-Wallace の定理 B 久家正樹指導教員古宇田悠哉広島大学理学部数学科卒業論文 2017 年 2 月 10 日

2 まえがき 3 次元多様体論を 1 年間学んできた過程で, 全ての閉曲面が完全に分類できるという定理に出会い, さらに 1 つ上の次元の 3 次元多様体の分類について興味を持った. 3 次元多様体に対するこの問題は, 閉曲面の場合とは比較にならないくらい難しい. まず, 任意の閉 3 次元多様体をどのように表すかが問題である. これについては, S 3 内の絡み目に沿った Dehn 手術を行うことで任意の向き付け可能な閉 3 次元多様体が得られることが知られている. これを Lickorish-Wallace の定理とよぶ. Lickorish-Wallace の定理は, 目に見える結び目を使って無数の 3 次元多様体を眺めることができる素晴らしい定理である. 本論文の目的はこの定理の紹介 証明を行うことである. 本論文の構成は下記のとおりである. 第 1 章では主題の定理に必要な記号や定義, 定理の紹介を行う. 特に, 写像類群が Dehn ツイストのイソトピー類により生成されるという定理と, 任意の向き付け可能な閉 3 次元多様体が Heegaad 分解をもつという定理は主題の証明の土台になる重要な定理である. 第 2 章では主題の証明を行う. 証明では二つの定理を利用して, 与えられた 3 次元多様体を Dehn ツイストの積で表し, Dehn ツイストと Dehn 手術の関係性を述べる補題を使って証明を終える. 第 3 章では Dehn 手術に係数を導入することで, 実際にどのような貼り合わせ方で 3 次元多様体が構成されるかの例を紹介する. 本論文を書くにあたり, 指導教員の古宇田悠哉先生をはじめ, 作間誠先生ならびに先輩方には多くのご指導をいただきました. また, これまで遠くから温かく見守り支えてくださった両親には深く感謝の意を表し, ここに御礼申し上げます. 久家正樹 1

3 目次 1 準備 写像類群 Heegaard 分解 Dehn 手術 Lickorish-Wallace の定理 5 3 具体的な 3 次元多様体の構成 8 2

4 1 準備 この章では本論文の主定理である Lickorish-Wallace の定理を証明するための基本的な定義や定理を述べていく. 以下 I = [0, 1], N(A) を A の閉管状近傍, A を A の閉包, A を A の境界, A#B を A と B の連結和とする. また, M, N を可微分多様体, h : M N を ( 微分 ) 同相写像とするとき (M N)/ x h(x),x M を M h N と表す. ここで h, h : M N がイソトピックであるとき M h N と M h N は同相であることに注意する. 1.1 写像類群定義 1.1 S を向き付け可能な閉曲面, Diffeo(S) を S 上の向きを保つ自己 ( 微分 ) 同相写 像が作る群, Diffeo 0 (S) を S 上の恒等写像とイソトピックな同相写像が作る正規部分群とする. このとき, 商群 MCG(S) = Diffeo(S)/Diffeo 0 (S) のことを S の写像類群とよぶ. つまり, 写像類群とは S 上の向きを保つ同相写像のイソトピー類のなす群のことである. 定義 1.2 S を向き付けられた閉曲面, c を S 内の単純閉曲線とする. このとき f : S S が c の周りの Dehn ツイストであるとは次の二つの条件を満たすときをいう : (1) f S\N(c) : 恒等写像, (2) f N(c) : S 1 I S 1 I (e 2πiθ, t) (e 2πi(θ+t), t). ここでは N(c) を S 1 I と同一視している. 図 1 は Dehn ツイストの (2) の部分を表す. f α c f(α) 図 1 c の周りの Dehn ツイスト 3

5 定理 1.3 写像類群は Dehn ツイストのイソトピー類により生成される. 証明は [3] を参照のこと. 1.2 Heegaard 分解 この節では 3 次元多様体をハンドル体とよばれる 2 つの要素に分ける分解を紹介する. 定義 1.4 H を向き付け可能な 3 次元多様体, H とする. H が種数 g ( 1) のハン ドル体であるとは, H 内に適切に埋め込まれた互いに素な円盤 D 1, D 2,..., D g が存在し て H \ N( g i=1 D i) = B 3 を満たすときをいう. また, B 3 を種数 0 のハンドル体とよぶ. 定義 1.5 H, H を種数 g のハンドル体, h : H H を同相写像として, M = H h H となるとき, H h H を M の Heegaard 分解とよぶ. ハンドル体 H の種数を Heegaard 分解の種数とよぶ. 定理 1.6 任意の向き付け可能な閉 3 次元多様体は Heegaard 分解をもつ. 特に, S 3 については以下のことが知られている. 命題 1.7 S 3 は任意の非負整数 g に対して種数 g の Heegaard 分解を持つ. 定理 1.6 は 3 次元多様体が三角形分割を持つという事実からただちにわかる. 命題 1.7 の Heegaad 分解は種数 0 の Heegaard 分解に g 回初等安定化を行うことにより得られる. 1.3 Dehn 手術 ここでは本論文の主定理の主張を理解する上で必要な概念を紹介する. 定義 次元多様体 M の内部に滑らかに埋め込まれた有限個の互いに素な単純閉曲線を絡み目とよぶ. 絡み目の ( 連結 ) 成分の一つを結び目とよぶ. 特に n 成分絡み目 L は結び目 k 1, k 2,... k n を用いて L = k 1 k 2... k n と書ける. 図 2 から図 7 は結び目や絡み目の例である. 4

6 図 2 自明な結び目 図 3 3 つ葉結び目図 4 8 の字結び目 図 5 (2 成分の ) 自明な絡み目図 6 Hopf 絡み目 図 7 Whitehead 絡み目 定義 1.9 M を向き付け可能な閉 3 次元多様体, L を M 内の絡み目, N(L) を L の閉管状近傍とする. E(L) := M \ N(L) とおく. 任意の同相写像 h : N(L) E(L) に対して, Q := N(L) h E(L) は向き付け可能な閉 3 次元多様体となる. このとき, Q は M 内の絡み目 L に沿った Dehn 手術で得られるという. 2 Lickorish-Wallace の定理 本論文で紹介する主定理の主張は以下のものである. 定理 2.1 (Lickorish-Wallace の定理 ) 任意の向き付け可能な閉 3 次元多様体 M は, S 3 内の絡み目に沿った Dehn 手術により得られる. 先に上の定理の証明の鍵となる次の補題を示す. 補題 2.2 H, H を種数が同じハンドル体, h 1, h 2 : H H を同相写像, f c : H H を H 内の単純閉曲線 c に沿った Dehn ツイストとする. h 1 = h 2 f c が成り立つとき, M 2 = H h2 H は, M 1 = H h1 H 内の c とイソトピックな結び目 k に沿った Dehn 手術で得られる. 5

7 証明 c をイソトピーで少し動かして, H の内部に存在するようにした結び目 k とする. N(k) を k の閉管状近傍として, A = S 1 I を, c と N(k) を結ぶアニュラスとする ( 図 8 参照 ). A c H k 図 8 アニュラス A N(A) を A I = (S 1 I) I と同一視し, 同相写像 ϕ : H \ N(k) H \ N(k) を次の (1), (2) により定める ( 図 9 参照 ): (1) ϕ H\(N(k) N(A)) は恒等写像, (2) ϕ S 1 {x} I は S 1 {x} { 1 2 } に沿った Dehn ツイスト (x I). N(A) H ϕ H S 1 {x} I ϕ S1 {x} I 図 9 同相写像 ϕ 6

8 このとき ϕ H = f c であり, ϕ N(k) は A N(k)( = k) に沿った Dehn ツイストになっ ている. M i = (H \ N(k)) h i H (i = 1, 2) とおき, 写像 Φ : M 1 M 2 を Φ(x) { ϕ (x) (x H \ N(k)) x (x H ) と定義する. ここで任意の y H M 1 をとる. 次の可換図式を考える. y h 1 (y) H \ N(k) ϕ H \ N(k) h 1 H id h 2 H h 1 (y) ϕ(y) = f c (y) h 2 f c (y) y を先に H 内に移すと h 1 (y) となり, Φ の定義から M 2 内では h 1 (y) となる. 一方, 先 に Φ を作用させると M 2 内で ϕ(y) となる. ここで ϕ H = f c より ϕ(y) = f c (y) であ る. さらに H 内に移すと h 2 f c (y) となる. 最初の仮定から h 1 = h 2 f c であるため Φ は well defined であることがわかる. また, ϕ, id は同相写像より Φ : M 1 M 2 も同相写像 である. したがって M i の定義から M 1 \ N(k) = M 2 \ N(k) であることがわかった. こ れは M 2 が M 1 内の結び目 k に沿った Dehn 手術で得られることを表す. ここから定理 2.1 の証明を行う. 証明任意の向き付け可能な閉 3 次元多様体は定理 1.6 より Heegaard 分解 M = H h2 H をもつ. ここで H, H の種数は g とする. このとき定理 1.7 より S 3 も種数 g の Heegaard 分解 S 3 = H h1 H をもつ. ここで h 1, h 2 : H H が向きを逆にする同相写像 となるようにハンドル体 H, H に適切に向きを定めることができる. このとき h 1 2 h 1 は H 上の向きを保つ自己同相写像となる. ここで, 定理 1.3 よりある H 内の単純閉 曲線 c 1, c 2,..., c n が存在して, h 1 2 h 1 は f c1 f c2 f cn とイソトピックになる. ただし : H H は c i に沿った Dehn ツイストとする. このとき必要ならば h 2 をイソ f ci トピーで変形することにより h 1 2 h 1 = f c1 f c2... f cn であるとしてよい. さらに H 内の N( H) を H [0, 1] と同一視 ( ただし, H = H {0}) して, c i とイソトピックな結 び目 k i を k i H { i n } となるようにとる. 今, M 0 = M, M i = H h1 (f ci+1 f c n ) 1 H (1 i n 1), M n = S 3 とする. ここで 7

9 h 1 2 h 1 = f c1 f c2... f cn, h 1 = h 2 f c1 f c2 f cn, h 1 (f c2 f cn ) 1 = h 2 f c1 であるから, 補題 2.2 より M 0 = H h2 H は M 1 = H h1 (f c2 fcn ) 1 H 内の結び目 k 1 に沿った Dehn 手術で得られる. 次に, h 1 (f c3 f cn ) 1 = h 1 (f c2... f cn ) 1 f c2 が成 り立つので, 補題より M 1 は M 2 内の結び目 k 2 に沿った Dehn 手術により得られる. 以 後, この操作を有限回繰り返すことで M n 1 が M n = S 3 から得られることがわかる. ここで, M i から M i+1 を Dehn 手術で得る際に, 補題 2.2 で利用する M i \ N(k i+1 ) と M i+1 \ N(k i+1 ) の間の同相写像を Φ i+1 とする. このとき k i の定め方より Φ i (k j ) = k j (i < j) が成立する. よって, M は S 3 内の絡み目 k n Φ 1 n (k n 1 ) Φ 1 n n 1 (k n 2) Φ 1 n Φ 1 n 1 Φ 1 2 (k 1) に沿った Dehn 手術により得られる. Φ 1 3 具体的な 3 次元多様体の構成 第 2 章では任意の向き付け可能な閉 3 次元多様体が S 3 内の絡み目に沿った Dehn 手術で得られることを示したが, 具体的な 3 次元多様体を Dehn 手術により構成することを考える際には, 絡み目だけではなく Dehn 手術で用いる同相写像を適切に記述することが必要である. 本章では係数付きの Dehn 手術を導入し, これを用いていくつかの具体的な 3 次元多様体を構成する. 以下では特に S 3 内の結び目や絡み目について考えていく. 定義 3.1 k を S 3 内の結び目, E(k) = S 3 \ N(k) とする. このとき N(k) 内の円盤を境界に持つ E(k) 上の本質的な単純閉曲線 m を結び目 k のメリディアンとよぶ. m と一点で横断的に交わる E(k) 上の単純閉曲線を結び目 k のロンジチュードとよぶ. 特に, [l] = 0 H 1 (E(k)) となるロンジチュード l を標準的ロンジチュードとよぶ. 図 10 3 つ葉結び目の標準的ロンジチュード 8

10 定義 3.2 k を S 3 内の結び目とする. S 3 = R 3 { } 上の標準的な向きを選ぶと, E(k) 上の向きが誘導される. 単純閉曲線 m と l の向きは 3 つの組 m, l, n が正の向きになるように選ぶ. ここで n は E(k) の内部に正の向きをもつ E(k) 上の法線ベクトルとする ( 図 11 参照 ). l m n 図 11 m と l の向き このとき H 1 ( E(k)) = Z[m] Z[l] となり, E(k) 上の任意の単純閉曲線 c はイソトピーにより [c] = p[m] + q[l] H 1 ( E(k)) と表せる. ただし, (p, q) は互いに素な整数である. このときの c を p/q 曲線とよぶ. 定義 3.3 k を S 3 内の結び目とする. 結び目 k のメリディアンを E(k) 上の p/q 曲線に移す同相写像 h : N(k) E(k) によって Q = N(k) h E(k) が得られるとする. このとき Q は結び目 k に沿った p/q-dehn 手術により得られるという. p/q = 1/0 のとき, - 手術, あるいは自明な手術とよばれる. また, p/q- 手術は有理手術, q = ±1 のとき整数手術とよばれる. 例 3.4 S 3 内の任意の結び目に対して 1/0- 手術を行うと再び S 3 に戻る. S 3 内の自明な結び目に対して 0/1- 手術を行うと S 2 S 1 になる. 一般に S 3 内の自明な結び目に対して p/q- 手術を行って得られる 3 次元多様体をレンズ空間とよび, 記号 L(p, q) で表す. 第 2 章で紹介した Lickorish Wallace の定理は特に整数手術で作ることができる. すなわち, 任意の向き付け可能な閉 3 次元多様体は S 3 内の絡み目に沿った整数手術により得られる. 実際, 補題 2.2 で用いた Φ の構成法から N(k) 内のメリディアン c は [c] = [m] ± [l] H 1 ( E(k)) をみたす. これは 1/(±1)- 手術を表すので整数手術である. 定義 3.5 S 3 内の少なくとも 2 つの要素をもつ絡み目 L に対して, S 3 \ L 内の 2 次元球面 S で, S 3 \ N(S) = B 1 B 2 とおくと, B 1 L, B 2 L を満たす S が存在するとき, L は分離的な絡み目であるという. ここで L 1 := B 1 L, L 2 := B 2 L のとき記号 L = (L 1, L 2 ) で表す. 9

11 系 3.6 M, N をそれぞれ S 3 内の絡み目 L 1, L 2 に沿った Dehn 手術によって得られる 3 次元多様体とする. このとき M#N は S 3 内の分離的な絡み目 L = (L 1, L 2 ) に沿った Dehn 手術により得られる. 証明定義 3.5 を満たす S 3 内の 2 次元球面 S をとり, S 3 \ N(S) = B 1 B 2, L 1 B 1, L 2 B 2 とする. このとき B 1 B 3 = B 2 B 3 = S 3 であり, S 3 内で絡み目 L 1, L 2 に沿った Dehn 手術を行うと, M と N が得られる. さらに B 1, B 2 に貼った B 3 を除いて S で貼り合わせると M#N が得られる. 参考文献 [1] Schultens, Jennifer, Introduction to 3-manifolds, Graduate Studies in Mathematics, 151, American Mathematical Society, Providence, RI, [2] Saveliev, Nikolai, Lectures on the topology of 3-manifolds, An introduction to the Casson invariant, De Gruyter Textbook, Walter de Gruyter & Co., Berlin, [3] Lickorish, W. B. R, A representation of orientable combinatorial 3-manifolds, Ann. of Math, (2) 76 (1962),

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A>

<4D F736F F D208C51985F82CD82B682DF82CC88EA95E A> 群論はじめの一歩 (6) 6. 指数 2の定理と2 面体群 命題 H を群 G の部分群とする そして 左剰余類全体 G/ H 右剰 余類全体 \ H G ともに指数 G: H 2 と仮定する このとき H は群 G の正規部分群である すなわち H 注意 ) 集合 A と B があるとき A から B を引いた差集合は A \ B と書かれるが ここで書いた H \ Gは差集合ではなく右剰余類の集合の意味である

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Microsoft Word - K-ピタゴラス数.doc

Microsoft Word - K-ピタゴラス数.doc - ピタゴラス数の代数と幾何学 津山工業高等専門学校 菅原孝慈 ( 情報工学科 年 ) 野山由貴 ( 情報工学科 年 ) 草地弘幸 ( 電子制御工学科 年 ) もくじ * 第 章ピタゴラス数の幾何学 * 第 章ピタゴラス数の代数学 * 第 3 章代数的極小元の幾何学の考察 * 第 章ピタゴラス数の幾何学的研究の動機 交点に注目すると, つの曲線が直交しているようにみえる. これらは本当に直交しているのだろうか.

More information

DVIOUT-17syoze

DVIOUT-17syoze 平面の合同変換と相似変換 岩瀬順一 要約 : 平面の合同変換と相似変換を論じる いま大学で行列を学び始めている大学一年生を念頭に置いている 高等学校で行列や一次変換を学んでいなくてもよい 1. 写像 定義 1.1 X, Y を集合とする X の各元 x に対し Y のただ一つの元 y を対応させる規則 f を写像とよび,f : X! Y のように書く f によって x に対応する Y の元を f(x)

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする . はじめに ポンスレの閉形定理 Jcobi の証明 Jue 5 03 Akio Aimoto ヤコビは [] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 つの円があり 一方が他方を完全に含んでいるとする 大小 円の半径をそれぞれ とする 中心間の距離を とすれば 0 < + < が成立している 大きい円の周上の点 A から小さい円に接線を引く 接線と大きい円の周上に交わる

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π()

( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π() 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 数研通信 70 号を読んで チェビシェフの定理の精密化 と.5 の間に素数がある 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 さい才 の 野 せ瀬 いちろう 一郎 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 0. はじめに このたび,

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

トポス alg-d 年 5 月 5 日 1 トポス 定義. P, Q: C op Set を関手とする.P が Q の部分関手 ( 記号で P Q と書く ) 自然変換 θ : P Q で 各 a C について θ

トポス alg-d 年 5 月 5 日 1 トポス 定義. P, Q: C op Set を関手とする.P が Q の部分関手 ( 記号で P Q と書く ) 自然変換 θ : P Q で 各 a C について θ トポス alg-d http://alg-d.com/math/kan_extension/ 2018 年 5 月 5 日 1 トポス 定義. P, Q: C op Set を関手とする.P が Q の部分関手 ( 記号で P Q と書く ) 自然変換 θ : P Q で 各 a C について θ a : P a Qa が包含写像になっているもの が存在する. P Q を部分関手とすると, 自然性より,f

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ 2-1 / 32 4. 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリティ n を持つ関数記号からなる Σ の部分集合 例 : 群 Σ G = {e, i, } (e Σ

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

2011年度 東京大・文系数学

2011年度 東京大・文系数学 東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ 伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 漸近線の求め方に関する考察 たまい玉井 かつき克樹 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊. 漸近線についての生徒からの質問 数学において図を使って直感的な説明を与えることは, 理解を深めるのに大いに役立つ

More information

2013年度 信州大・医系数学

2013年度 信州大・医系数学 03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

2 α 2 A α 1 α 5 α 3 α 4 1.2: A 3 π n 4 n 3 n = 3 n 3 n = 2 1 α A 4π α/2π A = 4π α 2π = 2α n = 2 α α 1.3: 2 n = 3,, R 3 α, β, γ S 2,, R,, R 2, R 2 T T

2 α 2 A α 1 α 5 α 3 α 4 1.2: A 3 π n 4 n 3 n = 3 n 3 n = 2 1 α A 4π α/2π A = 4π α 2π = 2α n = 2 α α 1.3: 2 n = 3,, R 3 α, β, γ S 2,, R,, R 2, R 2 T T 1 I: 1.1 3 1 S 2 = {(x, y, z) : x 2 + y 2 + z 2 = 1} O S 2 S 2 n n O (a) (b) 3 1.1: 3 n A α 1,, α n n α j = (n 2)π + A j=1 n (n 2)π 2 α 2 A α 1 α 5 α 3 α 4 1.2: A 3 π n 4 n 3 n = 3 n 3 n = 2 1 α A 4π α/2π

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 (008 年度版 ) 008/5/6 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数指南書第七の巻 直交行列, 実対称行列とその対角化, 次曲線池田勉龍谷大学理工学部数理情報学科 実行列, 正方行列, 実対称行列, 直交行列 a a N A am a MN 実行列 : すべての成分 a が実数である行列 ij ji ij 正方行列 : 行の数と列の数が等しい (

More information

<4D F736F F F696E74202D208AF489BD8A7782C CF97CA82A882DC82AF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D208AF489BD8A7782C CF97CA82A882DC82AF2E B8CDD8AB B83685D> 幾何学と不変量 数学オリンピックの問題への応用 北海道大学 高等教育推進機構西森敏之 この講演では, 数学の長い歴史の中で見つけられた, 不変量 とよばれるものの考え方を, 実際に数学オリンピックの問題を解きながら, 紹介します 1. ウオーミング アップ まず, 少し脳細胞のウオーミング アップをします 定義 ( 分割合同 ) 平面上の 2 つの多角形 P と Q が分割合同とは, 多角形 P をいくつかの直線で切って小片に分けてから,

More information

2016年度 京都大・文系数学

2016年度 京都大・文系数学 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

2015年度 信州大・医系数学

2015年度 信州大・医系数学 05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

Math-quarium 練習問題 + 図形の性質 線分 は の二等分線であるから :=:=:=: よって = = = 線分 は の外角の二等分線であるから :=:=:=: よって :=: したがって == 以上から =+=+= 右の図において, 点 は の外心である α,βを求めよ α β 70

Math-quarium 練習問題 + 図形の性質 線分 は の二等分線であるから :=:=:=: よって = = = 線分 は の外角の二等分線であるから :=:=:=: よって :=: したがって == 以上から =+=+= 右の図において, 点 は の外心である α,βを求めよ α β 70 Math-quarium 練習問題 + 図形の性質 図形の性質 線分 に対して, 次の点を図示せよ () : に内分する点 () : に外分する点 Q () 7: に外分する点 R () 中点 M () M () Q () () R 右の図において, 線分の長さ を求めよ ただし,R//Q,R//,Q=,=6 とする Q R 6 Q から,:=:6=: より :=: これから,R:=: より :6=:

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

< BD96CA E B816989A B A>

< BD96CA E B816989A B A> 数 Ⅱ 平面ベクトル ( 黄色チャート ) () () ~ () " 図 # () () () - - () - () - - () % から %- から - -,- 略 () 求めるベクトルを とする S であるから,k となる実数 k がある このとき k k, であるから k すなわち k$, 求めるベクトルは --,- - -7- - -, から また ',' 7 (),,-,, -, -,

More information

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦   正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

() ): (1) f(x) g(x) x = x 0 f(x) + g(x) x = x 0 lim f(x) = f(x 0 ), lim g(x) = g(x 0 ) x x 0 x x0 lim {f(x) + g(x)} = f(x 0 ) + g(x 0 ) x x0 lim x x 0

() ): (1) f(x) g(x) x = x 0 f(x) + g(x) x = x 0 lim f(x) = f(x 0 ), lim g(x) = g(x 0 ) x x 0 x x0 lim {f(x) + g(x)} = f(x 0 ) + g(x 0 ) x x0 lim x x 0 (1) 3 連続関数と逆関数 定義 3.1 y = f (x) のグラフが x = a でつながっているとき f (x) は x = a において連続と いう. 直感的にはこれが わかりやすい x = a では連続 x = b ではグラフがちぎれているので 不連続 定義 3. f (x) が x = a の近くで定義され lim f (x) = f (a) をみたす時 x a f (x) は x =

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

2015年度 2次数学セレクション(整数と数列)

2015年度 2次数学セレクション(整数と数列) 05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ -- 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき,

More information

応用数学A

応用数学A 応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

2017年度 金沢大・理系数学

2017年度 金沢大・理系数学 07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft PowerPoint - 応用数学8回目.pptx

Microsoft PowerPoint - 応用数学8回目.pptx 8- 次の 標 : 複素関数 ( 正則関数 ) の積分 8- 実関数 : 定積分 講義内容 名城 学理 学部材料機能 学科岩 素顕 複素関数の積分について学ぶ 複素関数の積分 複素積分の性質 周回積分の解法 コーシーの積分定理 コーシーの積分公式 グルサーの公式 - 定義 複素関数の積分 : 線積分 今後の内容 区分的に滑らかな曲線に沿って複素関数の積分を計算する 複素関数の積分の性質に関して議論する

More information

2019年度 千葉大・理系数学

2019年度 千葉大・理系数学 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ a, a とし, のとき, a+ a + a - として数列 { a } () のとき a+ a a a - が成り立つことを証明せよ () åai aaa + が成り立つような自然数 を求めよ i を定める -- 9 千葉大学 ( 理系 ) 前期日程問題 解答解説のページへ 三角形 ABC は AB+ AC BCを満たしている また,

More information

ポンスレの定理

ポンスレの定理 ポンスレの定理. qution Section 定理 有本彰雄 東京都市大学 平成 年 月 4 日 定義. n 角形 P とは 平面上にあるn 個の点の順序列 ( p, p,, pn - ) のことである 各 pk は P の頂点と呼ばれる 記号法を簡単にするため便宜的に p n とする また 線分 p i i pp, i,,,, n - を P の辺と呼ぶ 定義. すべての頂点 p k が曲線 C

More information

2013年度 九州大・理系数学

2013年度 九州大・理系数学 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(

More information

数学の学び方のヒント

数学の学び方のヒント 数学 Ⅱ における微分単元の 指導法の改善に関する研究 2017 年 10 月北数教旭川大会で発表した内容です 北海道札幌国際情報高等学校和田文興 1 Ⅰ. 研究の動機と背景 高校では極限を厳密に定義できず, 曖昧でわかりにくい. 私自身は, はじめて微分と出会ったとき, 極限の考え方等が納得できなかった. y () a h 接線 a 傾き (a) 2 Ⅰ. 研究の動機と背景 微分の指導改善に関する優れた先行研究がいくつかあるが,

More information

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦   正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語 オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の

More information

Microsoft PowerPoint - 3.ppt [互換モード]

Microsoft PowerPoint - 3.ppt [互換モード] 3. プッシュダウンオートマトンと文脈自由文法 1 3-1. プッシュダウンオートマトン オートマトンはメモリがほとんど無かった この制限を除いた機械を考える 理想的なスタックを利用できるようなオートマトンをプッシュダウンオートマトン (Push Down Automaton,PDA) という 0 1 入力テープ 1 a 1 1 0 1 スタッb 入力テープを一度走査したあと ク2 入力テプを度走査したあと

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

2015年度 金沢大・理系数学

2015年度 金沢大・理系数学 05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

千葉大学 ゲーム論II

千葉大学 ゲーム論II 千葉大学ゲーム論 II 第五, 六回 担当 上條良夫 千葉大学ゲーム論 II 第五 六回上條良夫 本日の講義内容 前回宿題の問題 3 の解答 Nash の交渉問題 Nash 解とその公理的特徴づけ 千葉大学ゲーム論 II 第五 六回上條良夫 宿題の問題 3 の解答 ホワイトボードでやる 千葉大学ゲーム論 II 第五 六回上條良夫 3 Nash の二人交渉問題 Nash の二人交渉問題は以下の二つから構成される

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

コンピュータグラフィックス第6回

コンピュータグラフィックス第6回 コンピュータグラフィックス 第 6 回 モデリング技法 1 ~3 次元形状表現 ~ 理工学部 兼任講師藤堂英樹 本日の講義内容 モデリング技法 1 様々な形状モデル 曲線 曲面 2014/11/10 コンピュータグラフィックス 2 CG 制作の主なワークフロー 3DCG ソフトウェアの場合 モデリング カメラ シーン アニメーション テクスチャ 質感 ライティング 画像生成 2014/11/10 コンピュータグラフィックス

More information

2014年度 信州大・医系数学

2014年度 信州大・医系数学 4 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 3 個の玉が横に 列に並んでいる コインを 回投げて, それが表であれば, そのときに中央にある玉とその左にある玉とを入れ替える また, それが裏であれば, そのときに中央にある玉とその右にある玉とを入れ替える この操作を繰り返す () 最初に中央にあったものが 回後に中央にある確率を求めよ () 最初に右端にあったものが 回後に右端にある確率を求めよ

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

4 3. (a) 2 (b) 1 2 xy xz- x , 4 R1 R2 R1 R xz- 2(a) 2(b) B 1 B 2 B 1 B 2 2

4 3. (a) 2 (b) 1 2 xy xz- x , 4 R1 R2 R1 R xz- 2(a) 2(b) B 1 B 2 B 1 B 2 2 2017 Vol. 16 1-33 1 2 1. 2. 21 [5], 1 2 2 [1] [2] [3] 1 4 3. (a) 2 (b) 1 2 xy- 2 1. xz- x 2. 3. 1 3 3, 4 R1 R2 R1 R2 3 1 4 2 xz- 2(a) 2(b) 1 4 2 B 1 B 2 B 1 B 2 2 5 8 7 6 5(a) 5(b) 9 7 8 2 (a) 5 (b) 1

More information

ピタゴラスの定理の証明4

ピタゴラスの定理の証明4 [ 証明 ] この証明を論理的に厳密に行うには 何回か三角形 四角形の合同を証明しなくてはなりません 以下では 直感的な分かりやすさを重視して この証明を行いません 三角形 において であるとする 辺 を一辺とする正方形 を三角形 の外側につくる 辺 を一辺とする正方形 を三角形 の外側につくる 辺 を一辺とする正方形 Fを三角形 の外側につくる 直線 と直線 との交点を J とし 直線 と直線 F

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

Microsoft Word - ComplexGeometry1.docx

Microsoft Word - ComplexGeometry1.docx Complex Geometry Speaer(s): Has-Joachim Hei (Imperial College, Loo) vieo のページ : https://www.msri.org/summer_schools/72/scheules/8495 Agea:. 正則関数 (Holomorphic Fuctio) とは 2. ワイエルストラスの予備定理 3. ハルトークスの定理 記号

More information

2014年度 千葉大・医系数学

2014年度 千葉大・医系数学 04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

2015-2018年度 2次数学セレクション(整数と数列)解答解説

2015-2018年度 2次数学セレクション(整数と数列)解答解説 015 次数学セレクション問題 1 [ 千葉大 文 ] k, m, n を自然数とする 以下の問いに答えよ (1) k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5nが 3 で割り切れるとする このとき, mn を 7 で割った余りは 4 ではないことを示せ -1- 015 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ

More information

2014年度 センター試験・数学ⅡB

2014年度 センター試験・数学ⅡB 第 問 解答解説のページへ [] O を原点とする座標平面において, 点 P(, q) を中心とする円 C が, 方程式 y 4 x で表される直線 l に接しているとする () 円 C の半径 r を求めよう 点 P を通り直線 l に垂直な直線の方程式は, y - ア ( x- ) + qなので, P イ から l に引いた垂線と l の交点 Q の座標は ( ( ウ + エ q ), 4 (

More information

PoincareDisk-3.doc

PoincareDisk-3.doc 3. ポアンカレ円盤上の 次分数変換この節以降では, 単に双曲的直線, 双曲的円などといえば, 全てポアンカレ円盤上の基本図形とします. また, 点 と点 B のポアンカレ円盤上での双曲的距離を,[,B] と表します. 3. 双曲的垂直 等分線 ユークリッドの原論 において 円 双曲的円, 直線 双曲的直線 の置き換えを行うだけで, 双曲的垂直 等分線, 双曲的内心, 双曲的外心などを 機械的に (

More information

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が 05 年度大学入試センター試験解説 数学 ⅡB 第 問 []() 点間の距離の公式から, OP ( cos q ) + ( sin q ) ( cos q + sin q ) ア PQ { ( cos q + cos 7q ) - cos q } + { ( sin q + sin 7q ) - sin q } cos q + sin q 7 7 イ である また, OQ ( cos q + cos

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - 09re.ppt [互換モード]

Microsoft PowerPoint - 09re.ppt [互換モード] 3.1. 正則表現 3. 正則表現 : 正則表現 ( または正規表現 ) とは 文字列の集合 (= 言語 ) を有限個の記号列で表現する方法の 1 つ 例 : (01)* 01 を繰り返す文字列 つまり 0(0+1)* 0 の後に 0 か 1 が繰り返す文字列 (01)* = {,01,0101,010101,01010101, } 0(0+1)*={0,00,01,000,001,010,011,0000,

More information

2010年度 筑波大・理系数学

2010年度 筑波大・理系数学 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

2018年度 神戸大・理系数学

2018年度 神戸大・理系数学 8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

Microsoft PowerPoint - 基礎IV演習1-8.pptx

Microsoft PowerPoint - 基礎IV演習1-8.pptx 地球惑星科学基礎 V 演習 3 次元の空間群 第 6 回 瀬 雄介 http://pmsl.plnet.si.koe-u..jp/~seto 2 次元空間群 3 次元空間群 2 次元空間群 格 並進 (p, ) 回転 (1, 2, 3, 4, 6) 鏡映 (m) 映進 (g) 3 次元空間群 格 並進 (P, I, F, A, B, C, R) 回転 (1, 2, 3, 4, 6) 回反 * (-1

More information

Microsoft PowerPoint - ce07-09b.ppt

Microsoft PowerPoint - ce07-09b.ppt 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? フィードバック系の内部安定性 u 内部安定性 T G だけでは不十分

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information