24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

Size: px
Start display at page:

Download "24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x"

Transcription

1 24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t), x 2 (t),, x n (t) C (ii) x 1(t), x 2(t),, x n(t) C = γ([a, b]) (γ ). (1) a 0 γ : (, ) R 3 ; t (a cos t, a sin t, bt) (2) ( (ii) ) γ : [ 1, 1] R 2 ; t (t 2, t 3 ) x 1(t) = 2t, x 2(t) = 3t 2, x 1(0) { = x 2(0) = 0 x = t 2, y = t 3 x 3/2 (t 0), 0 x 1, y = x 3/2 (t < 0) C 1.2. γ : [a, b] R n γ : [ã, b] R n γ ( ), C h: [ã, b] [a, b] h > 0, h(ã) = a, h( b) = b (h < 0, h(ã) = b, h( b) = a), γ( t) = γ(h( t)) (ã t b) 1.3. (R n ) R n v = (v 1, v 2,, v n ) R n p R n v p p R n, T p R n def = {v p v R n } p R n, T p R n p R n T p R n, v p + w p = (v + w) p, λ(v p ) = (λv) p, v p, w p = v, w, 1.4. γ : [a, b] R n ; t (x 1 (t), x 2 (t),, x n (t)) γ (t) = (x 1(t), x 2(t), x n(t)) γ(t) T γ(t) R n 1

2 (0, 0,, 0) 1.1 (ii) γ (t) = x 1(t) 2 + x 2(t) x n(t) 2 ( ) γ (t) = lim t 0 = lim t 0 γ(t + t) γ(t) t ( x1 (t + t) x 1 (t) t ), T γ(t) C def = {λγ (t) λ R} T γ(t) R n 1 T γ(t) C γ(t) C, T γ(t) C γ(t) C γ : [a, b] R n L(γ) L(γ) =. γ : [0, 2π] R 3 ; t (a cos t, a sin t, bt) γ (t) = ( a sin t, a cos t, b), γ (t) = a 2 + b 2 =: l L(γ) = 2π 0 l dt = 2πl = 2π a 2 + b 2 b a γ (t) dt γ : [0, 1] R 3 ; t (a cos 2πt, a sin 2πt, 2πbt) 1.6. γ : [a, b] R n, γ : [ã, b] R n γ, L(γ) = L( γ), γ, h 1.2 γ ( t) = γ (h( t))h ( t), γ ( t) = γ (h( t)) h ( t) t = h( t), L(γ) = b a γ (t) dt = eb ea γ (h( t)) h ( t) d t = eb ea γ ( t) d t = L( γ). γ : [a, b] R n s γ. ( ) t s = s(t) = γ (u) du = lt, t = s 0 ( l γ(t) = γ(s/l) = a cos s l, a sin s ) l, bs =: γ(s) (0 s 2πl) l γ : [a, b] R n s(t) = t a γ (u) du s(a) = 0, s(b) = L(γ), s (t) = γ (t) > 0... s(t) t 2

3 t s(t) h: [0, L(γ)] [a, b] γ : [0, L(γ)] R 3 ; s γ(h(s)) γ γ γ (s) = γ (h(s))h (s) = γ (h(s))s (h(s)) 1 = γ (t(s)) γ (t(s)) 1... γ (s) = 1, γ : [a, b] R n t def γ (t) = 1 (a t b) 1.8. γ : [a, b] R n, γ,. 1.7 t = s(t) + a., b = L(c) + a.. (1) y = x2 2 (0 x 1) γ : [0, 1] R2 ; t (t, t 2 /2), s(t) : s(t) = t t2 dt = u2 du = 1 { t 1 + t log(t t 2 ) { t 1 + t 2 + log (t + )} 1 + t 2 (2) x2 a + y2 = 1, 0 < b < a s(t) 2 b2 t s(t) = a 1 ε2 cos 2 u du 0 ε } γ : [a, b] R n Y, t [a, b] T γ(t) R n Y(t), Y(t) = (y 1 (t), y 2 (t),, y n (t)) γ(t), y 1 (t), y 2 (t),, y n (t) C Y(t) T γ(t) C ( t), Y, Y(t) T γ(t) C ( t), Y, Z γ : [a, b] R n, Y(t), Z(t) = Y (t), Z(t) + Y(t), Z (t), Y, Y (t), Y(t) = 0, t Y (t) Y(t) 3

4 Y(t) = (y 1 (t),, y n (t)) γ(t), Z(t) = (z 1 (t),, z n (t)) γ(t), Y (t) = (y 1(t),, y n(t)) γ(t), Y(t), Z(t) = (y 1 (t)z 1 (t) + + y n (t)z n (t)) = (y 1(t)z 1 (t) + y 1 (t)z 1(t)) + + (y n(t)z n (t) + y n (t)z n(t)) = Y (t), Z(t) + Y(t), Z (t)., γ : [a, b] R 3, γ γ (s) 0 ( s) e(s) = γ (s), e(s) = 1, e γ e γ ( ) 1.10, e (s) (= γ (s) 0) e(s), n(s) = e (s) = γ (s) e (s) γ (s), n(s) = 1, n γ n γ b(s) = e(s) n(s), b(s) = 1, b γ b γ s {e(s), n(s), b(s)} T γ(s) R 3 e, n, b γ ( ) κ(s) = e (s) (= γ (s) ) κ(s) 0, γ (s) 0 ( s), κ(s) > 0, e (s) = κ(s)n(s), 1.13, n (s) = τ(s)b(s) κ(s)e(s) τ(s) n (s) = τ(s)b(s) κ(s)e(s) n (s) = ϕ(s)e(s) + ψ(s)n(s) + τ(s)b(s), 1.10, 0 = n (s), n(s) = ψ(s), 0 = n(s), e(s) = n (s), e(s) + n(s), e (s) = ϕ(s) + κ(s), ϕ(s) = κ(s). τ(s) = n (s), b(s) ( ) γ : [a, b] R 3, γ, γ (s) 0 ( s), 3 : e (s) = κ(s)n(s) n (s) = τ(s)b(s) κ(s)e(s) b (s) = τ(s)n(s), e(s) e (s) 0 κ(s) 0 e(s) d n(s) = n (s) = κ(s) 0 τ(s) n(s) ds b(s) b (s) 0 τ(s) 0 b(s) 4

5 b (s) = ϕ(s)e(s) + ψ(s)n(s) 0 = b(s), e(s) = b (s), e(s) + b(s), e (s) = ϕ(s) 0 = b(s), n(s) = b (s), n(s) + b(s), n (s) = ψ(s) + τ(s), ϕ(s) = 0, ψ(s) = τ(s) γ : [a, b] R 3 t, γ (t) γ (t) γ : [0, L(c)] R 3 γ : s(t) = t a γ (u) du t [a, b] s(t) [0, L(c)] s [0, L(c)] h(s) [a, b] γ(s) = γ(h(s)) γ(s(t)) = γ(t) C (γ ) γ(t),,,, C γ(s(t)), e(t) def = ẽ(s(t)), n(t) def = ñ(s(t)), b(t) def = b(s(t)), κ(t) def = κ(s(t)), τ(t) def = τ(s(t)) (,.) γ : [a, b] R 3 t, γ (t) γ (t) C = γ([a, b]) C γ(t),,, e = γ γ n = γ, γ γ γ, γ γ γ, γ γ γ, γ γ = (γ γ ) γ (γ γ ) γ b = γ γ γ γ κ = γ γ γ 3 τ = γ γ, γ = det(γ, γ, γ ) γ γ 2 γ γ 2. n = b e 5

6 γ (s(t))s (t) = γ (t)... e(t) = ẽ(s(t)) = γ (t) ( ) γ (t) γ ẽ (s(t))s (t) (t) =... γ (t) ẽ (s(t)) = 1 γ (t)... n(t) = ñ(s(t)) = ẽ (s(t)) ẽ (s(t)) = ( ) γ (t) γ (t) = γ (t) 2 γ (t) γ (t), γ (t) γ (t) γ (t) 4 = (γ (t) γ (t)) γ (t) γ (t) 4 ( c, a b c, b a = (a b) c) κ(t) = κ(s(t)) = ẽ (s(t)) = γ (t) γ (t) γ (t) 3 (γ (t) γ (t)) γ (t) (γ (t) γ (t)) γ (t) b(t) = b(s(t)) = ẽ(s(t)) ñ(s(t)) = e(t) n(t) = γ (t) γ (t) γ (t) 2 γ (t) γ (t), γ (t) γ (t) γ (t) γ (t) γ (t) = γ (t) 2 γ (t) γ (t) γ (t) 2 γ (t) γ (t) = γ (t) γ (t) γ (t) γ (t) τ(t) = τ(s(t)) = ñ (s(t)), b(s(t)) = 1 γ (t) n (t), b(t) = = 1 γ (t) γ (t) γ (t) n (t), γ (t) γ (t) 1 γ (t) γ (t) γ (t) γ (t) 2 (γ (t) γ (t)) γ (t) γ (t), γ (t) γ (t) = det(γ (t), γ (t), γ (t)) γ (t) γ (t) 2 n (t) = (ñ(s(t))) = ñ (s(t))s (t)... ñ (s(t)) = n (t) γ (t), n(t) = a(t)γ (t) + b(t)γ (t), n (t) = a(t)γ (t) + [γ (t) γ (t) ] (a(t) n(t) ) 1.5. γ : [a, b] R 3, γ, γ (s) 0 ( s) C = γ([a, b]). 6

7 s 0 [a, b] γ 3 s 0 = 0 (a, b) γ(s) = γ(0)+ (s 16 ) ( 1 s3 κ(0) 2 e(0)+ 2 s2 κ(0) + 1 ) 6 s3 κ (0) n(0)+ 1 6 s3 κ(0)τ(0)b(0)+o(s 3 ). f(s) = o(s 3 ) def lim s 0 f(s)/s 3 = 0 0 x(s) = x(0) + x (0)s x (0)s x (0)s 3 + o(s 3 ) γ(s) = γ(0) + sγ (0) s2 γ (0) s3 γ (0) + o(s 3 ) = γ(0) + se(0) s2 κ(0)n(0) s3 γ (0) + o(s 3 ) (n = κe + τb) γ = (κn) = κ n + κn = κ 2 e + κ n + κτb ˆγ(s) = γ(0) + se(0) s2 κ(0)n(0) s3 κ(0)τ(0)b(0), γ s = 0 2 C γ(0) s γ(0) + se(0) γ γ(0) (1 ) 3 s γ(0) + se(0) s2 κ(0)n(0) γ γ(0) 2. (1), γ(0) b(0) C γ(0) (osculating plane) (2), xy y = κ(0) 2 x2, C γ(0) τ(0), ˆγ, γ(0) C. γ : (, ) R 3 ; γ(s) = (cos s/ 2, sin s/ 2, s/ 2) γ : [a, b] R 3, γ C, C, κ(s) = e (s) = γ (s), κ 0 γ 0 7

8 1.6. R 3, R 3 ϕ: R 3 R 3 def ϕ(x) ϕ(y) = x y (x, y R 3 ), ϕ 2 ϕ(x) = Ux + q (x R 3 ) U (, t UU = U t U = I), q R 3, ( det U = ±1 ) det U = 1, ϕ ϕ(s), ψ(s) [a, b] C, ϕ(s) > 0 ( s) γ : [a, b] R 3 s.t. κ(s) = ϕ(s), τ(s) = ψ(s), γ, 1, cf. 6, 7 ( 5 ). 2. R ,, 2.1. R 3 ( ), R 3 S : p S, S p U, R 2 D, f : D R 3 ; (u, v) f(u, v) = (x(u, v), y(u, v), z(u, v)) : (i) f(d) = U, f : D U (ii) x(u, v), y(u, v), z(u, v) C (iii) (u, v) D (, ) f x y z (u, v) = (u, v), (u, v), (u, v) u ( u u u ) f x y z (u, v) = (u, v), (u, v), (u, v) v v v v f : D U S ( U ), (u, v) S ( U ) (U = S, S, ), f u, x u, f u, x u,. 8

9 (1) ( ) z = ϕ(x, y) ((x, y) D) C S = {(x, y, ϕ(x, y)) (x, y) D} f : D R 3 ; (x, y) (x, y, ϕ(x, y)) (1-1) z = ax 2 + by 2 (a, b > 0) z = ax 2 by 2 (a, b > 0) (1-2) z = r 2 x 2 y 2 (r > 0, x 2 + y 2 < r 2 ), r ( ) ( ) (2) ( ) D = {(θ, ϕ) 0 < θ < π, 0 < ϕ < 2π} f : D R 3 ; (θ, ϕ) (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ) U = f(d) (3) ( ) R > r > 0 D = {(θ, ϕ) 0 < θ < 2π, 0 < ϕ < 2π} f : D R 3 ; (θ, ϕ) ((R + r cos θ) cos ϕ, (R + r cos θ) sin ϕ, r sin θ) U = f(d) f u (u, v), f v (u, v) 2.2. f : D U (U S ) S, p = f(u, v) S f u (u, v) p, f v (u, v) p ( ) T p R 3 2 T p S : T p S = {af u (u, v) p + bf v (u, v) p a, b R}. T p S p S, p S 2.3. S, γ : [a, b] R 3 γ([a, b]) S, γ : [a, b] S 2.4. γ : [a, b] S S, t 0 (a, b), f : D U, γ(t 0 ) S U, γ((t 0 ε, t 0 +ε)) U, D γ 0 : (t 0 ε, t 0 +ε) D, f(γ 0 (t)) = γ(t) ( t (t 0 ε, t 0 +ε)) γ S p S T p S : T p S = {γ (0) γ : ( ε, ε) S γ(0) = p S }., v T p S, S γ : ( ε, ε) S, γ(0) = p, γ (0) = v, T p S p 9

10 γ : ( ε, ε) S S, f : D U, γ(0) S U ε, γ(( ε, ε)) U γ 0 : ( ε, ε) D 2.4, γ 0 (t) = (u(t), v(t)), γ (0) = f u (u(0), v(0))u (0) + f v (u(0), v(0))v (0), T p S v T p S v = af u (u, v) + bf v (u, v) (cf. 2.2)., γ 0 : ( ε, ε) D γ 0 (t) = (u + at, v + bt), γ = f γ 0, γ (0) = f u (u, v)a + f v (u, v)b = v (1) S C, S ϕ, S f : D U, ϕ f D C (2) S Y, p S Y p T p R 3, Y S C p S Y(p) T p S, p S Y(p) T p S 2.7. S, S N, p S N(p) = 1 S, S. (1) S, N S f : D U S, N(p) = ± f u(u, v) f v (u, v) (p = f(u, v)) f u (u, v) f v (u, v) (2), (1) +, D = {(v, u) (u, v) D}, ι: D D; (v, u) (u, v) f = f ι: D U; (v, u) f(v, u) = f(u, v) f v (v, u) f u (v, u) = f v (u, v) f u (u, v) = f u (u, v) f v (u, v) f u (u, v) f v (u, v) f u (u, v) f v (u, v) = f u(u, v) f v (u, v) f u (u, v)) f v (u, v). (1),,,, n,, (2), 2.2. V, n = dim V 2.8. Φ: V V R, v 1 V v 2 V Φ(v 1, v 2 ) R, v 2 V v 1 V Φ(v 1, v 2 ) R v 1, v 2 Φ(v 1, v 2 ) = Φ(v 2, v 1 ) Φ 10

11 , (V,, )., : V V R; (v 1, v 2 ) v 1, v 2, T : V V, Φ: V V R; (v 1, v 2 ) T v 1, v T : V V, Φ, v 1, v 2 V T v 1, v 2 = v 1, T v 2. Φ: V V R, T : V V Φ(, ) = T ( ),, Φ T (, ) T : V V, V T, V T, V, T {e 1,, e n } V, T A = (a ij ) T (e j ) = n a ije i T (e j ), e k = e j, T (e k ), T (e j ), e k = A n a ij e i, e k = a kj, e j, T (e k ) = e j, n a ik e i = a jk A, n U = (u ij ) U 1 AU = t UAU V {f 1,, f n } f j = n u ije i, {f 1,, f n } T t UAU ( ) S, N S v T p S, S γ : ( ε, ε) S, γ(0) = p, γ (0) = v ( 2.5). (1) S C ϕ v ϕ = D v ϕ = d dt ϕ(γ(t)) t=0 (2) S Y D v Y = d dt Y(γ(t)) t=0 T p S 11

12 2.12. (1) v ϕ, D v Y well-defined (2) v ϕ, D v Y v (3) v Y, Z = D v Y, Z + Y, D v Z. (4) D v N T p S. (1) v = af u (u, v) + bf v (u, v), γ(t) = f(u(t), v(t)) (cf. 2.4), γ (0) = f u (u, v) u (0) + f v (u, v) v (0) = v, u (0) = a, v (0) = b. d dt Y(γ(t)) t=0 = d dt Y(f(u(t), v(t))) t=0 = (Y f) u (u(0), v(0)) u (0) + (Y f) v (u(0), v(0)) v (0) D v Y well-defined. = a(y f) u (f 1 (p)) + b(y f) v (f 1 (p)) (2) v = af u (u, v)+bf v (u, v), w = cf u (u, v)+df v (u, v) T p M, λ, µ R λv+µw = (λa + µc)f u (u, v) + (λb + µd)f v (u, v), (1) (3) D λv+µw Y = (λa + µc)(y f) u + (λb + µd)(y f) v = λ(a(y f) u + b(y f) v ) + µ(c(y f) u + d(y f) v ) = λd v Y + µd w Y. v Y, Z = d dt Y(ϕ(γ(t))), Z(ϕ(γ(t))) t=0 d = dt Y(ϕ(γ(t))) t=0, Z(p) + Y (p), d dt Z(ϕ(γ(t))) t=0 = D v Y, Z + Y, D v Z. (4) N, N = 1 (3), D v N, N = 0., D v N T p S v T p S, Σ(v) = D v N,, Σ(v) T p S, Σ: T p S T p S Σ (shape operator) T p S I : T p S T p S R, II : T p S T p S R I(v, w) = v, w, II(v, w) = I(Σ(v), w) (v, w T p S), S 1 (1st fundamental form), 2 (2nd fundamental form) g ij (u 1, u 2 ) = I(f ui (u 1, u 2 ), f uj (u 1, u 2 )), h ij (u 1, u 2 ) = II(f ui (u 1, u 2 ), f uj (u 1, u 2 )) 12

13 . (1), (u, v) (u 1, u 2 ) (2) II (1) h ij = N(f(u 1, u 2 )), f ui u j (u 1, u 2 ) h ij = h ji (2) II, II(v, w) = II(w, v) (v, w T p S), Σ (1) γ(t) = f(u 1 +t, u 2 ), γ(0) = f(u 1, u 2 ), γ (0) = f u1 (u 1, u 2 ), Σ(f u1 (u 1, u 2 )) = D fu1 (u 1,u 2 )N = d dt N(f(u 1 + t, u 2 )) t=0 = u 1 N(f(u 1, u 2 )), Σ(f u2 (u 1, u 2 )) = N(f(u 1, u 2 )), u 2 h ij = N(f(u 1, u 2 )), f uj (u 1, u 2 ) u i = u i N(f(u1, u 2 )), f uj (u 1, u 2 ) + N(u 1, u 2 ), f ui u j (u 1, u 2 ) = N(u 1, u 2 ), f ui u j (u 1, u 2 ). (2) v = af ui + bf uj, w = cf ui + df uj, (1) II(v, w) = acii(f ui, f ui ) + adii(f ui, f uj ) + bcii(f uj, f ui ) + bdii(f uj, f uj ) = ach ii + adh ij + bch ji + bdh jj = ach ii + (ad + bc)h ij + bdh jj = = II(w, v) S Σ: T p S T p S det Σ, trσ 1/2, p S,, K, H. (1), T : V V (V ), det T, trt,, (2) Σ: T p S T p S κ 1, κ 2 p S K = κ 1 κ 2, H = 1 2 (κ 1 + κ 2 ) S K, H K = h 11h 22 h 2 12, H = g 22h 11 2g 12 h 12 + g 11 h 22 g 11 g 22 g12 2 2(g 11 g 22 g12) 2 13

14 Σ(f uj (u 1, u 2 )) T p S (p = f(u 1, u 2 )), ( ) Σ(f uj (u 1, u 2 )) = Σ = ( 2 σ ij (u 1, u 2 )f ui (u 1, u 2 ) (j = 1, 2) σ 11 (u 1, u 2 ) σ 12 (u 1, u 2 ) σ 21 (u 1, u 2 ) σ 22 (u 1, u 2 ), T p S {f u1 (u 1, u 2 ), f u2 (u 1, u 2 )} Σ σ ij, g ij, h ij ( ( ) g 11 g Î = ), g 21 g ÎI = h 11 h 12, 22 h 21 h 22 (1) Î (2) Σ = Î 1 ÎI (1) 0 A 2 = ( f u1 f u2 sin θ) 2 = f u1 2 f u2 2 (1 cos 2 θ) = f u1 2 f u2 2 ( f u1 f u2 cos θ) 2 = f u1 2 f u2 2 f u1, f u2 2 = g 11 g 22 g 2 12 = det Î, det Î 0., Î (2) ( ) f uk (u 1, u 2 ) 2 Σ(f uj ), f uk = σ ij f ui, f uk = h jk, 2 h jk = σ ij g ik h kj = ) 2 σ ij g ik. 2 g ki σ ij ÎI = Î Σ.. g 11, g 12 = g 21, g 22 E, F, G h 11, h 12 = h 21, h 22 L, M, N 2.17 ( ) ( E F Î =, ÎI = F G L M ) M N K = det Σ 2 LN M = (det Î) 1 det ÎI = ( ) ( EG F 2 ) 1 G F L M Σ = = EG F 2 F E M N... H = 1 2 tr Σ GL 2F M + EN = 2(EG F 2 ) ( 1 EG F 2 GL F M F L + EM GM F N F M + EN ) 14

15 2.4. S R 3, p, T p S xy, N(p) e 3 = (0, 0, 1) S p, xy U z = ϕ(x, y),, ϕ(0, 0) = 0, N(ϕ(x, y)) = ( ϕx, ϕy,1),, N(p) = (0, 0, 1), ϕ ϕ 2 x(0, 0) = x +ϕ 2 y +1 ϕ y (0, 0) = 0, (0, 0) ϕ 24 (1), p K(p) = ϕ xx (0, 0)ϕ yy (0, 0) ϕ xy (0, 0) 2 ϕ (0, 0) K(p) > 0 (ϕ xx ϕ yy ϕ 2 xy)(0, 0) > 0 { ϕ xx (0, 0) > 0 ϕ (0, 0) ϕ xx (0, 0) < 0 ϕ (0, 0) K(p) < 0 (ϕ xx ϕ yy ϕ 2 xy)(0, 0) < 0 (0, 0) ϕ ( ),, S f : D S f(u 1 + u 1, u 2 ) f(u 1, u 2 ) f u1 (u 1, u 2 ) u 1 f(u 1, u 2 + u 2 ) f(u 1, u 2 ) f u2 (u 1, u 2 ) u 2 = : g 11 g 22 g 2 12 u 1 u f : D S S A(S) A(S) = g 11 g 22 g12 2 du 1 du 2 da =. g 11 g 22 g 2 12 = f u1 f u2 D g 11 g 22 g 2 12 du 1 du 2, S. (1) S = {(x, y, ϕ(x, y))} z = ϕ(x, y) f(x, y) = (x, y, ϕ(x, y)) f x = (1, 0, ϕ x ), f y = (0, 1, ϕ y ), f x f y = ( ϕ x, ϕ y, 1), f x f y = ϕ 2 x + ϕ 2 y

16 ϕ(x, y) = r 2 x 2 y 2 x ϕ x = r2 x 2 y, ϕ y 2 y = r2 x 2 y, f r 2 x f y = r = dxdy = = x 2 +y 2 <r 2 r2 x 2 2πr2 y2 r 2 x 2 y 2 (2) f(θ, ϕ) = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ) f θ = (r cos θ cos ϕ, r cos θ sin ϕ, r sin θ) f ϕ = ( r sin θ sin ϕ, r sin θ cos ϕ, 0) f θ f ϕ = (r 2 sin 2 θ cos ϕ, r 2 sin 2 θ sin ϕ, r 2 cos θ sin θ), f θ f ϕ = r 2 sin θ = r 2 sin θ = 4πr 2 0<θ<π,0<ϕ<2π, S, N S : N = f u 1 f u2 f u1 f u2 D D, 0 t, f t : D R 3 f t (u 1, u 2 ) = f(u 1, u 2 ) + tn(f(u 1, u 2 )) ((u 1, u 2 ) D ) S = f(d ), S t = f t (D ), S t f t : D S t S t 1 (g t) ij (i, j = 1, 2) : (g t ) ij = (f t ) ui, (f t ) uj A(S t ) = (gt ) 11 (g t ) 22 (g t ) 12 du 1 du 2 D d dt A(S t) t=0 = 2 H(f(u 1, u 2 )) g 11 g 22 g12 2 du 1 du 2 = 2 H da. D S 2.20, : D H > 0 A(S t) t D H < 0 A(S t) t D H = 0 A(S t) 2.20 (f t ) ui = f ui + t(n f) ui (g t ) ij = (f t ) ui, (f t ) uj = f ui + t(n f) ui, f uj + t(n f) uj = f ui, f uj + t f ui, (N f) uj + t (N f) ui, f uj + t 2 (N f) ui, (N f) uj... t (g t) ij t=0 = f ui, (N f) uj + (N f) ui, f uj = I(f ui, Σ(f uj )) I(Σ(f ui ), f uj ) = II(f uj, f ui ) II(f ui, f uj ) = 2h ij 16

17 t ((g t) 11 (g t ) 22 (g t ) 12 2 ) t=0 = 2h 11 g 22 + g 11 ( 2h 22 ) 2g 12 ( 2h 12 ) = 2(h 11 g 22 + g 11 h 22 2g 12 h 12 ) (g t ) 11 (g t ) 22 (g t ) 2 12 t=0 = 1 t 2 (g 11g 22 g 2 12 ) 1/2 ( 2)(h 11 g 22 + g 11 h 22 2g 12 h 12 ) d (g t ) 11 (g t ) 22 (g t ) 2 12 du 1 du 2 t=0 = dt D = g 22h 11 + g 11 h 22 2g 12 h 12 g11 g 22 g 2 12 = 2H g 11 g 22 g 12 2 D t = 2 H g 11 g 22 g 122 du 1 du 2 D (g t ) 11 (g t ) 22 (g t ) 12 2 t=0 du 1 du 2 S,,, S d S t, dt A(S t) t=0 = 0, 2.5., S, 1 γ : [a, b] S S, C = γ([a, b]) U f : D U, D γ 0 : [a, b] D γ = f γ 0 (cf. 2.4). γ 0 (t) = (u 1 (t), u 2 (t)) γ(t) = f(u 1 (t), u 2 (t)) L(γ) = b a γ (t) dt γ (t) = f u1 (u 1 (t), u 2 (t))u 1 (t) + f u2 (u 1 (t), u 2 (t))u 2 (t) γ 2 = f u1 u 1 + f u2 u 2, f u1 u 1 + f u2 u 2 = g 11 u g 12 u 1 u 2 + g 22 u 2 2, L(γ) = b a ( g 11 (u 1 (t), u 2 (t))u 1 (t) 2 + 2g 12 (u 1 (t), u 2 (t))u 1 (t)u 2 (t) +g 22 (u 1 (t), u 2 (t))u 2 (t) 2) 1/2 dt : S, 1 (u 0, v 0 ) D, a, b D γ 0 : [0, T ] D; t (u 0 + at, v 0 + bt), γ = f γ 0 L(γ) = T 0 (g 11 (u 0 + at, v 0 + bt)a 2 + ) 1/2 dt 17

18 d dt L(γ) T =0 = g 11 (u 0, v 0 )a 2 + 2g 12 (u 0, v 0 )ab + g 22 (u 0, v 0 )b 2 ) 1/2 a = 1, b = 0, = g 11 (u 0, v 0 ) 1/2. S 2,, S., ( ). S K 1 (i) K (ii) K S 2 ( 1 ), K, S R 3 (, R 3 \ S ),, S X v T p S v X = Π(D v X) = D v X D v X, N(p) N(p) T p S, Π: T p R 3 T p S v X X v Y S, X S, ϕ S C, v T p S : (i) D v (ϕy) = (v ϕ)y(p) + f(p)d v Y. (ii) v (ϕx) = (v ϕ)x(p) + f(p) v X., S f : D U, U, S Y f Y f Y (, U = D, Y U D ) fui f uj = af u1 + bf u2, a, b 1 E, F, G, i = j = 1 fu1 f u1 = af u1 + bf u2, f u1, f u2, ae + bf = f u1 u 1, f u1 = 1 2 f u 1, f u1 u1 = 1 2 E u 1, 18

19 af + bg = f u1 u 1, f u2 = f u1, f u2 u1 f u1, f u2 u 1 = f u1, f u2 u1 1 2 f u 1, f u1 u2 = F u1 1 2 E u 2. a, b 2.26 ( ). (1) fu1 ( fu2 X) fu2 ( fu1 X) = I(X, Σ(f u2 ))Σ(f u1 ) I(X, Σ(f u1 ))Σ(f u2 ). fui X = X ui X ui, N N = X ui + X, N ui N, fu1 ( fu2 X) = ( fu2 X) u1 + fu2 X, N u1 N = [X u2 X u2, N N] u1 + [X u2 X u2, N N], N u1 N = X u2 u 1 X u2 u 1, N N X u2, N u1 N X u2, N N u1 + X u2, N u1 N = X u2 u 1 X u2 u 1, N N + X, N u2 N u1., fu1 ( fu2 X) fu2 ( fu1 X) = I(X, Σ(f u2 ))Σ(f u1 ) I(X, Σ(f u1 ))Σ(f u2 ). X = f u1, (1) f u2 I( fu1 ( fu2 f u1 ) fu2 ( fu1 f u1 ), f u2 ) (2) = I(f u1, Σ(f u2 ))I(Σ(f u1 ), f u2 ) I(f u1, Σ(f u1 ))I(Σ(f u2 ), f u2 ) = II(f u1, f u2 )I(f u1, f u2 ) II(f u1, f u1 )II(f u2, f u2 ) = h 2 12 h 11 h (2), 1 E, F, G 2 fu2 f u1 = af u1 + bf u2, 2.25, a, b 1 E, F, G fu1 ( fu2 f u1 ) = fu1 (af u1 + bf u2 ) = (a f) u1 f u1 + a fu1 f u1 + (b f) u1 f u2 + b fu1 f u

20 (, ). S R 3, f : D U S γ : [a, b] S S U, γ s, D γ 0 : [a, b] D γ = f γ 0 (cf. 2.4).., s γ t(s) = γ (s), n(s) = N(γ(s)), n g (s) = n(s) t(s) ({t(s), n g (s), n(s)} T γ(s) R 3 ), t (s) n g (s) n(s), n g (s) κ g (s) γ γ(s) (geodesic curvature) : κ g = t (s), n g (s) = γ (s), n g (s).. {t(s), n g (s)} T γ(s) S, n g (s) T γ(s) S t(s) γ (total geodesic curvature), b κ g ds = κ g (s) ds γ 3.3 ( ). γ 0 : [a, b] R 2 R 2, R 0, P, Q (R 0 γ 0 ) C, ( b ) (P u + Qv ) dt = (P (u(t), v(t))u (t) + Q(u(t), v(t))v (t)) dt = (Q u P v ) dudv γ 0 a R 0 ( ) 3.2. ( ). a 3.4. γ U, R, K da = 2π κ g ds R γ U 1 e 1 ( e 1 = f u / E). e 2 = N e 1, U p, {e 1 (p), e 2 (p)} T p S e 1 1, fu e 1 e 1, (3), fu e 1 = P e 2, fv e 1 = Qe 2 0 = v e 1, e 1 = 2 D v e 1, e 1 = 2 v e 1, e 1. 20

21 P, Q, (P u + Qv ) ds = (u fu e 1, e 2 + v fv e 1, e 2 ) ds γ 0 γ 0 = u fu e 1 + v fv e 1, e 2 ds γ 0 = e 1, e 2 ds γ 0 = (κ g θ ) ds γ 0 = κ g ds 2π γ 0, e 1 = D γ e 1, γ = f u u + f v v, 2 2 ( ) κ g = e 1, e 2 + θ t = γ, t = cos θe 1 + sin θe 2 t = sin θθ e 1 + cos θe 1 + cos θθ e 2 + sin θe 2, t, e 2 = cos θ e 1, e 2 + cos θθ, t, e 2 = κ g n g, e 2 = κ g n t, e 2 = κ g cos θe 2 sin θe 1, e 2 = κ g cos θ, 3, fv ( fu e 1 ) = fv (P e 2 ) = P v e 2 + P fv e 2 = P v e 2 + P ( Qe 1 ) 4 u, v, fv ( fu e 1 ) fu ( fv e 1 ) = (P v Q u )e 2, ( 2.26) fu ( fv e 1 ) fv ( fu e 1 ) = I(e 1, Σ(f v ))Σ(f u ) I(e 1, Σ(f u ))Σ(f v ) 3 2 (a b) c = a, c b b, c a γ 0 θ ds = 2π γ 0 3 cos θ = 0 ẽ 1 = cos αe 1 + sin αe 2, cos(θ α)( ẽ 1, ẽ 2 + θ κ g ) = 0 ẽ 1, ẽ 2 = e 1, e 2 4 fv e 1 = Qe 2 fv e 2 = Qe 1, 3 0 = f v e 1, e 2 = fv e 1, e 2 + e 1, fv e 2 21

22 (Σ(f u ) Σ(f v )) e 1, Σ(f u ) Σ(f v ) = λn, λn e 1 = λe 2 λ, N = f u f v / f u f v = f u f v / g 11 g 22 g 12 2, 4, λ g 11 g 22 g 122 = Σ(f u ) Σ(f v ), f u f v a b, c d = a, c b, d a, d b, c 5 I(Σ(f u ), f u )I(Σ(f v ), f v ) I(Σ(f u ), f v )I(Σ(f v ), f u ) = h 11 h 22 h 12 2, λ = (h 11 h 22 h 12 2 )/ g 11 g 22 g 122 = K g 11 g 22 g 12 2 Q u P v = K g 11 g 22 g 12 2, (Q u P v ) dudv = K g 11 g 22 g 122 dudv = K da R 0 R 0 R 0 γ (γ = γ 1 γ 2 γ 3 ), θ, δ i, θ ds = 2π, γ 0 : θ ds = θ ds = 2π δ i = α i π. γ 0 γ 0i, α i = π δ i, 3.5. U γ α i, 3 K da = α i π κ g ds 5 R γ = det(a, b, c d) = det(c d, a, b) = (c d) a, b = c, a d d, a c, b = = (a b) c, d = det(a b, c, d) = det(c, d, a b) = c d, a b = 22

23 . (1), 0 = 3 α i π, π (2) ( ), K = 1, κ g = 0, A(ABC) = A + B + C π κ g = 0 : γ(s) = (cos s, sin s, 0) ( ), t = γ = ( sin s, cos s, 0), t = ( cos s, sin s, 0) = n. 1. R 0 γ 0, R 0. γ 0 (t) = (cos t, sin t) (0 t 2π), P (u, v) = v, Q(u, v) = u, 2π P du + Q dv = (sin t (cos t) cos t (sin t) ) dt = 2π, γ 0 0 ( 2π ) (Q u P v ) dudv = ( 2) dudv = 2π. R 0 R 0 2. γ θ ds = 2π 3.3. ( ) S, S 3.7. S, v, e, f,,, χ(s) = v e + f S. χ(s) S. (1) χ(s 2 ) = 2. ( ) (2) χ(t 2 ) = 0. (18 ) (3) Σ n (n 2) n, χ(σ n ) = 2 2n. ( 2,, ) 3.8. S, K da = 2πχ(S) S 23

24 S ( ) T (1),, T (f), f K da def = K da S T (j), 3.4 K da = T (j) 3 (α (j) ) i π κ g ds γ (j) j=1 S,, T (j), T (k) c (jk), γ (j) i, γ (k) i γ (j) i γ (k) i, κ g ds + κ g ds = 0 γ (j) i γ (k) i f, κ g ds = 0 γ (j) v, e, f,,, f 3 K da = (α (j) ) i πf = 2πv πf S, 2π j=1,,, 3f = 2e, f = 2f 2e K da = 2πv + π(2f 2e) = 2π(v e + f) = 2πχ(S) S 3.9. S, S,, n ( 2), j=1 24

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information