1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Save this PDF as:
Size: px
Start display at page:

Download "1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ ="

Transcription

1 1 1.1 ( ). z = + bi,, b R 0, b b 2 0 z = + bi = ( ) 2 + b b + b b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A M A M (1) 1.4 ( ). A M M 1. M A M 2. M M M < M > M A M sup A 1.5 ( ). A m ( ) A m (2) 1.6 ( ). A 1. A 1

2 2. A { n } n N A = { n } n N 1.7 ( ). 1. { n } J, { n} 10 1, 2, 3,, 10 { n } { k } k=1 { k} k=1 n 1.8 ( ). { n } 1. { n } < { n } 2. { n } > { n } ( ). { n } 1. { n } sup n := sup{ n : n N} n N inf n := inf{ n : n N} n N k = 1, 2, sup n := sup{ n : n k} n k 2. { n } lim sup n := inf n lim inf n := sup n inf n := inf{ n : n k} n k k N k N ( sup n k ( inf n k n ) n = inf ) = sup { } sup n : k N n k { } inf n : k N n k 2

3 3. { n } () lim sup n = lim inf n R n n (b) lim inf n n = (c) lim sup n = n lim n = lim sup n = lim inf n (3) n n n ( ) lim sup n = n ( ) lim inf n = n lim n = (4) n lim n = (5) n lim sup n lim inf n lim n n n n 1.10 (ε-δ ( ) ). 1. { k } k=1 α ϵ N n n > N n α ϵ [ ] lim sup n = lim inf n n n 2. { k } k=1 ϵ N n, m n, m > N n m ϵ [ ] lim sup n = lim inf n n n 3. { k } k=1 K > 0 N n n > N n > K 3

4 [ ] lim inf n n = 4. { k } k=1 K > 0 N n n > N n < K [ ] lim sup n = n 1.11 ( ). { n } n lim N N n n n n n 1.12 (2 ). 2 { m,n } m, m, n ( ). A 1. A N N {1, 2,, N} A 2. A A 3. A N A 4. A A 5. A A 1.14 (R n ). R n n x R n x 1, x 2,, x n x = (x 1, x 2,, x n ) x = (x 1, x 2,, x n ) x 1, x 2,, x n R x R n 1.15 (R n ). x = (x 1, x 2,, x n ), y = (y 1, y 2,, y n ) R ε > 0 1. x + y = (x 1 + y 1, x 2 + y 2,, x n + y n ) 4

5 2. x = ( x 1, x 2,, x n ) 3. x = x x x 2 n = n x 2 k 4. ε > 0 B(x; ε) = {y R n : x y < ε}, B(x; ε) = {y R n : x y < ε} (6) x = 0 x; B(ε), B(ε) 1.16 ( ). A R n k=1 1. A x R n ε > 0 B(x; ε) A 2. A A c = {x R n : x A } 3. A R > 0 A B(R) 4. A A R n 1.17 ( ). A R n B R m f : A B A f() B 1.18 ( ). A R n B R m f : A B 1. A 0 A B f(a 0 ) = {f() B : A 0 } 2. B 0 B A f 1 (B 0 ) = { A : f() B 0 } 1.19 ( ). I f lim f(x) = α (7) x inf δ>0 ( sup f(x) α x I, x <δ ) = 0 (8) 1.20 (R n 1 ). A R n f : A R m 5

6 1. A inf δ>0 ( lim f(x) = α (9) x, x A sup f(x) α x <δ, x A 2. A f ( inf δ>0 ) sup f(x) f() x A, x <δ ) = 0 = 0 (10) lim f(x) = f() (11) x, x A 3. f A f 1.21 ( ). A R n 1. A A A := {x R n : ε > 0 B(x, ε) A } 2. A Int(A) = (A c ) c 1.22 ( ). I {f n } f ( ) lim sup f(x) f n (x) = 0 (12) n x I 1.23 (). U {f n } B U B 1.24 ( ). 1. {U λ } λ Λ R n () Λ (b) λ Λ R n U λ {U λ } λ Λ R n 6

7 2. R n {U λ } λ Λ R n U λ = {x R n : λ Λ x U λ } (13) λ Λ 3. R n {U λ } λ Λ R n U λ = {x R n : λ Λ x U λ } (14) λ Λ 4. R n {U λ } λ Λ R n A A U λ (15) λ Λ () {U λ } λ Λ R n U λ (b) {U λ } λ Λ R n Λ (c) Λ 0 Λ {U λ } λ Λ0 {U λ } λ Λ 1.25 (). A A 1.26 ( ). A R n f : A R m f A ( ) lim δ 0 sup f(x ) f(x) x,x A, x x <δ = 0 (16) 1.27 ( ). A R n 1. A U, V A = (A U) (A V ), (A U) (A V ) =, (A U), (A V ). (17) A A 2. A A 3. A p, q A γ : [0, 1] A γ(0) = p, γ(1) = q γ 7

8 ( ). I = (, b) f c (, b) f (c) = lim x c f(x) f(c) x c (18) lim f,c(x) = 0 (19) x c f(x) = f(c) + (x c)f (c) + (x c) f,c (x) (20) 1.29 ( ). n 2 f (n) f (n 1) f 1.30 (C 1 - C k - C - )., b R < b f : (, b) R C 1 - f (, b) f f k f C k -f C k ((, b)) C - k C k ( ). n (x x 0 ) n, x 0 R n= (e x, sin x, cos x ). 1. e x = exp(x) = 1 + x + x2 2 + x xn n! + 2. sin x = x 1 6 x x5 + ( 1)k (2k + 1)! x2k+1 + = 3. cos x = 1 x2 2 + x4 24 x ( 1)n (2n)! x2n + k=0 ( 1) k x 2k+1 (2k + 1)! e e = e 1 = n! + (21) 1.33 ( ). 1. log x e x 2. x = e x log, > 1 8

9 3. log b = log b/ log, (0, 1) (1, ), b > ( ). cos x = 0, 0 < x < 2 2 π 1.35 (tn). tn x = sin x cos x 1.36 ( ). 1. sin : [ π 2, π ] [ [ 1, 1] sin 1 : [ 1, 1] π 2 2, π ] 2 2. cos : [0, π] [ 1, 1] cos 1 : [ 1, 1] [0, π] ( 3. tn : π 2, π ) ( R tn 1 : R π 2 2, π ) ( ). < < b < 1. {x i } N i=0 [, b] x 0 =, x N = b D[, b] 2. [, b] {y i } M i=0 [, b] {x i} N i=0 {y i} M i=0 {x i} N i=0 3. {ξ i } N i=1 [, b] {x i} N i=0 x i 1 ξ i x i, i = 1, 2,, N 4. {x i } N i=0 D[, b] = sup x i x i 1 (22) i=1,2,,n 1.38 ( ). f : [, b] R 1. [, b] = {x i } N i=0 f S (f) = s (f) = N i=1 N i=1 2. (x i x i 1 ) sup x i 1 x x i f(x) (23) (x i x i 1 ) inf x i 1 x x i f(x) (24) f(x) dx = f(x) dx = 9 inf S (f) (25) D[,b] sup s (f) (26) D[,b]

10 ( ). f(x) dx = f(x) dx = f(x) dx = f(x) dx (27) f(x) dx (28) 1. f f 2. f(x) dx f(x) f 1 f(x) dx = x f(u)du 1.40 (f x ). f : [, b] R x ( ) ( ) f(x) = lim δ 0 f(x) = lim δ 0 ( sup y [,b] (x δ,x+δ) f(y) inf f(y) y [,b] (x δ,x+δ) ) = lim δ 0 ( = lim δ 0 sup y (x δ,x+δ) F (y) inf F (y) y (x δ,x+δ) ) (29) (30) f(b) F (x) = f(x) f() (x b ) ( x b ) (x ) 1.41 (0 ). E R 0 ε > 0 I 1, I 2,, I j, E I j, j=1 l(i j ) < ε (31) j= ( ). 10

11 1. f : [, ) R b > f [, b] f(x) dx = lim R R f(x) dx (32) f(x) dx 2. f : [, c) R b < c f [, b] c f(x) dx = lim R c R f(x) dx (33) c f(x) dx 3. f : [, c) (c, b] A < c, c < B b A, B f [, A] [B, b] f(x) dx = lim A c A f(x) dx + lim B c 4. B f(x) dx (34) f(x) dx 1.43 ( ). γ(t) = (x 1 (t), x 2 (t),, x n (t)) [, b] R n γ L(γ) N L(γ) = sup n (x k (t j ) x k (t j 1 )) 2 : {t j } N j=0 [, b] j=1 k= ( ). 1, 2,, n, (35) ( n ) (36) { n } (37) 11

12 1.45 ( ). { n } Q ε > 0 N N m, n N m n < ε (38) 1.46 ( ). { n } {b n} [ ] ε > 0 N N n N n b n < ε 1.47 ( ). { n } M n M, n N 1.48 ( ). { n }, {b n} 1. { n } + {b n} { n + b n } 2. { n } {b n} { n b n } 3. { n } {b n} { nb n } 4. {b n } 0 { n} {b n} { n/b n } 1.49 ( ). { n } {b n} { n} {b n } ε > 0 N n N b n n > ε 1.50 ( ). {{ m,n } } m=1 m N { m,n } 1.51 ( ). m = 1, 2, α m = { m,n } {α m} m=1 = {{ m,n } } m=1 ε = {ε n} 0 N n n, m > N ε < α m α n < ε (39) 1.52 ( ). α = {α n } {α n } m=1 = {{ m,n} } m=1 α ε = {ε n } 0 N n n, m > N ε < α m α < ε (40) α {α n } m=1 = {{ m,n} } m=1 {α n } m=1 = {{ m,n} } m=1 12

13 2 2.1 ( ). θ R, n Z 2.2 (). 1. { n } (cos θ + i sin θ) n = cos nθ + i sin nθ lim n n lim n = sup n n n N M R { n } n M, n = 1, 2, { n } ( ). { n } n N 1. lim n n 2. ε > 0 N N n, m > N n m < ε 2.4 ( ). { n } n sup N N N n < (41) n n n = (42) 2.5 ( ). { n } {b n} n b n n = 1, 2, b n n 13

14 2.6 (( ) ). { n } n n+1, n = 1, 2,, lim n n = 0 (43) ( 1) n 1 n 2.7 ( ). { n } α σ : N N σ(k) = α 2.8 ( 2 ). { m,n } m, 2 m, n N m,n ( ) ( ) ( n ) m,n = m,n = m,n+1 m. (44) m=1 m=1 2.9 ( 2 ). { m,n } m, 2 ( ) ( ) ( n ) m,n, m,n, m,n+1 m (45) m=1 m=1 ( ) ( ) ( n ) m,n = m,n = m,n+1 m. (46) m=1 m= (R ). R 2.11 ( ). k=1 m=1 m=1 m=1 1. Z 2. A 3. A B 2.12 (). f : X Y X Y A, B X, C, D Y 1. f(a B) = f(a) f(b) 2. f(a B) f(a) f(b) 3. f 1 (C D) = f 1 (C) f 1 (D) 4. f 1 (C D) = f 1 (C) f 1 (D) 14

15 2.13 ( ). I f 1. lim x f(x) = α. 2. I { n } lim n n = lim n f( n) = α. 3. ε > 0 δ > 0 y (x δ, x + δ) I f(y) α < ε 2.14 (ε-δ ). A R n A f : A R m (1) lim f(x) = α x, x A (2) ε > 0 δ > 0 x A x < δ f(x) α ε (3) A { n } n N {f( n )} n N α 2.15 ( ). A R n f : A R m 1. f A 2. U R m f 1 (U) A 2.16 ( ). f : A R m 1. f A 2. E R n f(e A A) f(e A) 2.17 ( ). I {f n } f f 2.18 ( ). R > 0 [ R, R] n = {x = (x 1, x 2,, x n ) : i = 1, 2,, n R x i R} (47) 2.19 ( ). A R n 1. A 2. A 15

16 2.20 ( ). A R n f : A R m f(a) 2.21 ( ) ( ε-δ ). A R n A f : A R m 1. f A 2. ε > 0 δ > 0 x, x A x x < δ f(x) f(x ) ε 2.23 ( ). K R n {U λ } λ Λ δ > 0 x, y K x y δ x, y U λ λ Λ δ {U λ } λ Λ 2.25 () (R ). R 2.27 ( ). R n 2.28 (R n R ). R n R 2.29 (R ). R 2.30 (R ). R R, (, ), (, ) 2.31 (R n ). G R n 1. G 2. G 3. G 2.32 (). A R n f : A R m f(a) 2.33 (). A R n f : A R f(a) 2.34 ( ). I = [, b] f : I R 16

17 (1) f(), f(b) f I γ R (f() γ)(f(b) γ) 0 c I f(c) = γ (2) f I 2.35 (m ). m 2 > 0 x m = x m 2.36 ( ). I = (, b) f f 2.37 ( ). f(x), g(x) 1. (f(x) + g(x)) = f (x) + g (x) 2. ( f(x)) = f (x) 3. (f(x)g(x)) = f (x)g(x) + f(x)g (x) ( ) f(x) 4. g (x) 0 = f (x) g(x) g(x) f(x)g (x) g(x) 2 = f (x)g(x) f(x)g (x) g(x) 2 k x k = k x k (). I, J R f : I J, g : J R g f : I R f(g(x)) = f (g(x))g (x) (48) I = (, b) f x = c I f (c) = ()., b R < b f : [, b] R f (, b) < c < b, c f(b) f() b = f (c) (49) 2.41 ()., b R < b f, g : [, b] R f, g (, b) g (, b) 0 < c < b, f(b) f() g(b) g() = f (c) g (c) (50) c 17

18 2.42 ( )., b R < b f, g : [, b] R f, g (, b) g (, b) 0 p (, b) f(x) f(p) lim x p g(x) g(p) = lim f (x) x p g (x) (51) 2.43 ( ). f I C 1 - f (x) 0, x I f g : f(i) I C ( ). A < x, < B n = 1, 2, f : (A, B) R n, x c f(x) = f() + (x )f () + + (x )n 1 f (n 1) () + 1 (n 1)! n! (x )n f (n) (c) (52) 2.45 (). f : (A, B) R M, R f (n) (x) MR n (53) A < x < B A < x < b f(x) = f() + (x )f () + + (x )n 1 f (n 1) () + (54) (n 1)! f : (, b) R C 2 - f (c) = 0, f (c) > 0 f δ > 0 (c δ, c + δ) (, b) f(c) = min{f(x) : x (c δ, c + δ)} 2.47 ( ). n (x x 0 ) n R [0, ] 1 n = lim sup n (55) R n R n (x x 0 ) n 1. x x 0 > R 2. x x 0 < R n=0 n=0 n (x x 0 ) n n=0 n (x x 0 ) n n=0 18

19 3. x x 0 < R f(x) = n (x x 0 ) n n=0 f (x) = (n + 1) n+1 (x x 0 ) n (56) n=0 f n { n } n N lim n n 2.49 ( ). lim n n n 1. (sin x) = cos x 2. (cos x) = sin x 3. (e x ) = e x 2.50 ( ). x, y 1. e x+y = e x e y 2. e x > x f : R R f (x) = f(x) f(0) = f(x) = exp x 2.52 (sin, cos ). α, β R sin(α + β) = sin α cos β + cos α sin β cos(α + β) = cos α cos β sin α cos β 2.53 (2 ). 2 x f : R R f (x) = f(x) f(0) =, f (0) = b f(x) = cos x + b sin x 2.54 ( ). 1. (x ) = x 1 2. (tn x) = tn 2 x + 1 = 1 cos 2 x 3. ( x ) = x log, > 0 4. (log x) = 1 x 19

20 5. (log x) = 1, (0, ) \ {1} x log 2.55 ( ). d 1 dx sin 1 x =, x ( 1, 1) 1 x 2 d dx tn 1 x = x 2, x R 2.56 ( ). f : [, b] R ε > 0 δ > 0 < δ f(x) dx ε < S (f) (57) 2.57 ( ). f : [, b] R ε > 0 δ > 0 < δ f(x) dx S (f) + f(x) dx s (f) < ε (58) 2.58 ( ). f, g : [, b] R f + g, f g l (f(x) + g(x)) dx = f(x) dx + g(x) dx, lf(x) dx = l f(x) dx (59) 2.59 ( ). < b < c f : [, c] R f [, b] [b, c] c f(x) dx = f(x) dx + c b f(x) dx (60) 2.60 ( I). f : [, b] R F (x) = x f(t) dt, x (, b) F (x) = f(x) (61) 20

21 2.61 ( ). I, b I f I f f (x) dx = f(b) f(),, b I (62) 2.62 ( ). n = 1, 2, f n f(x) = f()+(x )f ()+ + (x )n 1 (n 1)! f (n 1) 1 ()+ (n 1)! 2.63 (). 1 x 2 dx = 1 ( x ) 1 x sin 1 x + C dx = 1 x 2 sin 1 x + C dx = log(x + x 2 + 1) + C 1 + x 2 dx x 2 1 = log(x + x 2 1) + C 1 + x 2 dx = 1 2 x 2 1 dx = 1 2 x ( x 1 + x 2 + log(x + ) x 2 + 1) + C ( x x 2 1 log(x + ) x 2 1) + C (x s) n 1 f (n) (s) ds 2.64 (). f, g : [, b] R f(x) g(x), x [, b] (63) f(x) dx g(x) dx (64) 2.65 ( ). f : [, b] R f(x) dx f(x) dx (65) 2.66 ( ( ) ). f : [, b] R c [, b] f(x) dx = (b )f(c) (66) 21

22 2.67 ( ). 1 < p, q < 1 p + 1 q = 1 (67), [, b] f, g ( f(x)g(x) dx ) 1 ( p b ) 1 q f(x) p dx g(x) q dx 2.68 (). [, b] f, g (68) ( ) 1 f(x) + g(x) p p dx ( ) 1 ( f(x) p p b ) 1 dx + g(x) p p dx (69) 2.69 ( (Cuchy-Schwrz), ). [, b] f, g ( 2 f(x)g(x) dx) (f(x)) 2 dx ( 1/2 ( (f(x) + g(x)) dx) 2 (g(x)) 2 dx. 1/2 ( 1/2 f(x) dx) 2 + g(x) dx) (lim ). I = [, b] {f n } f lim t f n (t) dt = f(t) dt (70) 2.71 (lim ). I = (, b) C 1 - {f n } 1. {f n } f 2. {f n} g g = f lim n f n(x) = f (x), x (, b) 2.72 ( ). f : [, b] R 22

23 1. f 2. f B = {x [, b] : f(x) > f(x)} ( ). 1. f, g : [, ) R b > f, g [, b] f(x) g(x) f(x) dx g(x) dx 2. f, g : [, c) R b < c f, g [, b] f(x) g(x) c f(x) dx c 2.74 ( ). n = 0, 1, 2, g(x) dx 1. Γ 2. Γ(x + 1) = xγ(x), x > ! = 1 0 t n e t dt = lim R R n Γ(n) = (n 1)! Γ(x) = Γ(n + 1) = n! 2.75 ( ). 0 t x 1 e t dt, x > 0 0 t n e t dt = n!. (71) 0 t n e t dt 1. k N Γ (k) (α) = 0 0 (log t) k t α 1 e t dt (72) log t k t α 1 e t dt < (73) 2. Γ 2 () log φ (b) φ(1) = 1. 23

24 (c) φ(x) = (x 1)φ(x 1), x > ( ). α, β > 0 1. B(α, β) = B(α, β) = Γ(α)Γ(β) Γ(α + β) B(α, β) 2.77 (Γ ( 1 2) ). 1. Γ 2. ( ) 1 = π. 2 e x2 dx = π. x α 1 (1 x) β 1 dx 2.78 (1/2 ). Γ(2x) = πγ(x)γ 2.79 ( ). sin πx = ( x + 1 ), x > 0 2 π Γ(x)Γ(1 x) x (0, 1) γ : (A, B) R n C 1 - γ x 1, x 2,, x n L(γ) = n x k (t)2 dt 2.81 ( ). { n } Q k=1 1. ε > 0 N N m, n N m n < ε (74) 2. ε > 0 N N m, n > N m n < ε (75) 24

25 3. ε > 0 N N m, n N m n ε (76) 4. ε > 0 N N m, n > N m n ε (77) ( N, ε ). { n } Q 1. ε > 0 N N m, n N m n < ε (78) 2. ε > 0 N N m, n N m n < 2ε (79) 3. ε > 0 N N m, n N + 1 m n < ε (80) 4. ε > 0 N N m, n N m n < 1 2 ε (81) ( ). { n }, {b n}, {c n} 1. { n } { n} 2. { n } {b n} {b n} { n} 25

26 3. { n } {b n} {b n} {c n} { n } {c n} 2.84 ( ) ( ). α = { n } α m = { m } α 2.86 ( ) ( ). K = {k n } {α m} = {{ m,n } } α 1 α 2 α m α m+1 K (82) α = {α m } m= ( ). A M A M M M 0 M 0 1. A M 0 2. m < M 0 A > m 26

27 3 3.1 ( ). z = + bi,, b R (, ). 3.3 ( ). A M 3.4 ( ). A M M M sup A 3.5 ( ). A m ( ) 3.6 ( ). A 3.7 ( ). 3.8 ( ). { n } 1. { n } 2. { n } ( ). { n } 3.10 (ε-δ ( ) ). 1. { k } k=1 α 2. { k } k=1 3. { k } k=1 4. { k } k= ( ). { n } 1. n 27

28 2. n 3. n 3.12 (2 ) ( ). A 1. A A (R n ) (R n ). x = (x 1, x 2,, x n ), y = (y 1, y 2,, y n ) R ε > ε > 0 B(x; ε) (83) x = 0 x; B(ε), B(ε) 3.16 ( ). A R n 1. A 2. A 3. A 4. A 3.17 ( ). A R n B R m f : A B 3.18 ( ). A R n B R m f : A B 1. A 0 A B f(a 0 ) = 28

29 2. B 0 B A f 1 (B 0 ) = 3.19 (R n 1 ). A R n f : A R m 1. A lim f(x) = α (84) x, x A 2. A f (85) lim f(x) = f() (86) x, x A 3. f A 3.20 ( ). A R n 1. A A 2. A 3.21 ( ). I {f n } f (87) 3.22 (). U {f n } 3.23 ( ). 1. {U λ } λ Λ R n () Λ (b) λ Λ R n U λ {U λ } λ Λ R n 2. R n {U λ } λ Λ R n U λ = {x R n : λ Λ x U λ } (88) λ Λ 29

30 3. R n {U λ } λ Λ R n U λ = (89) λ Λ 4. R n {U λ } λ Λ R n A A U λ (90) λ Λ () {U λ } λ Λ R n U λ (b) {U λ } λ Λ R n Λ (c) Λ 0 Λ {U λ } λ Λ (). A {U λ } λ Λ 3.25 ( ). A R n f : A R m f A (91) 3.26 ( ). A R n 1. A U, V (92) A A 2. A 3. A ( ). I = (, b) f c (, b) (93) lim f,c(x) = 0 (94) x c (95) 30

31 3.28 (C 1 - C k - C - )., b R < b f : (, b) R C ( ) (e x, sin x, cos x ). 1. e x = 2. sin x = 3. cos x = e e = e 1 = n! + (96) 3.31 ( ). 1. log x 2. x 3. log b = 3.32 ( ) (tn) ( ). 1. sin : [ π 2, π ] [ 1, 1] 2 2. cos : [0, π] [ 1, 1] ( 3. tn : π 2, π ) R ( ). < < b < 1. {x i } N i=0 [, b] 2. [, b] {y i } M i=0 [, b] {x i} N i=0 3. {ξ i } N i=1 [, b] {x i} N i=0 4. {x i } N i=0 D[, b] = (97) 31

32 3.36 ( ). f : [, b] R 1. [, b] = {x i } N i=0 f ( ). 1. f 2. f(x) dx S (f) = (98) s (f) = (99) f(x) dx = (100) f(x) dx = (101) 3.38 (f x ). f : [, b] R x f(b) F (x) = f(x) f() f(x) = (102) f(x) = (103) (x b ) ( x b ) (x ) 3.39 (0 ). E R ( ). 1. f : [, ) R b > f [, b] f(x) dx (104) f(x) dx 32

33 2. f : [, c) R b < c f [, b] c f(x) dx (105) c f(x) dx 3. f : [, c) (c, b] A < c, c < B b A, B f [, A] [B, b] f(x) dx = (106) 4. f(x) dx 3.41 ( ). γ(t) = (x 1 (t), x 2 (t),, x n (t)) [, b] R n γ L(γ) L(γ) = 3.42 ( ) ( ). { n } Q 3.44 ( ). { n } {b n} [ ] 3.45 ( ). { n } 3.46 ( ). { n }, {b n} 1. { n } + {b n} 2. { n } {b n} 3. { n } {b n} 4. {b n } 0 { n} {b n} 3.47 ( ). { n } {b n} { n} {b n } 33

34 3.48 ( ). {{ m,n } } m= ( ). m = 1, 2, α m = { m,n } {α m} m=1 = {{ m,n } } m= ( ). α = {α n } {α n } m=1 = {{ m,n} } m=1 α 34

35 4 4.1 ( ). 4.2 (). 1. { n } 4.3 ( ). { n } n N 1. lim n n ( ). { n } 1. n (107) 2. n n (108) 4.5 ( ). { n } {b n} 4.6 (( ) ). 4.7 ( ). { n } 4.8 ( 2 ). { m,n } m, 2 m, n N m,n 4.9 ( 2 ). { m,n } m, (R ) ( ) (). f : X Y X Y A, B X, C, D Y 1. f(a B) f(a) f(b) 35

36 2. f(a B) f(a) f(b) 3. f 1 (C D) f 1 (C) f 1 (D) 4. f 1 (C D) f 1 (C) f 1 (D) x f : R R f (x) = f(x) f(0) = 4.14 (sin, cos ). α, β R sin(α + β) = cos(α + β) = 4.15 (2 ). 2 x f : R R f (x) = f(x) f(0) =, f (0) = b f(x) = 4.16 ( ). 1. (x ) = 2. (tn x) = 3. ( x ) = 4. (log x) = 5. (log x) = 4.17 ( ). d dx sin 1 x = d dx tn 1 x = 4.18 ( ). f : [, b] R ε > 0 δ > 0 < δ (109) 4.19 ( ). f : [, b] R ε > 0 δ > 0 < δ (110) 36

37 4.20 ( ). f, g : [, b] R f + g, f g l (111) 4.21 ( ). < b < c f : [, c] R f [, b] [b, c] (112) 4.22 ( I). f : [, b] R F (x) = x f(t) dt, x (, b) (113) 4.23 ( ). I, b I f I f (114) 4.24 ( ). n = 1, 2, f n 4.25 (). 1 x 2 dx = (115) dx 1 x 2 = dx 1 + x 2 = dx x 2 1 = 1 + x 2 dx = x 2 1 dx = 37

38 4.26 (). f, g : [, b] R f(x) g(x), x [, b] (116) 4.27 ( ). f : [, b] R (117) 4.28 ( ( ) ). f : [, b] R c [, b] 4.29 ( ). 1 < p, q < (118) 1 p + 1 q = 1 (119), [, b] f, g (120) 4.30 (). [, b] f, g (121) 4.31 ( (Cuchy-Schwrz), ). [, b] f, g ( ) 2 f(x)g(x) dx ( 1/2 (f(x) + g(x)) dx) (lim ). I = [, b] {f n } f (122) 4.33 (lim ). I = (, b) C 1 - {f n } 38

39 1. 2. g = f 4.34 ( ). f : [, b] R ( ). 1. f, g : [, ) R b > f, g [, b] f(x) dx 2. f, g : [, c) R b < c f, g [, b] c f(x) dx 4.36 ( ). n = 0, 1, 2, 1. Γ 2. Γ(x + 1) = 3. 0! = 1 0 t n e t dt = lim R R n Γ(n) = (n 1)! Γ(x) = Γ(n + 1) = n! 4.37 ( ). 1. k N 0 t x 1 e t dt, x > 0 0 t n e t dt = (123) 0 t n e t dt Γ (k) (α) = (124) (125) 39

40 2. Γ 2 () (b) (c) 4.38 ( ). α, β > 0 1. B(α, β) = 2. B(α, β) = B(α, β) 4.39 (Γ ( 1 2) ). 1. Γ 2. ( ) 1 =. 2 e x2 dx = (1/2 ) ( ) γ : (A, B) R n C 1 - γ x 1, x 2,, x n L(γ) = 4.43 ( ). { n } Q 4.44 ( N, ε ) ( ). { n }, {b n}, {c n} { n } {b n} 3. { n } {b n} {b n} {c n} 4.46 ( ). 40

41 4.47 ( ). α = { n } α m = { m } α 4.48 ( ) ( ). K = {k n } {α m} = {{ m,n } } α = {α m } m= ( ). A (126) 41

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t ) 1 1.1 [] f(x) f(x + T ) = f(x) (1.1), f(x), T f(x) x T 1 ) f(x) = sin x, T = 2 sin (x + 2) = sin x, sin x 2 [] n f(x + nt ) = f(x) (1.2) T [] 2 f(x) g(x) T, h 1 (x) = af(x)+ bg(x) 2 h 2 (x) = f(x)g(x)

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 A p./29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x) + C f(x) A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x)

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π 8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

no35.dvi

no35.dvi p.16 1 sin x, cos x, tan x a x a, a>0, a 1 log a x a III 2 II 2 III III [3, p.36] [6] 2 [3, p.16] sin x sin x lim =1 ( ) [3, p.42] x 0 x ( ) sin x e [3, p.42] III [3, p.42] 3 3.1 5 8 *1 [5, pp.48 49] sin

More information

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0) 0407).. I ) f ) a I 3).) lim x a fx) = fa) a.) 4)5) lim fx) = fa) x a+0 lim x a 0 fx) = fa)). I f I I I I f I a 6) fx) fa) lim x a x a f a f a) I I 7) *) 03 0 8 ) an interval; ) an open a closed) interval.

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2 IA September 5, 7 I [, b], f x I < < < m b I prtition S, f x w I k I k k k S, f x I k I k [ k, k ] I I I m I k I j m inf f x w I k x I k k m k sup f x w I k x I k inf f x w I S, f x S, f x sup f x w I

More information

lecture

lecture 5 3 3. 9. 4. x, x. 4, f(x, ) :=x x + =4,x,.. 4 (, 3) (, 5) (3, 5), (4, 9) 95 9 (g) 4 6 8 (cm).9 3.8 6. 8. 9.9 Phsics 85 8 75 7 65 7 75 8 85 9 95 Mathematics = ax + b 6 3 (, 3) 3 ( a + b). f(a, b) ={3 (a

More information

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0, . 207 02 02 a x x ) a x x a x x a x x ) a x x [] 3 3 sup) if) [3] 3 [4] 5.4 ) e x e x = lim + x ) ) e x e x log x = log e x) a > 0) x a x = e x log a 2) 2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = = arctan arctan arctan arctan 2 2000 π = 3 + 8 = 3.25 ( ) 2 8 650 π = 4 = 3.6049 9 550 π = 3 3 30 π = 3.622 264 π = 3.459 3 + 0 7 = 3.4085 < π < 3 + 7 = 3.4286 380 π = 3 + 77 250 = 3.46 5 3.45926 < π < 3.45927

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information