Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Size: px
Start display at page:

Download "Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull"

Transcription

1 Feynman Encounter with Mathematics 52, [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) [2] D. Fujiwara and N. Kumano-go, Smooth functional derivatives in Feynman path integral by time slicing approximation. Bull. Sci. Math. vol. 29 (2005) [3] N. Kumano-go and D. Fujiwara, Feynman path integrals and semiclassical approximation. RIMS Kokyuroku Bessatsu B5 (2008)

2 . Introduction 948 Feynman Schrödinger K(T, x, x 0 ) K(T, x, x 0 ) = (i T e i S[γ] D[γ] ) V (T, x) u(t, x) = 0 γ : [0, T ] R d γ(0) = x 0, γ(t ) = x T S[γ] = dγ 2 V (t, γ)dt γ D[γ] 2 dt 0 R. P. Feynman, Rev. Mod. Phys. 20 (948). (T, x) (0, x 0 ) 0 T

3 Feynman Feynman F [γ] F [γ]e i S[γ] D[γ] (DF )[γ][η] 960 Cameron e i S[γ] D[γ] R. H. Cameron, J. of Math. and Phys. Sci. 39(960). Remark limit

4 (DF )[γ][η] Feynman e i S[γ] F [γ]d[γ] Riemann(-Stieltjes) limit γ + η Qγ (DF )[γ][η] 0 0 D. Fujiwara

5 (x, x 0 ) R 2d F [γ] F Remark Schrödinger R 2d F [γ] Fujiwara(979,99) Kitada-H. Kumano-go(98) Yajima(99) N. Kumano-go(995) Fujiwara-Tsuchida(997) W. Ichinose(997) Nelson(964) Cameron-Storvick(983) Wiener Itô(967) Albeverio-Hoegh Krohn(976) Truman(972) Albeverio, Hoegh-Krohn, Mazzucchi, Mathematical theory of Feynman path integrals, 2nd, Springer, Johnson-Lapidus Gill-Zachary(2002) Operational calculus Johnson and Lapidus, The Feynman integral and Feynman s operational calculus, Oxford, T. Ichinose-Tamura(987) 2 Dirac Path Integral, 994.

6 2. Feynman Assumption of S[γ] = T 0 2 dγ dt 2 V (t, γ)dt. V (t, x) : R R d R x α V (t, x) α x V (t, x) C α( + x ) max(2 α,0). Example of F [γ] F ( ) () α x B(t, x) C α( + x ) m t F [γ] = B(t, γ(t)) F, F [γ] F, T Riemann(-Stieltjes) F [γ] = B(t, γ(t))dt F. T (2) x αb(t, x) C α F [γ] = e T T B(t,γ(t))dt F. (3) Z : R R d C d α x Z(t, x) + α x tz(t, x) C α ( + x ) m, t ( x Z) = ( x Z) F [γ] = T T Z(t, γ(t)) dγ(t) F.

7 F [γ] F F F F [γ] F Theorem Smooth algebra F [γ], G[γ] F, η : [0, T ] R d, d d P () F [γ] + G[γ] F, F [γ]g[γ] F. (2) F [γ + η] F, F [P γ] F. (3) (DF )[γ][η] F. Remark γ : [0, T ] R d η : [0, T ] R d (DF )[γ][η] = d dθ θ=0 F [γ + θη].

8 T,0 : T = T J+ > T J > > T > T 0 = 0 [0, T ] t j = T j T j, T,0 = max j J+ t j x = x J+ x J, x J,..., x R d γ T,0 j =, 2,..., J, J + (T j, x j ) (T j, x j ) S[γ T,0 ], F [γ T,0 ] x J+, x J,, x, x 0 S[γ T,0 ] = S T,0 (x J+, x J,..., x, x 0 ), F [γ T,0 ] = F T,0 (x J+, x J,..., x, x 0 ). (T J, x J ) (T 3, x 3 ) (T, x) (T, x ) (0, x 0 ) (T 2, x 2 ) T 0 = 0 T T 2 T 3 T J T = T J+

9 Feynman Theorem 2 Feynman T F [γ] F J+ ( ) e i d/2 S[γ] F [γ]d[γ] lim e i S[γ T,0 ] F [γ T,0 ] T,0 0 2πi t j= j R dj (x, x 0 ) R 2d i.e., well-defined. J j= dx j ( ) Remark F [γ] R d dx j =. J, J.

10 Remark S[γ T,0 ] S T,0 (x J+, x J,, x, x 0 ) Feynman J+ lim T,0 0 j= ( 2πi t j ) d/2 e i S T,0 (x J+,x J,...,x,x 0 ) R dj Nelson S T,0 Trotter v L 2 (R d ) L 2 - J+ ( ) d/2 lim J 2πi T /(J + ) j= R d R d e J+ i j= ( (x j x j ) 2 2T /(J+) E. Nelson, J. Math. Phys. 5 (964). ( J+ (xj x j ) 2 Tj S[γ T,0 ] = V (t, t T j x j + 2t j T j T j T j j= J j= V (x j ) T J+ dx j ) v(x 0 ) J j=0 T ) j t x j )dt T j T j ( ) S[γ T,0 ], F [γ T,0 ] dx j.

11 3. Theorem 3 T m 0, 0 T T T, f(t, x) : R R d C α x f(t, x), α x tf(t, x) x αf(t, x) + α x tf(t, x) C α ( + x ) m e i S[γ]( ) f (T, γ(t )) f (T, γ(t )) D[γ] = e i S[γ]( T T ) ( x f)(t, γ(t)) dγ(t)+ ( t f)(t, γ(t))dt D[γ]. Remark T T T ( x f)(t, γ(t)) dγ(t) γ B(t) (?) T

12 B(t) γ T,0 B(T j ) = x j Itô γ T,0 T T Z(t, B(t)) db(t) j Z(T j, x j ) (x j x j ). Stratonovich γ T,0 T Z(t, B(t)) db(t) ( Tj + T j Z, x ) j + x j T 2 2 j (x j x j ). γ T,0 T T Z(t, γ T,0 (t)) dγ T,0 (t).

13 Itô Riemann (T, x) (0, x 0 ) T 0 = 0 T T T = T J+ (T, x) (0, x 0 ) T 0 = 0 T T T = T J+

14 Proof of Theorem 3 Example Theorem () F 2 [γ] = F [γ] = f (T, γ(t )) f (T, γ(t )) F, T T ( x f)(t, γ(t)) dγ(t) + T γ T,0 Theorem 2 e i S[γ] F [γ]d[γ] lim T,0 0 = lim T,0 0 F [γ T,0 ] = F 2 [γ T,0 ]. ( J+ ) d/2 2πi t j= j J+ ( ) d/2 j= 2πi t j e i S[γ] F 2 [γ]d[γ]. T ( t f)(t, γ(t))dt F. R dj e i R dj e i S[γ T,0 ] F [γ T,0 ] S[γ T,0 ] F2 [γ T,0 ] J j= J j= dx j dx j

15 4. Riemann(-Stieltjes) lim Theorem 4 T m 0, 0 T T T, B(t, x) : [0, T ] R d C x α B(t, x) x αb(t, x) C α( + x ) m T ( ) ( T e i S[γ] B(t, γ(t))d[γ] dt = e i S[γ] T T B(t, γ(t))dt ) D[γ]. Remark limit x αb(t, x) C α e i S[γ]+ i T0 B(τ,γ(τ ))dτ D[γ] ( ) i n T τn τ2 = dτ n dτ n dτ n= e i S[γ] B(τ n, γ(τ n ))B(τ n, γ(τ n )) B(τ, γ(τ ))D[γ].

16 Nelson x j x j (T, x) x j x j (0, x 0 ) T 0 = 0 T j t T j T = T J+ γ T,0 (t) = t T j T j T j x j + T j t T j T j x j (T, x) (0, x 0 ) T 0 = 0 T j t T j T = T J+

17 Proof of Theorem 4 γ T,0 (t) B(t, γ T,0 (t)) t [T, T ] x j Lebesgue T,0 J+ ( ) d/2 J e i S[γ T,0 ] B(t, γ T,0 (t)) dx j 2πi t j R dj j= t [T, T ] Theorem 2 e i S[γ] B(t, γ(t))d[γ] j= J+ ( ) d/2 lim e i S[γ T,0 ] B(t, γ T,0 (t)) T,0 0 2πi t j= j R dj t [T, T ] e i S[γ] B(t, γ(t))d[γ] t [T, T ] Riemann J j= dx j

18 T T T T ( ) e i S[γ] B(t, γ(t))d[γ] dt J+ ( ) d/2 lim e i S[γ T,0 ] B(t, γ T,0 (t)) T,0 0 2πi t j= j R dj T dt lim T T,0 0 T J+ ( ) d/2 = lim e i S[γ T,0 ] B(t, γ T,0 (t)) T,0 0 T 2πi t j R dj j= Fubini J+ ( ) d/2 = lim e i S[γ T,0 ] T,0 0 2πi t j= j R dj ( ) T e i S[γ] B(t, γ(t))dt D[γ]. T T T J j= J j= B(t, γ T,0 (t))dt dx j dt. dx j dt. J j= dx j

19 5. F [γ + η] F [Qγ] Theorem 5 T F [γ] F η : [0, T ] R d e i S[γ+η] F [γ + η]d[γ] = γ(0)=x 0,γ(T )=x γ(0)=x 0 +η(0),γ(t )=x+η(t ) e i S[γ] F [γ]d[γ]. Remark T F [γ] F d d Q e i S[Qγ] F [Qγ]D[γ] = γ(0)=x 0,γ(T )=x γ(0)=qx 0,γ(T )=Qx e i S[γ] F [γ]d[γ].

20 Proof of Theorem 5 Theorem 2 γ T,0 (T j ) = x j e i S[γ+η] F [γ + η]d[γ] γ(0)=x 0,γ(T )=x J+ = lim T,0 0 j= ( 2πi t j ) d/2 R dj e i S[γ T,0 +η] F [γ T,0 + η] T,0 η η(t j ) = y j, j = 0,,..., J, J + J j= dx j. (T, x) (0, x 0 ) η T 0 = 0 T = T J+

21 γ T,0 + η j =, 2,..., J + (T j, x j + y j ) (T j, x j + y j ) J+ ( ) d/2 = lim T,0 0 2πi t j= j e i S T,0 (x J+ +y J+,x J +y J,...,x +y,x 0 +y 0 ) R dj F T,0 (x J+ + y J+, x J + y J,..., x + y, x 0 + y 0 ) x j + y j x j, j =, 2,..., J J+ ( ) d/2 = lim e i T,0 0 2πi t j= j R dj F T,0 (x J+ + y J+, x J,..., x, x 0 + y 0 ) y J+ = η(t ) y 0 = η(0) = e i S[γ] F [γ]d[γ]. γ(0)=x 0 +η(0),γ(t )=x+η(t ) J j= dx j. S T,0 (x J+ +y J+,x J,...,x,x 0 +y 0 ) J j= dx j.

22 6. (DF )[γ][η] Theorem 6 T F [γ] F η(0) = η(t ) = 0 η : [0, T ] R d e i S[γ] (DF )[γ][η]d[γ] = i e i S[γ] (DS)[γ][η]F [γ]d[γ]. Remark F [γ] S[γ] = T 0 dγ 2 V (t, γ)dt 2 dt η(0) = η(t ) = 0 η : [0, T ] R d T ( ) 0 = e i dγ S[γ] dη dt dt ( xv )(t, γ(t))η(t) dtd[γ]. 0

23 Remark T,0 γ η γ(t j ) = x j, η(t j ) = y j, j = 0,,..., J, J + θ R γ + θη j =, 2,..., J, J + (T j, x j + θy j ) (T j, x j + θy j ) F [γ + θη] = F T,0 (x J+ + θy J+, x J + θy J,..., x + θy, x 0 + θy 0 ). γ (T, x) (0, x 0 ) η T 0 = 0 T = T J+

24 (DF )[γ][η] (DF )[γ][η] = d J+ dθ θ=0 F [γ + θη] = ( xj F T,0 )(x J+, x J,..., x, x 0 ) y j. j=0 Remark T F [γ] F η : [0, T ] R d e i S[γ] F [γ + η]d[γ] = + 0 ( θ) L L! L l=0 l! e i S[γ] (D l F )[γ][η] [η]d[γ] e i S[γ] (D L+ F )[γ +θη][η] [η]d[γ]dθ.

25 7. 0 Theorem 7 0 T F [γ] F ( ) e i d/2 ( ) S[γ] F [γ]d[γ] = e i S[γcl ] D(T, x, x 0 ) /2 F [γ cl ] + Υ (, x, x 0 ) 2πi T γ cl γ cl (0) = x 0, γ cl (T ) = x D(T, x, x 0 ) Morette-Van Vleck Υ (, x, x 0 ) C( + x + x 0 ) m. (T, x) (0, x 0 ) γ cl T 0 = 0 T = T J+

26 8. Theorems (),2,7 992 Fujiwara Schrödinger F [γ],, J+ ( ) d/2 J e i S T,0 (x J+,x J,...,x,x 0 ) dx j 2πi t j= j R dj j= ( ) d/2 = e i ( S T,0 (x,x 0) D T,0 2πi T (x, x 0) /2 + Υ (, x, x T,0 0)). (T J, x J ) (T 3, x 3 ) (T, x) (T, x ) (0, x 0 ) (T 2, x 2 ) T 0 = 0 T T 2 T 3 T J T = T J+

27 Remark Remark γ cl S[γ cl ] Hessian T,0 : T = T J+ > T J > > T > T 0 = 0, ( T,TN+, Tn,0) : T = T J+ > > T N+ > T n > > T 0 = 0 D T,0 D ( T,TN+, Tn,0) C(T N+ T n ) 2, Υ T,0 Υ ( T,TN+, Tn,0) C (T N+ T n ) 2, Υ T,0 C. T,0 0 D T,0 D C T,0 T, Υ T,0 Υ C T,0 T ( ), Υ C. 0, 999.

28 0 ( ) Υ T,0 Υ C T,0 T? = ( ) F [γ] Υ T,0 Υ C T,0 T ( + x + x 0 )? Remark = (J s).

29 ( Υ T,0 Υ ɛ, 0 ɛ ) ( T,TN+, Tn,0) T,0 0 ɛ ( ) d/2 ɛ = e i ( ) S T,0 D /2 2πi T T,0 + Υ T,0 ɛ ɛ = 0 ( 2πi T ( 2πi T ) d/2 e i S ɛ (D ɛ /2 + Υ ɛ ) ) d/2 e i S ( T,TN+, Tn,0 ) ( D /2 ( T,TN+, Tn,0) + Υ ( T,TN+, Tn,0) Υ T,0 Υ ( T,TN+, Tn,0) = Υ Υ 0 = 0 ( ɛυ ɛ ) dɛ ɛ Υ ɛ C(T N+ T n ) 2 ( + x + x 0 ) Υ ɛ ).

30 Υ ɛ? Υ ɛ D ɛ /2 D ɛ /2 S ɛ S ɛ

31 = = =. γ T,0 F [γ] F [γ] Cauchy T,0 : T = T J+ > T J > > T > T 0 = 0, ( T,TN+, Tn,0) : T = T J+ > > T N+ > T n > > T 0 = 0

32 (T, x) (0, x 0 ) T 0 = 0 T n T N+ T = T J+ Key Lemma x j = T j T n T N+ T n x N+ + T N+ T j T N+ T n x n, j = n,..., N (x N,..., x n ) = (x N,..., x n ) γ T,0 = γ ( T,TN+, Tn,0). (T, x) (0, x 0 ) T 0 = 0 T n T N+ T = T J+

33 J dx j. j= Key Lemma (x N,..., x n ) = (x N,..., x n ) F T,0 (x J+,..., x N+, x N,..., x n, x n,..., x 0 ) = F [γ T,0 ] = F [γ ( T,TN+, Tn,0)] = F ( T,TN+, Tn,0)(x J+,..., x N+, x n,..., x 0 ). J+ n dx j dx j. j=n+ j=

34 Proof of Theorems (),2,7, J. () F [γ] F = ( ) ( ) F [γ] F [γ] (2) T T B(t, γ(t))dt F, B(t, γ(t)) F. ( ) F (3) F [γ], G[γ] F = F [γ] + G[γ], F [γ]g[γ] F. + ()(3) (2)

35 9. F [γ] F Assumption (critical point) l L J + x L,l = (x L, x L,..., x l ) x L,l = x L,l (x L+, x l ) ( xl,l S T,0 )(x J+,L+, x L,l, x l,0) = 0 Definition F F [γ] Assumption F [γ] F

36 Assumption m 0 M A M, X M T,0, 0 = j 0 < j < j < j 2 < j 2 < < j K J +, j K+ = J + α jk+, α jk M () ( K k=0 α j k+ x jk+ α j k x jk )F T,0 (x J+, x J,j K +, x j K,, x js+, x j s+ 2,j s +, x j s, x js, x j s 2,j s +, x j s, x js, x j s 2,j s 2 +, x j s 2,, x j, x j 2,, x 0) A M (X M ) K+ ( + x J+ + x jk + + x js+ + x js + x js + x js + x js + x js x j + x 0 ) m. (2), (3), (4) Remark Theorem (),2,3,4,7

37 Proof F T,0 (, x N+, x N,n, x n, ) = F ( T,TN+, Tn,0)(, x N+, x n, ). T n T N+ T n T N+

38 Assumption m 0, u j 0, J+ j= u j U < M A M, X M T,0, α j M, j = 0,,..., J + k J J+ () ( j=0 α j x j )F T,0 (x J+, x J,..., x, x 0 ) A M (X M ) J+ ( + J+ (2) ( α j x j ) xk F T,0 (x J+, x J,..., x, x 0 ) j=0 A M (X M ) J+ (u k+ + u k )( + J+ j=0 x j ) m. Remark Theorem (),2,3,4,7 J+ j=0 x j ) m,

39 Definition T,0 F T,0 (x J+, x J,..., x, x 0 ) C (R d(j+2) ) γ : [0, T ] R d η l : [0, T ] R d, l =, 2,..., L L L (D L L F )[γ] [η l ] = ( )F [γ + θ l η l ] θ l θ = =θ L =0 l= l= l= γ η 0,l0 η,l η 2,l2 η 3,l3 η j,lj T 0 = 0 T T 2 T 3 T j T j T j+ T = T J+

40 Assumption of F [γ] F m 0, ρ(t), ρ (t) M A M, X M J+ J+ () (D j=0 L j F )[γ] j=0 L j l j = J+ (2) (D + J+ j=0 L j F )[γ][η] j=0 J+ [η j,lj ] A M (X M ) J+ ( + γ ) m L j l j = [η j,lj ] A M (X M ) J+ ( + γ ) m T 0 η(t) d ρ (t) J+ j=0 L j l j = η j,lj j=0 L j l j = η j,lj, T,0, γ : [0, T ] R d, η : [0, T ] R d L j = 0,,..., M, [T j, T j+ ] η j,lj : [0, T ] R d, l j =, 2,..., L j γ = max 0 t T γ(t) Remark Theorem,2,3,4,5,6,7

41

42 0. Theorem (),2,7 J+ ( ) d/2 J ( ) lim e i S[γ T,0 ] F [γ T,0 ] dx j, T,0 0 2πi t j= j R dj j=, J F T,0 (x J+, x J,..., x, x 0 ) = F [γ T,0 ] Step. H. Kumano-go-Taniguchi ( ) J C C C Step 2. Fujiwara ( ) J C Step 3. ( ) T,0 0

43 . H. Kumano-go-Taniguchi H. Kumano-go, Pseudo differential operators, MIT Press, p.360 Fourier J+ j= = ( ) d/2 2πi t j ( ) d/2 e i S T,0 (x,x 0) q T,0 (, x, x 0). 2πi T R dj e i S T,0 (x J+,x J,...,x,x 0 ) F T,0 (x J+, x J,..., x, x 0 ) Lemma KT m 0 M A M, X M α j M, j =, 2,..., J, J + J+ ( j=0 α j x j )F T,0 (x J+, x J,..., x, x 0 ) A M (X M ) J+ ( + J+ J C J q T,0 (, x J+, x 0 ) C J ( + x J+ + x 0 ) m. j=0 J j= x j ) m. Remark x αb(t, x) C α F [γ] = e T B(t,γ(t))dt 0 J+ T j Tj j= T B(t,γ Tj,T F T,0 = e j j (t,x j,x j ))dt = J+ j= e T B(t,γ Tj,T j j (t,x j,x j ))dt. dx j

44 Proof of Lemma KT D. Fujiwara, N. Kumanogo, K. Taniguchi, Funkcial. Ekvac. 40 (997) m = 0 ω j (x j, x j ) 2πi t j+ ( = 2πi T j+ S T,0 (x J+, x J,..., x, x 0 ) = J+ j= (x j x j ) 2 2t j t j 0 (/t j ) ( ) d/2 (x i j+ x j ) 2 ( ) 2t d/2 (x i j x 0 ) 2 e j+ 2T e j 2πi T j ) d/2 (x i j+ x 0 ) 2 ( 2T e j+ 2π ) d e i S (x,x 0 ) i (x x 0 ) 2 T,0 2T q T,0 (, x, x 0 ) = R d e ( J Φ = (x j T j x j+ t j+ x 0 )ξ j T j+ T j+ j= 2π J+ j= ω j (x j, x j ). i ( t j+ T j ξ 2 2T j+ j +(x j T j x T j+ t j+ x j+ T 0 )ξ j ) j+ dξj J j= ) dj R 2dJ e i Φ F T,0 t j+ T j 2T j+ ξ 2 j J+ j= J j= dx j dξ j, ω j (x j, x j ).

45 M j = i( ξ j Φ) ξj + ξj Φ, N 2 j = i( x j Φ) xj, j =, 2,..., J + xj Φ 2 M j e i Φ = e i Φ, N j e i Φ = e i Φ. ( ) dj J ( ) e i dj Φ F T,0 dx j dξ j = e i Φ F 2π R 2dJ 2π R 2dJ T,0 j= J j= dx j dξ j, F T,0 = (N J )d+ (N 2 )d+ (N )d+ (M J )d+ (M 2 )d+ (M )d+ F T,0 M j, N j M j, N j

46 J J C J ξj Φ = x j T j x j+ t j+ x 0 t j+t j ξ j, T j+ T j+ T j+ M j = a j (x j+, ξ j, x j, x 0 ) ξj + a 0 j (x j+, ξ j, x j, x 0 ), J 4d xj+, ξj, xj M j N j+, M j, N j M j F T,0 J C J M j = C ( + ξj Φ 2 ) /2, N j = C ( + xj Φ 2 ) /2.

47 z j = ξj Φ, ζ j = xj Φ, j =, 2,..., J J F T,0 (C ) J ( + j= z j 2 ) (d+)/2 ( + ζ j 2 ), (d+)/2 det (x J,..., x, ξ J,..., ξ ) (z J,..., z, ζ J,..., ζ ) (C ) J. (x J,..., x, ξ J,..., ξ ) (z J,..., z, ζ J,..., ζ ) ( ) dj J e i Φ F 2π R 2dJ T,0 dx j dξ j j= ( ) dj = e i Φ F 2π R 2dJ T,0 det (x J,..., x, ξ J,..., ξ ) J (z J,..., z, ζ J,..., ζ ) dz j dζ j. (z J,..., z, ζ J,..., ζ ) J C J j=

48 2. Fujiwara D. Fujiwara, Nagoya Math. J. 24 (99). γ T,0 (T j, x j ) (T j, x j ) S[γ T,0 ] = S T,0 (x J+, x J,..., x, x 0 ), F [γ T,0 ] = F T,0 (x J+, x J,..., x, x 0 ). (T J, x J ) (T 3, x 3 ) (T, x) (T, x ) (0, x 0 ) (T 2, x 2 ) T 0 = 0 T T 2 T 3 T J T = T J+ Remark γ T,0 (T, x) (0, x 0 ) S[γ T,0 ] = S T,0 (x, x 0 ), F [γ T,0 ] = F T,0 (x, x 0 ).

49 ( (xj,...,x )S T,0 )(x J+, x J,..., x, x 0) = 0 (x J,..., x ) J+ j= D T,0 (x J+, x 0 ) = t d j det( 2 (x J,...,x ) S T,0 )(x J+, x J,..., x, x 0) T J+ J+ ( ) d/2 J e i S T,0 (x J+,x J,...,x,x 0 ) F T,0 (x J+, x J,..., x, x 0 ) dx j 2πi t j= j R dj j= ( ) d/2 ( ) = e i S T,0(x,x 0 ) D T,0 (x, x 0 ) /2 F T,0 (x, x 0 ) + Υ T,0 (, x, x 0 ). 2πi T Lemma F m 0 M A M, X M T,0 α j M, j = 0,,..., J, J + J+ ( j=0 α j x j )F T,0 (x J+, x J,..., x, x 0 ) A M (X M ) J+ ( + J+ j=0 x j ) m. J C Υ T,0 (, x, x 0 ) CT ( + x J+ + x 0 ) m.

50 Remark J = 0,, 2 Lemma F T = T > T 0 = 0 J = 0 α x α 0 x 0 F T,0 (x, x 0 ) A M (X M ) ( + x + x 0 ) m. T = T 2 > T > T 0 = 0 J = α 2 x 2 α x α 0 x 0 F T,T,0(x 2, x, x 0 ) A M (X M ) 2 ( + x 2 + x + x 0 ) m. T = T 3 > T 2 > T > T 0 = 0 J = 2 α 3 x 3 α 2 x 2 α x α 0 x 0 F T,T2,T,0(x 3, x 2, x, x 0 ) A M (X M ) 3 ( + x 3 + x 2 + x + x 0 ) m. Remark x αb(t, x) C α F [γ] = e T B(t,γ(t))dt 0 F T,0 = F [γ T,0 ] = Tj J+ j= e T B(t,γ Tj,T j j (t,x j,x j ))dt.

51 Proof of Lemma F m = 0 x, x 2,..., x J x (M F T,0 ) (R F T,0 ) ( ) d/2 ( ) d/2 e i S T,0 F T,0 (..., x 2, x, x 0 )dx 2πi t 2 2πi t R ( ) d d/2 = e i S ( T,T2,0) (M F 2πi T )(..., x T,0 2, x 0 ) 2 ( ) d/2 + e i S ( T,T2,0) (R F 2πi T )(..., x T,0 2, x 0 ). 2

52 (M F T,0 ) x 2 (M F T,0 )(..., x 2, x 0 ) = D T2,T,0(x 2, x 0 ) /2 F T,0 (..., x 2, x, x 0) = D (x T2,0 2, x 0 ) /2 F ( T,T2,0)(..., x 2, x 0 ), ( T,T2, 0) : T = T J+ > T J > > T 2 > T 0 = 0 (R F T,0 ) x 2 (t 2 ) (R F T,0 ) C(t 2 ). (T, x) (0, x 0 ) (T 2, x 2 ) T 0 = 0 T T 2 T = T J+

53 (M F T,0 ) x 2 x 2 ( ) d/2 ( ) d/2 e i S ( T,T2,0) (M F T,0 )(..., x 3, x 2, x 0 )dx 2 2πi t 3 2πi T 2 R ( ) d d/2 = e i S ( T,T3,0) (M 2 M F 2πi T )(..., x T,0 3, x 0 ) 3 ( ) d/2 i + e S ( T,T3,0) (R 2 M F T,0 )(..., x 3, x 0 ). 2πi T 3

54 (M 2 M F T,0 ) x 3 (M 2 M F T,0 )(..., x 3, x 0 ) = D T3,T 2,0(x 3, x 0 ) /2 D T2,0 (x 2, x 0) /2 F ( T,T2,0)(..., x 3, x 2, x 0). = D (x T3,0 3, x 0 ) /2 F ( T,T3,0)(..., x 3, x 0 ), ( T,T3, 0) : T = T J+ > T J > > T 3 > T 0 = 0 (R 2 M F T,0 ) x 3 (t 3 ) (R 2 M F T,0 ) C(t 3 ). (T 3, x 3 ) (T, x) (0, x 0 ) T 0 = 0 T 2 T 3 T = T J+

55 (M 2 M F T,0 ) x 3 x 3 Theorem 7 (M J M J... M F T,0 ) = D T,0 (x, x 0 ) /2 F T,0 (x, x 0 ) = D T,0 (x, x 0 ) /2 F [γ T,0 ]. (T, x) (0, x 0 ) γ T,0 T 0 = 0 T = T J+

56 (R F T,0 ) x 2 x 2 x 3 ( ) d/2( ) d/2( ) d/2 e i S ( T,T2,0) (R F T,0 )(..., x 4, x 3, x 2, x 0 )dx 3 2πi t 4 2πi t 3 2πi T 2 R ( ) d d/2 ( ) d/2 = e i S ( T,T4,T 2,0) (M 3 R F 2πi (t 4 + t 3 ) 2πi T )(..., x T,0 4, x 2, x 0 ) 2 ( ) d/2 ( ) d/2 + e i S ( T,T4,T 2,0) (R 3 R F 2πi (t 4 + t 3 ) 2πi T )(..., x T,0 4, x 2, x 0 ). 2 (R 3 R F T,0 ) C(t 4 )C(t 2 ). (M 3 R F T,0 ) x 4 x 4 (R 3 R F T,0 ) x 4 x 4 x 5

57 Fujiwara x j x j+ x j+ x j+ x j+ x j+2

58 q T,0 (, x J+, x 0 ) = q 0 (x J+, x 0 ) + qjk,jk,...,j (x J+, x 0 ). q 0 (x J+, x 0 ) = D T,0 (x, x 0 ) /2 F T,0 (x, x 0 ) Theorem 7 0 = j 0 < j < j < j 2 < j 2 < < j K < j K J +, (j K, j K,..., j ) q jk,j K,...,j (x J+, x 0 ) ( ) d/2 e i S T,0(x J+,x 0 ) q jk,j 2πi T K,...,j (x J+, x 0 ) = K+ k= RdK e i S (T,T jk,...,t j,0) b jk,j K,...,j (x J+, x jk,..., x j, x 0 ) ( 2πi (T jk T jk ) K dx jk, k= ) d/2

59 b jk,j K,...,j (x J+, x jk,..., x j, x 0 ) = (Q J Q 3 Q 2 Q F T,0 )(x J+, x jk,..., x j, x 0 ). Q j = Identity if j = j K, j K,..., j R j if j = j K, j K,..., j M j otherwise (t jk ) b jk,j K,...,j (x J+, x jk,..., x j, x 0 ) C K ( K k= ) ( t jk ).

60 H. Kumano-go-Taniguchi q jk,j K,...,j (x J+, x 0 ) (C ) K ( K q jk,j K,...,j (x J+, x 0 ) k= ) ( t jk ). Υ T,0 (, x J+, x 0 ) = qjk,jk,...,j (x J+, x 0 ) J+ t j = T, 0 < < j= Υ T,0 (, x J+, x 0 ) K ) ((C ) K ( t jk ) ( J+ k= ) ( + C t j ) j= (C )T

61 3. m 0, u j 0, J+ j= u j U < M A M, X M T,0, α j M, j = 0,,..., J + k J J+ () ( j=0 α j x j )F T,0 (x J+, x J,..., x, x 0 ) A M (X M ) J+ ( + J+ (2) ( α j x j ) xk F T,0 (x J+, x J,..., x, x 0 ) j=0 A M (X M ) J+ (u k+ + u k )( + J+ j=0 x j ) m. J+ j=0 x j ) m, Remark x αb(t, x) C α F [γ] = e T B(t,γ(t))dt 0 xk F T,0 = Tj J+ j= e T B(t,γ Tj,T j j (t,x j,x j ))dt ( T k+ T k xk B(t, γ Tk+,T k (x k+, x k ))dt + T k T k xk B(t, γ Tk,T k (x k, x k ))dt).

62 J+ ( ) d/2 J ( ) e i S[γ T,0 ] F [γ T,0 ] dx j 2πi t j= j R dj j= ( ) d/2 = e i S T,0(x,x 0 ) q T,0 (, x, x 0 ) 2πi T ( ) d/2 ( ) = e i S T,0(x,x 0 ) D T,0 (x, x 0 ) /2 F T,0 (x, x 0 ) + Υ T,0 (, x, x 0 ) 2πi T Lemma F. Υ T,0 (, x, x 0 ) CT (T + U)( + x + x 0 ) m, q T,0 (, x, x 0 ) C ( + x + x 0 ) m. Lemma F m = 0

63 (T, x) (0, x 0 ) T 0 = 0 T = T J+ (T, x) (0, x 0 ) T 0 = 0 T = T J+ CT (T + U)

64 (T, x) (0, x 0 ) T 0 = 0 T = T J+ C T,0 ( ) Cauchy T,0 : T = T J+ > T J > > T > T 0 = 0, ( T,TN+, Tn,0) : T = T J+ > > T N+ > T n > > T 0 = 0,

65 J+ j= = ( ) d/2 e i S[γ T,0 ] F [γ T,0 ] 2πi t j ( ) d/2 e i S T,0(x,x 0 ) q T,0 (, x, x 0 ), 2πi T J j= dx j J+ ( j=n+2 = ( 2πi T 2πi t j ) d/2 ( 2πi (T N+ T n ) ) n j= ( 2πi t j ) d/2 i e S[γ ( T,TN+, Tn,0 )] F [γ ( T,TN+, Tn,0)] ) d/2 e i S T,0(x,x 0 ) q ( T,TN+, Tn,0)(, x, x 0 ). J j=n+ n dx j j= dx j

66 (T n, x n ) (T, x) (0, x 0 ) (T N+, x N+ ) T 0 = 0 T n T N+ T = T J+ (T n, x n ) (T, x) (0, x 0 ) (T N+, x N+ ) T 0 = 0 T n T N+ T = T J+ C C(T N+ T N )(T N+ T n + U N+ U n ) C

67 q T,0 (, x, x 0 ) q ( T,TN+, Tn,0)(, x, x 0 ) C(T N+ T n )(T N+ T n + U N+ U n )( + x + x 0 ) m. Theorem 2 Feynman q(t,, x, x 0 ) q T,0 (, x, x 0 ) q(t,, x, x 0 ) C T,0 (U + T )( + x + x 0 ) m, ( ) T,0 0 R 2d

68 ( Fujiwara ) Fujiwara D. Fujiwara and N. Kumano-go, J. Math. Soc. Japan Vol 58, No. 3 (2006). Lemma γ T,T2,T,0 (0, x 0 ), (T, x ), (T 2, x 2 ), (T, x) ( ) q(t ) q(t, x, x 0 ) lim x D(T, x, x 0 ) /2 x F [γ 2 =γ T,T2,T T2,0] cl (T 2 ) T (x, x 0 ) R 2d x =γ cl (T ). (T, x) x (0, x 0 ) x 2 γ cl T 0 = 0 T T 2 T = T J+

69 Theorem 8 Lemma q(t) ( ) e i d/2 S[γ] F [γ]d[γ] = e i S[γcl ] D(T, x, x 0 ) /2 2πi T ( F [γ cl ] + i T ) D(t, γ cl (t), x 0 ) /2 q(t)dt + 2 Υ (, x, x 0 ) 2 0 Υ (, x, x 0 ) C( + x + x 0 ) m. Remark F [γ] i 2 T 0 D(t, γ cl (t), x 0 ) /2 ( y D(t, y, x 0 ) /2 ) y=γ cl (t) dt Schrödinger Birkhoff

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb Rough path analyi 1 x t ( t 1) R d path f(x) = t (f 1 (x),, f d (x)) R d R d - C x t 1 (f(x u), dx u ) Stieltje path x t p-variation norm (1 < p < 2) x p := { up D } 1/p N x ti x ti 1 p (D = { = t <

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

??

?? ( ) 2014 2014 1/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS = (ISS) FB 2014 2/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS R + : 0 K: γ: R + R + K γ γ(0) = 0 K : γ: R + R + K γ K γ(r) (r ) FB K K K K R

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

( ) 1 1.1? ( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g 500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1)

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33 9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb 2008 1 / 33 1 NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33 1 Green-Griffiths (1972) NOGUCHI (UT) HDVT 9 Feb 2008 2 / 33 1 Green-Griffiths (1972) X f : C X f (C) X NOGUCHI (UT)

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo @phykm 218 7 12 [2] [2] [1] ([4] ) 1 Ω = 2 N {Π n =1 A { 1, 1} N n N, A {{ 1, 1}, { 1}, {1}, }} B : Ω { 1, 1} P (Π n =1 A 2 N ) = 2 #{ A={ 1},{1}} X = j=1 B j B X +k X V[X ] = 1 ( ) 1 1 dt dx W (t) = t/dt

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

L(A) l(a)

L(A) l(a) 4 3 214 6 214 6 13 1 3 1.1................................................ 3 1.2................................... 5 1.3 L(A) l(a)............................................. 6 1.4.......................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information