II 2006

Size: px
Start display at page:

Download "II 2006"

Transcription

1 II 006

2 II Introuction of Geometry II

3 i Bernstein Weierstrass-Enneper Gauss n Eucli

4 . I fx x 0 I fx 0 + h fx 0 lim h 0 h f x 0 f x 0 f x 0 f x 0, f x x 0, f x, xx0 fx x, xx0 x fx. xx0 ε > 0 δ > 0 0 < h < δ fx 0 + h fx 0 f x 0 h ε ε fx 0 + h fx 0 f x 0 h fx 0 + h fx 0 + f x 0 h h

5 h fx 0 + h fx 0 + f x 0 h ε h h 0 < h < δ h fx 0 + f x 0 h h fx 0 + h x x 0 + h x 0 < x x 0 < δ x fx 0 + f x 0 x x 0 x fx x 0 f f x 0 x 0 f f x 0 f x 0 0 x 0 f f x 0 f x 0 0 R D fx, y x 0, y 0 D u, v t fx 0, y 0 + tu, v fx 0 + tu, y 0 + tv t fx 0 + tu, y 0 + tv t0 u, v fx, y x 0, y 0 R R ; u, v t fx 0 + tu, y 0 + tv t0 f x 0, y 0 f x0,y 0 f x0,y 0 u, v t fx 0 + tu, y 0 + tv t0 R R f x0,y 0 s f x0,y 0 su, v t fx 0 + tsu, y 0 + tsv s t0 t fx 0 + tu, y 0 + tv t0 sf x0,y 0 u, v

6 .. 3 f x0,y 0 su, v sf x0,y 0 u, v f x0,y 0 u, v u + v / u, v R R.. fx, y R D x 0, y 0 D φ : R R ε > 0 δ > 0 h R 0 < h < δ fx 0, y 0 + h fx 0, y 0 + φh ε h f x 0, y 0 φ f x 0, y 0.. φ φ : R R ε > 0 δ > 0 h R 0 < h < δ fx 0, y 0 + h fx 0, y 0 + φ h ε h 0 < h < min{δ, δ } fx 0, y 0 + h fx 0, y 0 + φh ε h fx 0, y 0 + h fx 0, y 0 + φ h ε h φh φ h {fx 0, y 0 + h fx 0, y 0 + φ h} {fx 0, y 0 + h fx 0, y 0 + φh} {fx 0, y 0 + h fx 0, y 0 + φ h} + {fx 0, y 0 + h fx 0, y 0 + φh} ε h f x 0, y 0 φ f x 0, y 0

7 4 r > 0 φrh φ rh r φh φ h rε h ε rh h R φh φ h ε h ε > 0 φh φ h 0 φ φ φ φ f x0,y 0 R R ; u, v t fx 0 + tu, y 0 + tv t0 ε > 0 δ > 0 h R 0 < h < δ fx 0, y 0 + h fx 0, y 0 + φh ε h u, v R tu, v < δ t R h tu, v fx 0, y 0 + tu, v fx 0, y 0 + φtu, v ε tu, v fx 0 + tu, y 0 + tv fx 0, y 0 tφu, v ε tu, v ε t u, v t 0 fx 0 + tu, y 0 + tv fx 0, y 0 φu, v t ε u, v fx 0 + tu, y 0 + tv fx 0, y 0 t fx 0 + tu, y 0 + tv lim t 0 t0 t φu, v f φ f x0,y 0 u, v t fx 0 + tu, y 0 + tv t 0 x, y x 0, y 0 + u, v x, y 0 < x, y x 0, y 0 < δ x, y fx 0, y 0 + φx x 0, y y 0 x, y fx, y

8 .. 5 f x0,y 0 f x0,y 0, 0 t fx 0 + t, y 0 f t0 x x 0, y 0, f x0,y 0 0, t fx 0, y 0 + t f t0 y x 0, y 0 f x0,y 0, 0, 0, [ f x x 0, y 0, ] f y x 0, y 0 f x 0, y 0 R x x x R x : R R x x x x f x0,y 0 u, v f x x 0, y 0 u + f y x 0, y 0 v f x x 0, y 0 x x0,y 0 u, v + f y x 0, y 0 y x0,y 0 u, v f x x 0, y 0 x x0,y 0 + f y x 0, y 0 y x0,y 0 u, v f x0,y 0 f x x 0, y 0 x x0,y 0 + f y x 0, y 0 y x0,y 0 f x 0, y 0 f f f x + x y y f f R R x y f/ x f/ y I R c c, c c f f c c f f c f c t x t + f c y t.

9 6 c/t c /t, c /t f c f t c t f c/t f f f f p 0 p {X R f p X 0} f p 0 I fx a {x I fx a} I I R, fx sin x, a 0 {x R sin x 0} πz. R O fx, y a {x, y O fx, y a} O O R, fx, y x + y, a > 0 {x, y R x + y a} a

10 .. 7 f x x, y f f xx, y, y x, y f yx, y..3 R O fx, y O f O R R x 0, y 0 O fx 0, y 0 a, f y x 0, y 0 0 x 0 I I gx y 0 gx 0, x I x, gx O, fx, gx a g x f xx, gx f y x, gx x I. gx fx, y a..4 x I fx, gx a x 0 0 f x,gx x, gx x f x,gx, g x f x x, gx + f y x, gxg x. g x f xx, gx f y x, gx x I. fx, y a x, y x 0, y 0 gx x, gx f x 0, y 0 f fx, y fx 0, y 0 + f x0,y 0 x x 0, y y 0 a + f x0,y 0 x x 0, y y 0 {x, y R fx, y a} {x, y R f x0,y 0 x x 0, y y 0 0} x 0, y 0 + {u, v R f x0,y 0 u, v 0}

11 8 f x0,y 0 u, v 0 u, v f x x 0, y 0 u + f y x 0, y 0 v 0 f y x 0, y 0 0 v f xx 0, y 0 f y x 0, y 0 u { {x, y R fx, y a} x 0, y 0 + u, f xx 0, y 0 f y x 0, y 0 u u R} { x 0 + u, y 0 f xx 0, y 0 f y x 0, y 0 u u R} gx gx y 0 f xx 0, y 0 f y x 0, y 0 x x 0 {x, y R fx, y a} {x, gx x R} f x y x y f x0,y 0 0 fx, y a fx, y a fx, y a 0 0 0

12 .. 9 fx, y R O u, v u, v fx 0, y 0 + su, v + tu, v fx 0 + su + tu, y 0 + sv + tv s t fx, y x 0, y 0 R R ; u, v, u, v t s fx 0 + su + tu, y 0 + sv + tv s0 t0 f x 0, y 0 t t0 s fx 0 + su + tu, y 0 + sv + tv s0 t f x x 0 + tu, y 0 + tv u + f y x 0 + tu, y 0 + tv v t0 f xx x 0, y 0 uu + f xy x 0, y 0 uv + f yx x 0, y 0 vu + f yy x 0, y 0 vv [ ] [ ] f xx x 0, y 0 f xy x 0, y 0 u [u v] f yx x 0, y 0 f yy x 0, y 0 v u, v, u, v f C f xy x 0, y 0 f yx x 0, y 0 D f x0,y 0 [ ] [ ] D f xx x 0, y 0 f xy x 0, y 0 u f x0,y 0 u, v, u, v [u v]. f yx x 0, y 0 f yy x 0, y 0 v [ ] [ f xx x 0, y 0 f xy x 0, y 0 t fx 0 + tu, y 0 + tv [u v] t0 f yx x 0, y 0 f yy x 0, y 0 u, v f x0,y 0 0 u v ].

13 0..5 [ ] a b A b c P [ P AP λ 0 0 λ ] P P λ, λ A A x x Ax α x x π/ x cos tx + sin tx x 0 t cos tx + sin tx Acos tx + sin tx x Ax + x Ax x Ax. t0 A x Ax x Ax 0, Ax x Ax x Ax x Ax x Ax λ x x Ax λ Ax λ x λ, λ A P x x P AP λ x λ x x x [ λ 0 0 λ ] P [ λ 0 0 λ ]. P AP [ λ 0 0 λ ]. p, q px + qx Apx + qx [p q]p AP [ λ p + λ q p q ] [p q] [ λ 0 0 λ ] [ p q ]

14 .. D f x0,y 0 P x x [ ] [ ] P f xx x 0, y 0 f xy x 0, y 0 λ 0 P f yx x 0, y 0 f yy x 0, y 0 0 λ R u u x + u x D f x0,y 0 u, u λ u + λ u D f x0,y 0 u, u f x0,y 0 0 λ i > 0 f x 0, y 0 λ i < 0 f x 0, y 0 λ λ < 0 f x 0, y 0 D f x0,y 0 f x 0, y 0. R O f f O x fx : R R O ωx : R R {ωx}x O.. O R O x ωx : R R ωx ω xxx + ω xyx x O O ω, ω C k ω {ωx}x O O C k.. C k+ f f C k f f f x + x y y x y y/x x y xy y x + x y 0

15 y/x y x x y x y x, y xy y x x, y xy ft, gt ft, gt t f t, g t x f/t y g/t y/x x y y x lim y x 0 x lim x 0 y t x t y lim x 0 t lim x 0 x t g t f t y/x y x s g t f t g s s t f s s t g s f s yy + xx 0. yy y, xx x.

16 .. 3 y + x 0, x + y 0 x y..3 ω R O ω ω x + ω y O c xt x t, x t a t b c ω c ω c ω b a b a xt ω t t ω xt x t + ω xt x t t t t...4 ω C c xt x t, x t a t b u x i u x i t t u u α t a u β t b t/u > 0 α < β β α ω x u + x ω u u β α b a ω x t + x ω t t u u t. ω x t + x ω t

17 4 t/u < 0 α > β α ω x β u + x α ω u ω x u β t + x ω t t u u b ω x t + x ω t. t..5 f R f α β c f fβ fα. c a c xt x t, x t a t b xa α, xb β c f b a f x b t fxtt fxb fxa fβ fα. t a t x + y 0 c x + y 0 c ct 0..5 x t + x t x t 0 + x t 0 0. x t + x t x t 0 + x t 0

18 u, v, w u + v + w / u, v, w R 3 R 3.3. fx, y, z R 3 D x 0, y 0, z 0 D φ : R 3 R ε > 0 δ > 0 h R 3 0 < h < δ fx 0, y 0, z 0 + h fx 0, y 0, z 0 + φh ε h f x 0, y 0, z 0 φ f x 0, y 0, z 0.3. φ φ f x0,y 0,z 0 R 3 R ; u, v, w t fx 0 + tu, y 0 + tv, z 0 + tw t0 x, y, z x 0, y 0, z 0 + u, v, w x, y, z 0 < x, y, z x 0, y 0, z 0 < δ x, y, z fx 0, y 0, z 0 + φx x 0, y y 0, z z 0 x, y, z fx, y, z f x0,y 0,z 0, 0, 0, 0,, 0, 0, 0, [ f x x 0, y 0, z 0, f y x 0, y 0, z 0, ] f z x 0, y 0, z 0 f x 0, y 0, z 0 R 3 x, y, z x, y, z f f f f x + y + x y z z f f R 3 R x y z f/ x f/ y f/ z I R 3

19 6 c c, c, c 3 c f f c c f f c f c t x t + f c y t + f c 3 z t. c/t c /t, c /t, c 3 /t c f c f t t f c/t f f f f p 0 p {X R 3 f p X 0} f p 0 R 3 O fx, y, z a {x, y, z O fx, y, z a} O O R 3, fx, y, z x + y + z, a > 0 {x, y, z R 3 x + y + z a} a f x x, y, z f xx, y, z, f y x, y, z f yx, y, z, f z x, y, z f zx, y, z

20 R 3 O fx, y, z O f O R 3 R 3 x 0, y 0, z 0 O fx 0, y 0, z 0 a, f z x 0, y 0, z 0 0 x 0, y 0 R U U gx, y z 0 gx 0, y 0, x, y U x, y, gx, y O, fx, y, gx, y a g x x, y f xx, y, gx, y f z x, y, gx, y, g yx, y f yx, y, gx, y, x, y U f z x, y, gx, y gx, y fx, y, z a.3.4 x, y U fx, y, gx, y a x 0 0 f x,y,gx,y x, y, gx, y f x,y,gx,y, 0, g x x, y x f x x, y, gx, y + f z x, y, gx, yg x x, y. g x x, y f xx, y, gx, y f z x, y, gx, y x, y U. fx, y, gx, y a y 0 0 f x,y,gx,y x, y, gx, y f x,y,gx,y 0,, g y x, y y f y x, y, gx, y + f z x, y, gx, yg y x, y. g y x, y f yx, y, gx, y f z x, y, gx, y x, y U. fx, y, z a x, y, z x 0, y 0, z 0 gx, y x, y, gx, y

21 8 f x 0, y 0, z 0 f fx, y, z fx 0, y 0, z 0 + f x0,y 0,z 0 x x 0, y y 0, z z 0 a + f x0,y 0,z 0 x x 0, y y 0, z z 0 {x, y, z R 3 fx, y, z a} {x, y, z R 3 f x0,y 0,z 0 x x 0, y y 0, z z 0 0} x 0, y 0, z 0 + {u, v, z R 3 f x0,y 0,z 0 u, v, w 0} f x0,y 0,z 0 u, v, w 0 u, v, w f x x 0, y 0, z 0 u + f y x 0, y 0, z 0 v + f z x 0, y 0, z 0 w 0 f z x 0, y 0, z 0 0 w f xx 0, y 0, z 0 f z x 0, y 0, z 0 u f yx 0, y 0, z 0 f z x 0, y 0, z 0 v {x, y, z R 3 fx, y, z a} { x 0, y 0, z 0 + u, v, f xx 0, y 0, z 0 f z x 0, y 0, z 0 u f } yx 0, y 0, z 0 f z x 0, y 0, z 0 v u, v R { x 0 + u, y 0 + v, z 0 f xx 0, y 0, z 0 f z x 0, y 0, z 0 u f } yx 0, y 0, z 0 f z x 0, y 0, z 0 v u, v R gx, y z 0 f xx 0, y 0, z 0 f z x 0, y 0, z 0 x x 0 f yx 0, y 0, z 0 f z x 0, y 0, z 0 y y 0 gx, y {x, y, z R z fx, y, z a} {x, y, gx, y x, y R } f x, y, z x, y, z f x0,y 0,z 0 0 fx, y, z a fx, y, z a fx, y, z a

22 .3. 9 fx, y, z R 3 O u, v, w u, v, w fx 0, y 0, z 0 +su, v, w+tu, v, w fx 0 +su+tu, y 0 +sv+tv, z 0 +sw+tw s t fx, y, z x 0, y 0, z 0 u, v, w, u, v, w t s fx 0 + su + tu, y 0 + sv + tv, z 0 + sw + tw s0 t0 R 3 R f x 0, y 0, z 0 t t0 s fx 0 + su + tu, y 0 + sv + tv, z 0 + sw + tw s0 t f x x 0 + tu, y 0 + tv, z 0 + tw u + f y x 0 + tu, y 0 + tv, z 0 + tw v t0 +f z x 0 + tu, y 0 + tv, z 0 + tw w f xx x 0, y 0, z 0 uu + f xy x 0, y 0, z 0 uv + f xz x 0, y 0, z 0 uw +f yx x 0, y 0, z 0 vu + f yy x 0, y 0, z 0 vv + f yz x 0, y 0, z 0 vw +f zx x 0, y 0, z 0 wu + f zy x 0, y 0, z 0 wv + f zz x 0, y 0, z 0 ww f xx x 0, y 0, z 0 f xy x 0, y 0, z 0 f xz x 0, y 0, z 0 f yx x 0, y 0, z 0 f yy x 0, y 0, z 0 f yz x 0, y 0, z 0 f zx x 0, y 0, z 0 f zy x 0, y 0, z 0 f zz x 0, y 0, z 0 [u v w] u, v, w, u, v, w f C u v w f xy x 0, y 0, z 0 f yx x 0, y 0, z 0, f xz x 0, y 0, z 0 f zx x 0, y 0, z 0, f yz x 0, y 0, z 0 f zx x 0, y 0, z 0 D f x0,y 0,z 0 D f x0,y 0,z 0 u, v, w, u, v, w f xx x 0, y 0, z 0 f xy x 0, y 0, z 0 f xz x 0, y 0, z 0 [u v w] f yx x 0, y 0, z 0 f yy x 0, y 0, z 0 f yz x 0, y 0, z 0 f zx x 0, y 0, z 0 f zy x 0, y 0, z 0 f zz x 0, y 0, z 0 u v w.

23 0 t fx 0 + tu, y 0 + tv, z 0 + tw t0 f xx x 0, y 0, z 0 f xy x 0, y 0, z 0 f xz x 0, y 0, z 0 [u v w] f yx x 0, y 0, z 0 f yy x 0, y 0, z 0 f yz x 0, y 0, z 0 f zx x 0, y 0, z 0 f zy x 0, y 0, z 0 f zz x 0, y 0, z 0 u, v, w u v w.

24 . R O fx, y a C {x, y O fx, y a}..3 C f 0 C x, y C f x,y 0 C.. r r fx, y x + y x, y R S r {x, y R fx, y r } f xx + yy S r f 0 S r.. a, 0, a, 0 a > 0

25 K > 0 a < K x + a + y + x a + y K x + a + y + x + a + y x a + y + x a + y K, x + a + y + x + a + y x a + y K, x + a + y + x + a + y x a + y K, x + y + a K x + a + y x a + y. x + y + a K x + a + y x a + y, x + y + a K x + y + a K x + a x a + x + a + x a y + y 4, x 4 + x y + y 4 + a K x + y + a K x a + x + a y + y 4, x 4 + x y + y 4 + a K x + y + a 4 a K + K4 4 x 4 a x + a 4 + x + a y + y 4, a K x + y a K + K4 4 a x + a y, K 4a K 4 K 4a x + K y, 4x K + 4y K 4a. fx, y 4x K + 4y K 4a E {x, y R fx, y } f 8x K x + 8y K 4a y

26 .. 3 E f 0 E..3 a, 0, a, 0 a > 0 K > 0 a > K x + a + y x a + y K x + a + y x + a + y x a + y + x a + y K, x + a + y x + a + y x a + y K, x + a + y x + a + y x a + y K, x + y + a K x + a + y x a + y. x + y + a K x + a + y x a + y, x + y + a K x + y + a K x + a x a + x + a + x a y + y 4, x 4 + x y + y 4 + a K x + y + a K x a + x + a y + y 4, x 4 + x y + y 4 + a K x + y + a 4 a K + K4 4 x 4 a x + a 4 + x + a y + y 4, a K x + y a K + K4 4 a x + a y, K 4a K 4 K 4a x + K y, 4x K 4y 4a K. fx, y 4x K 4y 4a K

27 4 H {x, y R fx, y } f 8x K x 8y 4a K y H f 0..4 a, 0, a, 0 a > 0 K > 0 x + a + y x a + y K x + a + y x a + y K, x + a + y K x a + y, x + ax + a + y K x ax + a + y, K x + + K ax + K a + K y 0. K K K x 0 y K K x + + K K ax + a + y 0, x + + K + K K a + y K a, x + + K K a + y 4a K K. fx, y x + + K K a + y } C {x, y R fx, y 4a K K f x + + K K a x + yy C f 0

28 R I R c : I R I t c t 0 ct c t I c t 0 c : I R R O fx, y a C {x, y O fx, y a} x, y C f x,y 0 C..6.. S r {x, y R x + y r } r cos θ, r sin θ θ R r cos θ + r sin θ r, r cos θ, r sin θ r sin θ, r cos θ } E {x, y R x a + y b a cos θ, b sin θ θ R

29 6 a cos θ b sin θ +, a b a cos θ, b sin θ a sin θ, b cos θ } H {x, y R x a y b a cosh t, b sinh t t R a cosh t b sinh t, a b a cosh t, b sinh t a sinh t, b cosh t 0. ct xt, yt c t 0 c t x t, y t

30 .. 7 t ct ct c t c t x t + y t a b a b b a c t t t a t s s t a c t t, s t t t a c t t c t > 0 c t 0 s t t s t ts xts, yts s s s s xts, yts x t, y t t s c t t s / t s s t c t. s xts, yts c t c t s s s e c/s e e, e s 0 s e, e + e, s e s e, e.

31 8 s e e e e e π/ e x e s, y s e y s, x s s e κ s e, e s e e s e κe e e, e s 0 s e, e + e, s e s e, e. s e e e e e, e 0 s 0 s e, e + e, s e κ + e, s e κ e, s e. s e e s e κe

32 e e π/ e κ e e s s e κe, s e κe... Frenet 3 Frenet- Serret..3 p e cs p + se cs e s s s S r s r cos θ, r sin θ θ R r cos θ, r sin θ r sin θ, r cos θ θ s θ 0 r sin θ, r cos θ θ rθ. θ s/r r cos s r, r sin s r s e sin s r, cos s r. π/ e e cos s r, sin s. r e s /r s e r cos s r, r sin s r r e.

33 30 s t a x t + y t t..5 xt, yt κt x ty t y tx t x t + y t 3/. gx x, gx g x κx + g x. 3/ xt, yt s s t e e s xts, yts x t, y t t s s t s e x t, y t + x t, y t t s s. e π/ e e y t, x t t s κt 3 t κt s e, e x ty t y tx t s 3 t s 3 s x t + y t 3/ t κt x ty t y tx t x t + y t 3/

34 .. 3 gx x, gx x, gx x κx g x + g x 3/...6 R fx, y a C {x, y fx, y a} f 0 C [ ] [ ] κ ± fx + fy [f f yy f xy f x 3/ x f y ]. f xy C f 0 C f x 0 f y 0 f y 0..3 gx fx, gx a x, gx C..3 g x f xx, gx f y x, gx x g x f y x, gx [{f xxx, gx + f xy x, gxg x}f y x, gx f x x, gx{f yx x, gx + f yy x, gxg x}]. f x, gx x, gx f xx g x {f fy xx + f xy g xf y f x f yx + f yy g x} f y f 3 y f 3 y [f fy 3 x f y ] { } f x f x f xx f xy f y f x f yx f yy f y f y {f xx f y f xy f x f y f x f yx f y f yy f x } fyy f x f xy f x f y + f xx f y [ f yy f xy f xy f xx ] [ f x f y ]. f y

35 3..5 κ + 3/ f x f y fy 3 sgnf y f x + f y 3/ [f x f y ] [f x f y ] [ f yy f xy [ f yy f xy f xy f xx f xy f xx ] [ f x f y ] [ ]. f x f y ] sgnf y f y f y sgnf y fy / [ ] [ ] κ ± fx + fy [f f yy f xy f x 3/ x f y ]. f x 0 f xy f xx fx, y x + y x, y R S r {x, y R fx, y r }..6 f x x, f y y, f xx, f xy 0, f yy [ κ [x y] 4x + 4y 3/ 0 0 ] [ S r /r x y..8 a, b R ] fx, y x a + y b fx, y E {x, y fx, y } f y 8x + 8y 4x + 4y 3/ x + y /...6 f x x a, f y y b, f xx a, f xy 0, f yy b

36 .. 33 κ [ x 3/ 4x a + 4y a 4 b 4 x + y a b a b x + y a 4 b 4 3/ ] [ y 0 b b 0 a ] [ x a y b ab 3/ a 3 b 3 x + y a 4 b 4 ] 8x a 4 b + 8y a b 4 3/ 4x + 4y a 4 b 4 ab 3/. b x + a y a b..9 a, b R fx, y x a y b fx, y H {x, y fx, y }..6 f x x a, f y y b, f xx a, f xy 0, f yy b κ [ x 3/ 4x a + 4y a 4 b 4 y ] [ 0 b b 0 a ] [ x a y b ] 8x a 4 b + 8y a b 4 3/ 4x + 4y a 4 b 4 x + y a b ab ab 3/ 3/ 3/. a b x + y a a 4 b 3 b 3 x + y b x + a y 4 a 4 b 4 a b..0 c c c c c c κ κ c c A a R s c Acs + a c Acs + a Acs s s

37 34 s c e cs s, ē cs s ē Ae π/ [ ] 0 J 0 JA AJ e Je, ē Jē ē Jē JAe AJe Ae. κ ē s, ē Ae s, Ae A e s, Ae e s, e κ c κ c κ κ κ c c 0 e c s, e Je, ē c s, ē Jē Frenet.. s e κe, s e κe. [ s [e 0 κ e ] [e e ] κ 0 ]. [e e ] [ ] s [ē 0 κ ē ] [ē ē ]. κ 0 [ē ē ] X X s [ē ē ][e e ] s [ē ē ] [e e ] + [ē ē ] s [e e ]

38 .. 35 s [ē ē ] [e e ] + [ē ē ] s [e e ] [ ] [ ] 0 κ [ē ē ] [e e ] 0 κ + [ē ē ] [e e ] κ 0 κ 0 [ ] [ ] 0 κ [ē ē ] [e e ] 0 κ + [ē ē ] [e e ] κ 0 κ 0 [ ] [ ] 0 κ 0 κ [ē ē ] + [e e ] κ 0 κ 0 0. [e e ] [ē ē ] [ē ē ][e e ] A [ē ē ] A[e e ] ē Ae cs c0 s 0 ē s s 0 Ae s A s 0 e s Acs c0. cs Acs + c0 Ac0 c c κ s κs cs

39 36 κ a s t t cs cos κuu, sin a a a κuu t cs e s s cos s cs a s κuu, sin κuu a e s π/ e s s s e s sin κuu, cos κuu a a s e s s s sin κuu, cos κuu a a s κse s. s a κuu κs cs..0.3 ct xt, yt, zt c t 0 c t x t, y t, z t t ct ct c t c t x t + y t + z t a b a b b a c t t

40 t a t s s t a c t t, s t t t a c t t c t > 0 c t 0 s t t s t ts xts, yts s s s s xts, yts, zts x t, y t, z t t s c t t s / t s s t c t. s xts, yts, zts c t c t s s s e c/s e e, e s 0 s e, e + e, s e s e, e. s e e e s e κ s e

41 38 κs 0 e s κs s e s e s s e s κe κs 0 e e e 3 e e s e s, e s, e 3 s R 3 e e 3 Kronecker δ ij δ ij { i j 0 i j i, j 3 e i, e j δ ij s s e i, e j + e i, s e j 0. i j s e i, e i 0 s e i e i s e e i, j 0 s e, e + e, s e κ + e, s e. e, s e κ s e κe + s e, e 3 e 3. τ s e, e 3 s e κe + τe 3

42 τ i, j 3 0 s e, e 3 + e, s e 3 κe, e 3 + e, s e 3 e, s e 3 s e 3 e i, j 3 0 s e, e 3 + e, s e 3 κe + τe 3, e 3 + τ + e, s e 3. e, s e 3 s e 3 e 3 s e 3 τe.3. e s e 0 s e e e 3 e e e 3 κ τ e, e, e 3 s s e κe, s e κe + τe 3, s e 3 τe..3. Frenet-Serret.3.3 p e cs p + se cs e s s s 0 0

43 cs s e a {x R 3 e, x a} cs e, cs a s e, s cs 0 e s cs e, e 0 e e s κ κ 0 κ s e s e κe e 0 e, s e e, κe κ e, e e, s e 0 κ 0 e e e 3 e 3 e e e 3 ±e τ τ s e, e 3 ± s e, e ± s e, e a > 0 b 0 ct a cos t, a sin t, bt s a cos t, a sin t, bt a sin t, a cos t, b t s t 0 a sin t, a cos t, b t a + b t.

44 .3. 4 t s/ a + b a cos s a + b, a sin s a + b, bs a + b s s e a sin a + b a + b, a cos s a + b, b. e s s e a cos a + b κ e e κ s e e 3 e 3 e e κ cos a + b b sin s s, a sin a + b a a + b. s a + b, sin s s, b cos a + b a + b, 0. s a + b, 0 a + b, a. s e a + b sin s a + b, cos s a + b, 0 τ κ τ b a + b. a a + b, τ b a + b.3.6 c c 0 c c

45 4 c c κ κ τ τ c c A a R 3 s c Acs + a c Acs + a Acs s s s c e cs s, ē cs s ē Ae s e sē e ē κē sē s Ae A s e Aκe κae κ, κ > 0 ē, Ae κ κ ē Ae e 3 e e, ē 3 ē ē A ē 3 ē ē Ae Ae Ae e Ae 3 τ ē 3 sē, s Ae, Ae 3 A s e, Ae 3 s e, e 3 τ. c c c c 0 e, e, e 3 ē, ē, ē 3 Frenet-Serret.3. s e κe, s e κe + τe 3, s e 3 τe. s [e e e 3 ] [e e e 3 ] 0 κ 0 κ 0 τ 0 τ 0.

46 [e e e 3 ] 0 κ 0 s [ē ē ē 3 ] [ē ē ē 3 ] κ 0 τ. 0 τ 0 [ē ē ē 3 ] X X s [ē ē ē 3 ][e e e 3 ] s [ē ē ē 3 ] [e e e 3 ] + [ē ē ē 3 ] s [e e e 3 ] s [ē ē ē 3 ] [e e e 3 ] + [ē ē ē 3 ] s [e e e 3 ] 0 κ 0 [ē ē ē 3 ] κ 0 τ [e e e 3 ] 0 τ 0 +[ē ē ē 3 ] [e e e 3 ] [ē ē ē 3 ] +[ē ē ē 3 ] 0 κ 0 κ 0 τ 0 τ 0 [ē ē ē 3 ] 0. 0 κ 0 κ 0 τ 0 τ 0 0 κ 0 κ 0 τ 0 τ 0 0 κ 0 κ 0 τ 0 τ 0 [e e e 3 ] [e e e 3 ] + 0 κ 0 κ 0 τ 0 τ 0 [e e e 3 ] [e e e 3 ] [ē ē ē 3 ] [ē ē ē 3 ][e e e 3 ] A [ē ē ē 3 ] A[e e e 3 ] ē Ae cs c0 s 0 ē s s 0 Ae s A s cs Acs + c0 Ac0 0 e s Acs c0. c c

47 κ τ s κs τs cs Xs 0 κ 0 Xs Xs κ 0 τ. s 0 τ 0 κ, τ s XsXs s Xs Xs + Xs s Xs s Xs Xs + Xs s Xs 0 κ 0 Xs κ 0 τ Xs + Xs Xs 0 τ 0 0 κ 0 κ 0 τ 0 τ 0

48 Xs 0. 0 κ 0 κ 0 τ 0 τ κ 0 κ 0 τ 0 τ 0 Xs XsXs Xs XsXs s XsXs Xs Xs s Xs Xs [e e e 3 ] e, e, e 3 R 3 e 3 e e κ τ a cs s a e tt cs s cs e s s cs Xs s e s κse s, s e s κse s + τse 3 s κs > 0 s e s κse s κs cs κs s e s, e 3 s τs cs τs ct κt c t c t c t 3, τt etc t c t c t c t c t.

49 46 ct s s t e e s cts c t t s c t c t s t s e c t s s e κe + c t t s c t c t + c t t s κe 3 e κe e s e c t c c t t c t + c t t c t c t. s c t 3 κ κe 3 c t c t. c t 3 τ et s c s c 3 s c 3 s c e, s c s e κe, 3 s c 3 s κe s κ e + κ s e etu v w u v, w et s c s c 3 s c et e 3 κe κ s e κ et e e s e κ e e, s e κ e 3, s e κ τ. 3 s c c t 3 s c t + c t t s c t c t + 3 c t s c t + c t t c t s + c t 3 t s 3 et s c s c 3 s c 3 c t et c t c t c t etc t c t c t. c t c t 3 c t 6 τ etc t c t c t κ c t 6 c t 6 etc t c t c t c t c t c t 6 etc t c t c t c t c t.

50 R 3 O fx, y, z a S {x, y, z O fx, y, z a}.3.3 S f 0 S x, y, z S f x,y,z 0 S f x,y,z 0 f 0 f z gx, y S {x, y, gx, y x, y D} D gx, y gx, y g x,y : R R x, y, gx, y

51 r r fx, y, z x + y + z x, y, z R 3 S r {x, y, z R 3 fx, y, z r } f f x x + f y y + f z z xx + yy + zz S r f 0 S r 3.. gx, y R O gx, y S {x, y, gx, y x, y O} fx, y, z gx, y z x, y, z O R S {x, y, z O R fx, y, z 0} f f x x + f y y + f z z g x x + g y y z O R f 0 S 3..3 a, b gx, y gx, y x a + y b x, y R gx, y } {x, y, z R 3 z x a + y b xy z

52 a, b gx, y gx, y x a y b x, y R gx, y } {x, y, z R 3 z x a y b xy z a, b, c fx, y, z x a + y b + z c x, y, z R 3 E {x, y, z R 3 fx, y, z } f x y z x + y + a b c z E f 0 E 3..6 a, b, c fx, y, z x a + y b z c x, y, z R 3 HI {x, y, z R 3 fx, y, z }, HII {x, y, z R 3 fx, y, z } f x y z x + y a b c z HI HII f 0 HI HII HI HII z c x a + y b + z c c z

53 50 3 R U R 3 p : U R 3 U u, v p u p u, v, u p v p u, v v p u, p v u, v U p u, p v p : U R 3 R 3 O fx, y, z a S {x, y, z O fx, y, z a} x, y, z S f x,y,z 0 S f x,y,z 0 f x x, y, z 0, f y x, y, z 0 f z x, y, z 0 f z x, y, z 0 gx, y fx, y, gx, y a S gx, y pu, v u, v, gu, v p u u, v, 0, g u u, v, p v u, v 0,, g v u, v p u u, v, p v u, v pu, v S S {x, y, gx, y x, y O} px, y x, y, gx, y x, y O p : O R 3 S

54 } E {x, y, z R 3 x a + y b + z c pu, v a cos u cos v, b cos u sin v, c sin u π < u < π a cos u cos v + b cos u sin v a cos ucos v + sin v + sin u b + c sin u c p E p 0, 0, ±c E pu, v u, v p u a sin u cos v, b sin u sin v, c cos u, p v a cos u sin v, b cos u cos v, 0 a sin u cos v b sin u sin v a cos u sin v b cos u cos v ab cos u sin u cos v ab cos u sin u sin v ab cos u sin u. u 0 0 u 0 p u, p v u 0 p u 0, 0, c, p v a sin v, b cos v, 0 p u, p v p u, p v pu, v } HI {x, y, z R 3 x a + y b z c pu, v a cosh u cos v, b cosh u sin v, c sinh u

55 5 3 a cosh u cos v + b cosh u sin v a cosh ucos v + sin v sinh u b c sinh u c p HI p HI pu, v u, v p u a sinh u cos v, b sinh u sin v, c cosh u, p v a cosh u sin v, b cosh u cos v, 0 a sinh u cos v b sinh u sin v a cosh u sin v b cosh u cos v ab cosh u sinh u cos v + ab cosh u sinh u sin v ab cosh u sinh u. u 0 0 u 0 p u, p v u 0 p u 0, 0, c, p v a sin v, b cos v, 0 p u, p v p u, p v pu, v 3..6 } HII {x, y, z R 3 x a + y b z c p ± u, v a sinh u cos v, b sinh u sin v, ±c cosh u u 0 a sinh u cos v + b sinh u sin v a sinh ucos v + sin v cosh u b c cosh u c p ± HII p + HII 0, 0, c p HII 0, 0, c p ± u, v u, v p ± u a cosh u cos v, b cosh u sin v, ±c sinh u, p ± v a sinh u sin v, b sinh u cos v, 0

56 a cosh u cos v b cosh u sin v a sinh u sin v b sinh u cos v ab cosh u sinh u cos v + ab cosh u sinh u sin v ab cosh u sinh u. u 0 0 p ± u, p ± v p ± u, v 0, 0, c 0, 0, c x a + y b z c z ± c g ± x, y ± a x + c b y + c c a x + c b y + c g ± x, y g + x, y g x, y 3. pu, v xu, v, yu, v, zu, v p u u, v x u u, v, y u u, v, z u u, v, p v u, v x v u, v, y v u, v, z v u, v p u, p v p u p v p u p v

57 54 3 p u p v e p u p v p u p v u 0, v 0 pu 0, v 0 fu, v eu 0, v 0, pu, v e 0 eu 0, v 0 u, v fu, v e 0, pu, v f u e 0, p u, f v e 0, p v. f u u 0, v 0 e 0, p u u 0, v 0 0, f v u 0, v 0 e 0, p v u 0, v 0 0. f u0,v 0 f u u 0, v 0 u + f v u 0, v 0 v 0. Hessf u0,v 0 pu 0, v 0 f uu e 0, p uu, f uv e 0, p uv, f vu e 0, p vu, f vv e 0, p vv Hessf u0,v 0 [ e 0, p uu e 0, p uv e 0, p vu e 0, p vv ]. ξp u + ηp v, ξ p u + η p v ξξ p u, p u + ξη p u, p v + ηξ p v, p u + ηη p v, p v [ ] [ ] p u, p u p u, p v ξ [ξ η] p v, p u p v, p v P [ η p u, p u p u, p v p v, p u p v, p v ]

58 P..5 R P R, P R RP x, y R x P R y x R P R y x R P R y x P R y x y x R x R p u, p v R HessfR R HessfR R HessfR..5 R HessfR κ, κ K κ κ, H κ + κ K H Gauss R HessfR R K H p 3.. p Gauss K H K e 0, p uu e 0, p vv e 0, p uv p u, p u p v, p v p u, p v, H p u, p u e 0, p vv p u, p v e 0, p uv + p v, p v e 0, p uu. p u, p u p v, p v p u, p v Gauss K H K κ κ etr HessfR etr ethessf etr etr ethessf etp ethessf e 0, p uu e 0, p vv e 0, p uv p u, p u p v, p v p u, p v, H κ + κ trr HessfR trr Hessf trp Hessf.

59 56 3 P Hessf p u, p u p v, p v p u, p v [ p v, p v p u, p v p v, p u p u, p u ] [ e 0, p uu e 0, p uv e 0, p vu e 0, p vv p u, p u p v, p v p u, p v [ p v, p v e 0, p uu p u, p v e 0, p vu p v, p u e 0, p uv + p u, p u e 0, p vv ] ] H p u, p u e 0, p vv p u, p v e 0, p uv + p v, p v e 0, p uu. p u, p u p v, p v p u, p v 3.. gx, y x, y, gx, y Gauss K H K g xxg yy gxy + gx + gy, H g xx + gy g x g y g xy + g yy + gx + gx + gy 3/ gx, y x, y, gx, y px, y x, y, gx, y p x, 0, g x, p y 0,, g y e p x p y g x, g y, p x p y + g x + g y + g x + g y g x, g y, g x, g x + gx, g y, g y + gy, g x, g y g x g y, p xx 0, 0, g xx, p yy 0, 0, g yy, p xy 0, 0, g xy, e 0, p xx g xx, e 0, p yy g yy, e 0, p xy +g x +g y +g x +g y g xy +g x +gy

60 gx + gy gxg y H g xx + gy g x g y g xy + g yy + gx + gx + gy / K g xxg yy g xy + g x + g y g xx + g y g x g y g xy + g yy + g x + g x + g y 3/. g xxg yy g xy + g x + g y, + g x + g y g xg y 3..3 R 3 fx, y, z a S {x, y, z fx, y, z a} f 0 S Gauss K H K f x + f y + f z {f yy f zz f yzf x + f xx f zz f xzf y + f xx f yy f xyf z +f xz f yz f xy f zz f x f y + f xy f xz f yz f xx f y f z +f xy f yz f xz f yy f z f x }, H ± fx + fy + fz 3/ {f xx + f yy f z + f yy + f zz f x + f zz + f xx f y f xy f x f y + f yz f y f z + f zx f z f x }. S f 0 S f x 0 f y 0 f z 0 f z gx, y fx, y, gx, y a x, y, gx, y S.3.3 g x x, y f xx, y, gx, y f z x, y, gx, y, g yx, y f yx, y, gx, y f z x, y, gx, y g x x, y x g xx x, y f z x, y, gx, y [{f xx x, y, gx, y + f xz x, y, gx, yg x x, y}f z x, y, gx, y f x x, y, gx, y{f zx x, y, gx, y + f zz x, y, gx, yg x x, y}].

61 58 3 f x, y, gx, y x, y, gx, y g xx fz fz g x x, y y f xx f z + f xz f z g x f x f zx f x f zz g x f xx f z f xz f z fx f x f zx + f x f zz fx f z f z f fz 3 xx fz f xz f x f z + f zz fx. g xy x, y f z x, y, gx, y [{f xy x, y, gx, y + f xz x, y, gx, yg y x, y}f z x, y, gx, y f x x, y, gx, y{f zy x, y, gx, y + f zz x, y, gx, yg y x, y}]. f x, y, gx, y x, y, gx, y g xy fz fz g y x, y y f xy f z + f xz g y f z f x f zy f x f zz g y f xy f z f xz fy f z f x f zy + f x f zz fy f z f z f fz 3 xy fz f xz f y f z f yz f x f z + f zz f x f y. g yy x, y f z x, y, gx, y [f yy x, y, gx, y + f yz x, y, gx, yg y x, y}f z x, y, gx, y f y x, y, gx, y{f zy x, y, gx, y + f zz x, y, gx, yg y x, y}]. f x, y, gx, y x, y, gx, y g yy fz fz f yy f z + f yz f z g y f y f zy f y f zz g y f yy f z f yz f z fy f y f zy + f y f zz fy f z f z f fz 3 yy fz f yz f y f z + f zz fy.

62 Gauss K f 6 z { + } f x f z + fy f z {f xx f z f xz f x f z + f zz f xf yy f z f yz f y f z + f zz f y f xy fz f xz f y f z f yz f x f z + f zz f x f y } fz fx + fy + fz {f xx f yy fz 4 f xz f yy f x fz 3 f yz f xx f y fz 3 +f yy f zz fxf z + 4f xz f yz f x f y fz + f xx f zz fy fz f yz f zz fxf y f z f xz f zz f x fy f z + fzzf xf y fxyf z 4 f xy f xz f y fz 3 f xy f yz f x fz 3 +f xzf y f z + f yzf xf z + f xy f zz f x f y f z + f xz f yz f x f y f z f xz f zz f x fy f z f yz f zz fxf y f z + fzzf xf y } fz fx + fy + fz {f xx f yy f 4 z f xyf 4 z f xz f yy f x f 3 z f yz f xx f y f 3 z + f xy f xz f y f 3 z + f xy f yz f x f 3 z +f yy f zz f xf z + f xz f yz f x f y f z + f xx f zz f y f z fxzf y fz fyzf xf z f xy f zz f x f y fz } fx + fy + fz {f xx f yy f z f xyf z f xz f yy f x f z f yz f xx f y f z + f xy f xz f y f z + f xy f yz f x f z +f yy f zz f x + f xz f yz f x f y + f xx f zz f y fxzf y fyzf x f xy f zz f x f y } fx + fy + fz {f yy f zz f yzf x + f xx f zz f xzf y + f xx f yy f xyf z +f xz f yz f xy f zz f x f y + f xy f xz f yz f xx f y f z +f xy f yz f xz f yy f z f x }. H f 5 z { + } 3/ f x f z + fy f z

63 60 3 { f xx f x f xz f x f z + f zz f xf z + f y +f x f y f xy f z f xz f y f z f yz f x f z + f zz f x f y f yy fz f yz f y f z + f zz fy fz + fx} sgnf z fz fx + fy + fz 3/ { f xx f 4 z f xz f x f 3 z + f zz f xf z + f xx f z f y f xz f x f z f y + f zz f xf y +f xy f x f y f z f xz f x f y f z f yz f xf y f z + f zz f xf y f yy fz 4 f yz f y fz 3 + f zz fy fz + f yy fz fx f yz f y f z fx + f zz fy fx} sgnf z fz fx + fy + fz 3/ { f xx + f yy f 4 z + f xz f x + f yz f y f 3 z + f zz fx f xx fy + f xy f x f y f zz fy f yy fxf z } sgnf z fz fx + fy + fz 3/ { f xx + f yy f z + f xz f x + f yz f y f z f zz fx f xx fy + f xy f x f y f zz fy f yy fx} sgnf z fx + fy + fz 3/ {f xx + f yy fz + f yy + f zz fx + f zz + f xx fy f xy f x f y + f yz f y f z + f zx f z f x }. f x 0 f y fx, y, z x + y + z x, y, z R 3 S r {x, y, z R 3 fx, y, z r } 3..3 Gauss f x x, f y y, f z z, f xx f yy f zz, f xy f yx f yz f zy f zx f xz 0 Gauss K H K 4x + 4y + 4z {4x + 4y + 4z } 6x + y + z 6x + y + z x + y + z r,

64 3.. 6 H 4x + 4y + 4z 3/ {4x + 4y + 4z } 6x + y + z 6x + y + z 3/ x + y + z / r. κ κ /r 3..5 xy z xy fx, y a z fx, y a 3..3 Gauss f z 0 K 0 H fx + fy {f yyf 3/ x f xy f x f y + f xx fy } [ ] [ fx + fy [ f f xx f xy f y 3/ y f x ] f xy f yy f x H fx, y a / 0 fx, y a 3..6 a, b, c 3..5 fx, y, z x a + y b + z c x, y, z R 3 E {x, y, z R 3 fx, y, z } 3..3 Gauss f x x a, Gauss K H K H 4x a 4 f y y b, f z z c, f xx a, f yy b, f zz c, f xy f yx f yz f zy f zx f xz 0 + 4y b z c 4 x + y + z a b c 6a b c x + y + z a 4 b 4 c 4 3/ 4x + 4y + 4z a 4 b 4 c 4 { 4 b c 4x a c a 4y b a b 4z c 4 ], a b c x + y + z a 4 b 4 c 4 }

65 6 3 { a + 4z b c a + b z + b + c x + c + a y c a b a + b + c 6a b c x a 4 b + 4x c a + 4 c + a + y b 4 + z c 4 3/ x + y + z x + y + z a b c 3/ a b c x + y + z a 4 b 4 c 4 a + b + c x + y + z 3/. a b c x + y + z a 4 b 4 c a, b, c 3..6 } 4y b 4 fx, y, z x a + y b z c x, y, z R 3 HI {x, y, z R 3 fx, y, z }, HII {x, y, z R 3 fx, y, z } 3..3 Gauss ɛ ɛ fx, y, z ɛ f x x a, Gauss K H K H 4x a 4 f y y b, f z z c, f xx a, f yy b, f zz c, f xy f yx f yz f zy f zx f xz 0 + 4y b 4 + 4z c 4 x y + z a b c { 4 b c 4x a 4 4 c a 4y b a b 4z c 4 6 ɛ, 6a b c x + y + z a a 4 b 4 c b c x + y + z 4 a 4 b 4 c 4 3/ 4x + 4y + 4z a 4 b 4 c { 4 a + 4z b c + 4 b 4x c a + c + a } 4y 4 b 4 }

66 a + b z + b + c x + c a y c a b 6a b c x a b + c a 4 + y b 4 + z c 4 3/ x + y z + x + y + z a b c 3/ a b c x + y + z a 4 b 4 c 4 ɛa + b c + x + y + z 3/. a b c x + y + z a 4 b 4 c 4 Gauss Gauss xz z x fu, z gu fu > 0, f u, g u 0 z Gauss K H K f ug u f ug ug u fuf u + g u, H κ, κ g u fuf u + g u + f ug u f ug u / f u + g u 3/ κ g u fuf u + g u /, κ f ug u f ug u f u + g u 3/ xz fu, gu u K f f, H g f f, κ g g f, κ f g.

67 64 3 v pu, v fu cos v, fu sin v, gu fu, gu u f u, g u pu, v u, v p u u, v f u cos v, f u sin v, g u, p v u, v fu sin v, fu cos v, 0. p u p v fu g u cos v, g u sin v, f u p u p v fu f u + g u > 0 p u, p v pu, v e e p u p v p u p v f u + g u g u cos v, g u sin v, f u. 3.. Gauss K H p p u, p u f u cos v + f u sin v + g u f u + g u, p u, p v f ufu cos v sin v + f ufu sin v cos v 0, p v, p v fu sin v + fu cos v fu. p u, p u p v, p v p u, p v fu f u + g u. p p uu f u cos v, f u sin v, g u, p uv f u sin v, f u cos v, 0, p vv fu cos v, fu sin v, 0. e, p uu f ug u f ug u f u + g u, e, p uv 0, e, p vv fug u f u + g u.

68 Gauss K H K f ug u f ug ufug u fu f u + g u f ug u f ug ug u fuf u + g u, H f u + g u fug u + fu f ug u f ug u fu f u + g u 3/ g u fuf u + g u + f ug u f ug u / f u + g u 3/ κ, κ K κ κ, H κ + κ κ g u fuf u + g u /, κ f ug u f ug u f u + g u 3/ xz fu, gu u f u + g u K f f, H g f f, κ g g f, κ f g Gauss 3.3. Gauss xz fu, gu r cos u r, r sin u π r r < u < π r u z r 0, 0, r 0, 0, r f u sin u r, f u r cos u r, g u cos u r K r cos u r r cos u r r, H cos u r r cos u r r cos u r cos u r r, κ cos u r r cos u r r, κ r cos u r cos u r r.

69 Gauss < r < R xz z fu, gu R + r cos u r, r sin u. r u f u sin u r, f u r cos u r, g u cos u r K cos u cos u r r r R + r cos u rr + r cos u, r r H cos u r R + r cos u cos u r r cos u r r cos u r R + r cos u r + r, κ cos u r R + r cos u r, κ r cos u r cos u r r. κ /r xz fu, gu fu, gu /r κ 0 < r < R 0 < R + r cos u r κ cos u z r z {R cos v, R sin v, r v R} {R cos v, R sin v, r v R} K > 0 K < 0 Gauss Gauss 3..4 Gauss Gauss Gauss K f u/fu c f u c fu fu fu c e cu

70 u g u ± f u ± e cu gu ± u 0 e ct t 0 u < u fu, gu xz c e cu, u 0 e ct t z Gauss c H g u fu f u 0 g u u xz fu, gu f u + g u H 0 fuf u g u f u fu f u + fuf u fuf u fuf u u + a a. fu / fu u + au + b fu u + au + b b. fu u + au + b f u u + a u + au + b

71 68 3 f u + g u g u ± f u ± u + a b a u + au + b ± u + au + b. gu a 0 b c c > 0 c g u ± u + c ± c u + c t c sinh s t/s c cosh s u gu ± 0 ± ct sinh u t + c ± c sinh u c 0 cs ±c sinh u c. x fu u + c, z gu ±c sinh u c. sinh z c u c x c c 0 x c x c sinh z c + cosh z c. xz c cosh ss sinh s + x c cosh z c

72 xz fx, z fx, z a z z Gauss K H K f xf xx fz f xz f x f z + f zz fx, xfx + fz { f x H ± xfx + fz + f } xxfz f xz f x f z + f zz fx / fx + fz 3/ κ, κ f x κ ± xfx + fz, / κ ± f xxf z f xz f x f z + f zz f x f x + f z 3/. fx, z a f 0 f x 0 f z 0 f z 0..3 gx fx, gx a x, gx xz x, gx Gauss K H 3.3. K H g xg x x + g x, g x x + g x + g x / + g x 3/ κ, κ κ g x + g x /, κ..3 gx g x fz fz g x f xx, gx f z x, gx f x f z. g x + g x 3/ {f xx + f xz g f z f x f zx + f zz g } { } fx f xx f z f xz f x f zx f x + f zz f z f fz 3 xx fz f xz f x f z + f zz fx.

73 70 3 K x + f x f z f x fz 4 f xf xx f z f xz f x f z + f zz f x xf x + f z, H f x xf z + { sgnf z f x f z / f xx f z f xz f x f z + f zz f x f xx fz f xz f x f z + f zz fx 3/ fz 3 f + x f z f x xfx + fz + f xxfz f xz f x f z + f zz fx / fx + fz 3/ κ, κ x z f x 0..3 hz fhz, z a hz, z xz hz, z Gauss K H 3.3. } K H h z hzh z +, hzh z + + h z / h z + 3/ κ, κ κ hzh z + /, κ..3 hz h z f x h z f zhz, z f x hz, z f z f x. f x h z h z + 3/ {f zx h + f zz f x f z f xx h + f xz } { } fz f zx f z + f zz f x + f xx f xz f z f x f fx 3 xx fz f xz f x f z + f zz fx.

74 K f xxfz f xz f x f z + f zz fx f h + z f x fx 3 f xf xx f z f xz f x f z + f zz f x xf x + f x, H + / f h z f x + { sgnf z f xf xx f z f xz f x f z + f zz f x hf x + f x f xx f z f xz f x f x f 3 x f z f x + 3/ f x xfx + fz + f xxfz f xz f x f z + f zz fx / fx + fz 3/ Gauss Gauss xz fx, z fx, z x + z x, z R, x > 0 fx, z r xz z r fx, z }. f x x, f z z, f xx, f xz 0, f zz. K x{z + x } 6xx + z x{x + z } 6xx + z x + z r, x H x{x + z } + x + z / {x + z } 3/ x + z / r, x κ x{x + z } / r, κ x + z {x + z } 3/ r Gauss Gauss < r < R xz fx, z fx, z x R + z x, z R

75 7 3 fx, z r xz z fx, z x Rx + R + z fx, z f x x R, f z z, f xx, f xz 0, f zz. K x R{z + x R } x R{x R + z } x{x R + z } x{x R + z } x R H x{x R + z } + z + x R / {x R + z } 3/ x R x{x R + z } + x R + z / {x R + z } x R 3/ rx + r, κ x R rx, κ r. xz x, z R + r cos u r, r sin u r x R x, xz x c cosh z c z fx, z x c cosh z c fx, z 0 f x, f z sinh z c, f xx 0, f xz 0, f zz c cosh z c. κ x + sinh z / x cosh z c x, c c κ cosh z c c cosh 3 z c cosh c z x c c 0 Gauss c /x 4

76 uv D pu, v p u p v uv D p u p v p u p v / p u, p u p u, p v p u p v p u, p u p v, p v p u, p v p v, p u p v, p v pu, p u p v, p v p u, p v uv D 4.. uv D pu, v e f δ > 0 t < δ p t p + tfe p t At At p t u p t v uv. At t t0 D D fh p u p v uv. H

77 74 4 e f p D p t u p u + tf u e + tfe u, p t v p v + tf v e + tfe v p t u, p t u p u + tf u e + tfe u, p u + tf u e + tfe u e, e e, e u 0 p u, p u + tf p u, e u + t fu + f e u, e u, p t u, p t v p u + tf u e + tfe u, p v + tf v e + tfe v e, e e, e v 0 p u, p v + tf p u, e v + p v, e u + t f u f v + f e u, e v, p t v, p t v p v + tf v e + tfe v, p v + tf v e + tfe v p v, p v + tf p v, e v + t fv + f e v, e v. p u, e p v, e 0 u, v p uu, e + p u, e u 0, p uv, e + p u, e v 0, p vu, e + p v, e u 0, p vv, e + p v, e v 0. p t u, p t u p u, p u tf p uu, e + t fu + f e u, e u, p t u, p t v p u, p v tf p uv, e + t f u f v + f e u, e v, p t v, p t v p v, p v tf p vv, e + t fv + f e v, e v. p t u p t v p t u, p t u p t v, p t v p t u, p t v p u, p u p v, p v p u, p v tf p u, p u p vv, e p u, p v p uv, e + p v, p v p uu, e +t p t u p t v p u p v 4tfH + t.... At D At t p u p v 4tfH + t...uv t0 D fh p u p v uv.

78 4.. Bernstein f H At t H p u p v uv t0 D He 0 H 0 4. Bernstein xy Bernstein 4.. Bernstein xy fx, y {x, y, z z fx, y, x, y R } fx, y x, y 4.. xy fx, y z fx, y f f xx + f y f xy f x f y + f yy + f x z fx, y H H f xx + f y f xy f x f y + f yy + f x + f x + f y 3/ H 0 f xx + f y f xy f x f y + f yy + f x 0

79 xy fx, y z fx, y H W + fx + fy / H [ fx + ] fy. x W y W x fx W + y fy 0 W f xf y + + f x 0, x W y W + f y + f xf y 0. x W y W x fx + fy W y W f xxw f x W x W + f yyw f y W y W f xx + fx + fy f x f x f xx + f y f xy + f yy + fx + fy f y f x f xy + f y f yy + fx + fy 3/ + fx + fy 3/ f xx + f y f xy f x f y + f yy + f x + f x + f y 3/ H H f xf y x W x f y x fx W f y [ x fx x [ x fx W + y f y f x W fx W fx + ] fy. W y W + y + f x W fy 0 W W fy W f xy + y W f xf xy W + W y y + ] fy y W fy W + W y f xf xy W f y f y W f yy f yf yy W.

80 4.. Bernstein 77 W y f xf xy W f xf y + x W y H 0 f xf y + x W y + f yf yy W + f x f y H W + f x 0 W + f y + f xf y x W y W W fx f y f xy x W W f fy x y W W x f f x xx W f fx x f xyf y x W W f x y [ fx f x + fy x W y W W x f xxf x W + f xyf y W fy W ] W x f xxf x W f xyf y W. + f y + f xf y f x H x W y W H 0 + f y + x W y f xf y 0 W 4..4 Jörgens xy fx, y f xx f yy f xy, f xx > 0 fx, y x, y

81 78 4 f xx f yy f xy, f xx > 0 f xx X + f xy XY + f yy Y f xx f yy + f xy > 0 f yy > 0 x 0, y 0 x, y ht fx 0 + tx x 0, y 0 + ty y 0 ht ht h t x x 0 f x + y y 0 f y, h t x x 0 f xx + x x 0 y y 0 f xy + y y 0 f yy 0. h t h 0 h x x 0 f x x 0, y 0 + y y 0 f y x 0, y 0 x x 0 f x x, y + y y 0 f y x, y 0 x x 0 {f x x, y f x x 0, y 0 } + y y 0 {f y x, y f y x 0, y 0 } ξx, y x + f x x, y, ηx, y y + f y x, y ξx, y ηx, y {ξx, y ξx 0, y 0 } + {ηx, y ηx 0, y 0 } {x + f x x, y x 0 f x x 0, y 0 } + {y + f y x, y y 0 f y x 0, y 0 } x x 0 + x x 0 f x x, y f x x 0, y 0 + f x x, y f x x 0, y 0 +y y 0 + y y 0 f y x, y f y x 0, y 0 + f y x, y f y x 0, y 0 x x 0 + f x x, y f x x 0, y 0 +y y 0 + f y x, y f y x 0, y 0 x x 0 + y y 0. Ξ : R R ; x, y ξx, y, ηx, y Ξx, y Ξx 0, y 0 x, y x 0, y 0 Ξ : R R ξ x + f xx, ξ y f xy, η x f xy, η y + f yy

82 4.. Bernstein 79 ξ, η x, y ξ x η x ξ y η y + f xx + f yy fxy + f xx + f yy + f xx f yy f xy + f xx + f yy >. Ξ : R R R > 0 D0, R {x, y R x, y < R} Ξ ΞD0, R Ξ0 R DΞ0, R {x, y R x, y Ξ0 < R} Ξ ΞD0, R ΞD0, R R ΞD0, R R Ξ0 ΞD0, R R ΞD0, R X 0 Ξ0 min{ X Ξ0 X R ΞD0, R} X 0 R ΞD0, R X 0 ΞD0, R x k, y k D0, R X 0 lim k Ξx k, y k x k, y k x k, y k x k, y k D0, R X 0 x k, y k D0, R lim k xk, y k R X 0 Ξ0 lim k Ξx k, y k Ξ0 lim k x k, y k 0 R X 0 DΞ0, R ΞD0, R R > 0 DΞ0, R ΞD0, R Ξ : R R Ξ Ξ x, y ξ, η Aξ, η x f x, Bξ, η y + f y

83 80 4 ξ, η Aξ, η, Bξ, η A, B Cauchy-Riemann A ξ B η, A η B ξ ζ ξ + iη F ζ F ξ, η Aξ, η + ibξ, η A, B A ξ A η B ξ B η [ x ξ y ξ x ξ f x ξ x ξ f x xx ξ f y xy ξ, x η f x η x η f xx y ξ + f y ξ y y η + f y η y η + f xy x η y η ] + f xx + f yy [ ξ x η x [ ξ y η y x η f y xy η, ξ + f x xy ξ + f y yy ξ, x η + f y yy η. ] [ + f xx f xy f xy + f yy ] + f yy f xy f xy + f xx ] f xx f yy f xy A ξ A η B ξ B η + f xx + f yy { + f yy f xx + f yy + f xy} f xx + f yy, + f xx + f yy { f xy + f xx f xy f xy + f xx } + f xx + f yy f xy, + f xx + f yy {+f xy + f xy + f yy f yy f xy } + f xx + f yy f xy, + f xx + f yy { + f xx fxy + f yy + f xx } + f xx + f yy f xx + f yy + f xx + f yy.

84 4.. Bernstein 8 A, B Cauchy-Riemann F ζ F ξ, η Aξ, η + ibξ, η F F ζ A ξ + i B ξ f xx + f yy + f xy i + f xx + f yy F ζ f xx + f yy + f xy + f xx + f yy + f xx + f yy f xx + f yy f xy + f xx + f yy + f yy + f xx f xy + f xx + f yy 4 + f xx + f yy + f xx f yy f xy + f xx + f yy 4 + f xx + f yy + f xx + f yy 4 + f xx + f yy > 0. > F ζ F ζ F ζ Liouville F ζ F ζ f xx, f xy, f yy F f xx + f yy + f xy i + f xx + f yy + f xx f xy i + f xx + f yy 4{ + f xx + fxy} 4{ + f xx + fxx + f xx f yy } + f xx + f yy + f xx + f yy 4f xx f xx F + f xx + f yy f xx F F. F F 4f xy i f xy i F + f xx + f yy f xy i F F F

85 8 4 + F + f xx + f yy + f xy i + f xx + f yy + f yy + f xy i + f xx + f yy 4{ + f yy + fxy} 4{ + f yy + fyy + f xx f yy } + f xx + f yy + f xx + f yy 4f yy f yy F + f xx + f yy f yy + F F f xx F F, f xy i F F F, f yy + F F f xx, f xy, f yy fx, y x, y 4.. fx, y xy W + fx + fy / 4..3 f f xf y x W x + f y W α + f x W x + f xf y W y, + + f x 0, y W + f xf y 0. y W β f xf y W x + + f y W y xy α, β α + f x y x + fx f y y W x W { + f x + fx f y y W x W 0. x y } x y Poincaré xy γ γ α

86 4.. Bernstein 83 β fx f y y W { y 0. y x + x fx f y W + x + f y W + f y x y W } x y Poincaré xy δ δ β xy γx + δy γx + δy γ x + δ y α x + β y f xf y W y x + f xf y x y 0 W γx + δy ϕx, y x,y 0 γx + δy xy ϕ 0 x, y γx + δy ϕ ϕ ϕ x γ, ϕ y δ ϕ xx + f x W, ϕ xy f xf y W, ϕ xx ϕ yy ϕ xy + f x + f y W f xf y W ϕ yy + f y W + f x + f y W ϕ xx > ϕx, y x, y f x, f y fx, y x, y 4..

87 uv D pu, v p u, p u p v, p v, p u, p v 0 u, v xz z x fu, z gu fu > 0, f u, g u 0 z v pu, v fu cos v, fu sin v, gu fu, gu u f u, g u u t u ut t, v pt, v fut cos v, fut sin v, gut fu, gu u f u, g u pt, v u, v p t t, v u tf u cos v, u tf u sin v, u tg u, p v t, v fu sin v, fu cos v, 0. p p t, p t u t f u cos v + u t f u sin v + u t g u u t f u + g u, p t, p v u tf ufu cos v sin v + u tf ufu sin v cos v 0, p v, p v fu sin v + fu cos v fu. t, v u t f u + g u fu

88 ut xz x c cosh z c z x fu c cosh u c, z gu u u ut u t sinh u c + c cosh u c, u t c, u t ±c ut ct pt, v c cosh t cos v, c cosh t sin v, ct t, v p t, p t c sinh t + c c cosh t, p v, p v c cosh t fx, y z fx, y 4.. W + fx + fy / α + f x W x + f xf y W y, β f xf y W x + + f y W y xy α, β α, β Poincaré xy γ, δ γ α, δ β u x + γx, y, v y + δx, y u, v u, v u x + γ x + + f x W, u y γ y f xf y W, v x δ x f xf y W, v y + δ y + + f y W

89 86 4 J u u x y J + +f x W v x v y f x f y W f xf y W + +f y W W {W + + f xw + + f y f xf y } W {W + + f x + f y W + + f x + f y } W {W + + W W + W } W + W > 0. x, y u, v [ x u y u x v y v ] [ u u x y v v x y [ W ++f y JW f xf y JW ] [ J f xf y JW W ++fx JW ] + +f y W fxfy W px, y x, y, fx, y f xf y W + +f x W ] [ W ++f y W + fxfy W + f xf y W ++f W + x W + u, v f u, v x f u f x u + f y y u f xw + + fy f xfy W + W + f x W +, x f v f x v + f y y v f xf y W + + f yw + + fx f y W + W +. ] p u p v W + + f y W +, f xf y W +, f x, W + f xf y W +, W + + f x W +, f y. W + p u, p u W + + f y + f xf y W + 4 W + + fx 4 W + W + {W + + f 4 y + fxf y + fxw + }

90 W + {W W + fy + fy 4 + fxf y + fxw + } W + {W fy W + + W + fxw + } W W +, p u, p v W + + f y f x f y f xf y W + + fx + f xf y W + 4 W + 4 W + f x f y W + { W f 4 x fy + W + } f x f y W + { W W + } 0, p v, p v fxf y W + + W + + f x fy + 4 W + 4 W + W + {f xf 4 y + W + + fx + fy W + } W + {f xf 4 y + W + + W + fx + fx 4 + fy W + } W + {W fxw + W + + fy W + } W W +. u, v u, v pu, v u, v u + v e e p u p v / p u p v p p u, p u He pu, v u, v u, v p u, p u p v, p v, p u, p v 0

91 88 4 u p u, p u u p v, p v, p uu, p u p vu, p v, 0 v p u, p v p uv, p v + p u, p vv, p vu, p v p vv, p u p, p u p uu + p vv, p u 0 v p u, p u v p v, p v, p uv, p u p vv, p v, 0 u p u, p v p uu, p v + p u, p vu, p uv, p u p uu, p v p, p v p uu + p vv, p v 0 p p u, p v e H 3.. H p u, p u e, p vv + p v, p v e, p uu p u, p u p v, p v p, e p u, p u p, e p u, p u H p p u, p u He H 0 p 0 pu, v u, v x, y, z x u, v xu, v xu, v x y, z

92 4.4. Weierstrass-Enneper Weierstrass-Enneper Weierstrass-Enneper 4.4. fu, v w u+iv F w F w f u i f v F w fu, v F w F w f u f Cauchy-Riemann v f u f v, f v u f u v fu, v F w fu, v 4.4. pu, v xu, v, yu, v, zu, v w u + iv ϕ w, ϕ w, ϕ 3 w ϕ w x u i x v, ϕ w y u i y v, ϕ 3w z u i z v. u, v ϕ w + ϕ w + ϕ 3 w 0 ϕ + ϕ + ϕ 3 ϕ + ϕ + ϕ 3 x u ix v + y u iy v + z u iz v x u + y u + z u x v y v z v ix u x v + y u y v + z u z v p u, p u p v, p v i p u, p v. u, v ϕ + ϕ + ϕ 3 0

93 uv D pu, v u, v ϕ w x u i x v, ϕ w y u i y v, ϕ 3w z u i z v. w u + iv ϕ w, ϕ w, ϕ 3 w ϕ + ϕ + ϕ 3 > 0, ϕ + ϕ + ϕ 3 0 p u, p u p v, p v ϕ + ϕ + ϕ 3 D ϕ, ϕ, ϕ 3 pu, v xu, v, yu, v, zu, v u, v pu, v ϕ i u, v 4.4. ϕ + ϕ + ϕ 3 0 ϕ w + ϕ w + ϕ 3 w x u i x v + y u i y v + z u i z v x y z x y u u u v v p u, p u + p v, p v p u, p u p v, p v > 0. ϕ i p u, p u p v, p v ϕ + ϕ + ϕ 3 z v D ϕ, ϕ, ϕ 3 w 0 D w xu, v Re ϕ ww w 0 xu, v w 0 w D ϕ w xu, v w w ϕ ww + ϕ ww w 0 w 0

94 4.4. Weierstrass-Enneper 9 x u i x v w yu, v Re w w u i v w w 0 ϕ ww + w 0 ϕ ww, yu, v zu, v y u i y v ϕ w, w w 0 ϕ ww ϕ w w zu, v Re ϕ 3 ww w 0 z u i z v ϕ 3w pu, v xu, v, yu, v, zu, v ] [ x u x v y u y v w 0 < ϕ + ϕ + ϕ 3 x x + + u v z u z v y + u y + v z + u z v 0 0 a, b ] ] [ y u y v a [ x u x v, [ z u z v ] b [ x u x v ] ϕ w aϕ w, ϕ 3 w bϕ w ϕ w + ϕ w + ϕ 3 w + a + b ϕ w 0 pu, v xu, v, yu, v, zu, v 4.4. u, v

95 Weierstrass-Enneper w pw Re w D. 0 w f g w, Re 0 i w f + g w, Re fgw 0 D {w C w < } C fw D gw D fw gw fw gw w w u + iv u, v u, v p u, p u p v, p v 4 f + g. {w C w < } C Riemann D ϕ, ϕ, ϕ 3 ϕ + ϕ + ϕ 3 0 ϕ + ϕ + ϕ 3 > 0 w w w pw Re ϕ ww, Re ϕ ww, Re ϕ 3 ww w D ϕ, ϕ, ϕ 3 0 ϕ, ϕ, ϕ 3 0 ϕ 3 ϕ + ϕ ϕ iϕ ϕ + iϕ ϕ iϕ 0 f ϕ iϕ, g ϕ 3 ϕ iϕ f D g D ϕ + iϕ ϕ 3 ϕ iϕ fg ϕ f fg f g, ϕ i f fg i f + g, ϕ 3 fg

96 4.4. Weierstrass-Enneper 93 f g 0 < ϕ + ϕ + ϕ 3 4 f { g ḡ + g g + ḡ + g g } f + g + g 4 f + g f g f g p u, p u p v, p v ϕ + ϕ + ϕ 3 4 f + g e Reg e g +, Img g +, g g p u ϕ + ϕ, ϕ + ϕ, ϕ 3 + ϕ 3, p v i ϕ ϕ, ϕ ϕ, ϕ 3 ϕ 3 p u p v i 4 ϕ + ϕ ϕ 3 ϕ 3 ϕ 3 + ϕ 3 ϕ ϕ, ϕ 3 + ϕ 3 ϕ ϕ ϕ + ϕ ϕ 3 ϕ 3, ϕ + ϕ ϕ ϕ ϕ + ϕ ϕ ϕ Imϕ ϕ 3, Imϕ 3 ϕ, Imϕ ϕ. ϕ f g, ϕ i f + g, ϕ 3 fg p u p v i Im f + g fḡ, Im fg f ḡ, Im f g i f + ḡ f Imi + g ḡ, Img ḡ, Im i g + ḡ. 4

97 94 4 Imi + g ḡ Imiḡ + g g Reḡ + g g + g Reg, Img ḡ Img ḡ g + g Img, Im i g + ḡ Re g + ḡ Re g + ḡ g 4 g 4 g + g p u p v f + g Reg, Img, g. 4 p u p v f + g 4Reg + 4Img 4 + g 4 g + g 4 g + f + g 4 f + g. 4 e Reg e g +, Img g +, g g t w u + iv ϕ, ϕ, ϕ 3 ϕ w e it cosh w, ϕ w ie it sinh w, ϕ 3 w ie it ϕ + ϕ + ϕ 3 e it cosh w e it sinh w e it e it e it 0 ϕ 3 0 ϕ + ϕ + ϕ 3 > 0

98 w w xw, yw, zw Re ϕ ww, Re ϕ ww, Re 0 0 w 0 ϕ 3 ww pw xw, yw, zw u, v ϕ w x u i x v, ϕ w y u i y v, ϕ 3w z u i z v. x Re w 0 e it cosh ww Ree it sinh w Reeit e u+iv e u iv Reeu+iv+t e u+i v+t Re[eu cosv + t + i sinv + t e u cos v + t + i sin v + t] [eu cos v cos t sin v sin t e u cos v cos t + sin v sin t] eu e u cos v cos t eu + e u sin v sin t sinh u cos v cos t cosh u sin v sin t, y Re w 0 ie it sinh ww Reie it cosh w Reieit e u+iv + e u iv Reieu+iv+t + ie u+i v+t Re[ieu cosv + t + i sinv + t + ie u cos v + t + i sin v + t] [eu sin v cos t + cos v sin t + e u sin v cos t + cos v sin t] eu e u sin v cos t + eu + e u cos v sin t sinh u sin v cos t + cosh u cos v sin t, z Re w 0 v cos t + u sin t ie it w Reie it w Reicos t + i sin tu + iv t x sinh u cos v cos t cosh u sin v sin t, y sinh u sin v cos t + cosh u cos v sin t, z v cos t + u sin t. t 0 x sinh u cos v, y sinh u sin v, z v

99 96 4 ξ sinh u x ξ cos v, y ξ sin v, z v ξ v t π/ x cosh u sin v, y cosh u cos v, z u xz x cosh z z 4.5. Enneper C w u + iv f, g fw 6, gw w fw gw fw gw x, y, z w w w Re 3 w w, Re 3i + w w, Re 6ww w C u, v Enneper w u + iv x Re y Re z Re w 0 w 0 w 0 3 w w Re3w w 3 3u u 3 + 3uv, 3i + w w Re3iw + iw 3 3v 3u v + v 3, 6ww Re3w 3u 3v. 4.6 Gauss Gauss Gauss Gauss Weierstrass-Enneper Gauss 4.6. uv D pu, v e p u p v / p u p v Gauss Gauss

100 4.6. Gauss uv D pu, v Gauss K e u e v Kp u p v e p u, p v e p u, p v e, p u e, p v 0 u, v e u, p u + e, p uu 0, e v, p u + e, p uv 0, e u, p v + e, p vu 0, e v, p v + e, p vv 0. e u, p u e, p uu, e v, p u e, p uv, e u, p v e, p vu, e v, p v e, p vv. e e, e e u, e e v, e 0 e u, e v e u αp u + βp v, e v γp u + δp v e u p u, p v [ p u, p u p u, p v p u, p v p v, p v e u, p u α p u, p u + β p v, p u, e u, p v α p u, p v + β p v, p v ] [ α β ] [ e u, p u e u, p v ] [ e, p uu e, p uv ]. [ ] α β [ p u, p u p v, p v p u, p v [ p u, p u p v, p v p u, p v p v, p v p u, p v p u, p v p u, p u ] [ ] e, p uu e, p uv ] p v, p v e, p uu + p u, p v e, p uv p u, p v e, p uu p u, p u e, p uv

101 98 4 e u p u, p v e, p uv p v, p v e, p uu p u, p u p v, p v p u, p v p u + p u, p v e, p uu p u, p u e, p uv p u, p u p v, p v p u, p v p v e v p u, p v [ p u, p u p u, p v p u, p v p v, p v e v, p u γ p u, p u + δ p v, p u, e v, p v γ p u, p v + δ p v, p v ] [ γ δ ] [ e v, p u e v, p v ] [ e, p uv e, p vv ]. [ ] γ δ [ p u, p u p v, p v p u, p v [ p u, p u p v, p v p u, p v p v, p v p u, p v p u, p v p u, p u ] [ ] e, p uv e, p vv ] p v, p v e, p uv + p u, p v e, p vv p u, p v e, p uv p u, p u e, p vv e v p u, p v e, p vv p v, p v e, p uv p u, p u p v, p v p u, p v p u + p u, p v e, p uv p u, p u e, p vv p u, p u p v, p v p u, p v p v e u, e v p u, p v e u e v pu, p v e, p uv p v, p v e, p uu p u, p v e, p uv p u, p u e, p vv p u, p u p v, p v p u, p v p u, p v e, p uu p u, p u e, p uv p u, p v e, p vv p v, p v e, p uv p u, p u p v, p v p u, p v p u p v p u, p v e, p uv e, p uu e, p vv + p u, p u p v, p v e, p uu e, p vv e, p uv p u, p u p v, p v p u, p v p u p v e, p uu e, p vv e, p uv p u, p u p v, p v p u, p v p u p v Kp u p v. 3.. Gauss Gauss

102 4.6. Gauss xyz R 3 S N 0, 0, x, y, z N xy S {N} x, y, z x z, y z xy ξ, η S {N} ξ ξ + η +, η ξ + η +, ξ + η ξ + η + N S {N} x, y, z t 0, 0, + tx, y, z tx, ty, + tz xy + tz 0 t / z x, y, z x z, y z ξ, η ξ x z, η y z. x ξ z, y η z z x + y ξ z + η z ξ + η z + z. z ξ + η + z ξ + η z + ξ + η 0. z {ξ + η + z ξ + η } 0. N z ξ + η ξ + η +

103 00 4 z x ξ + η ξ ξ + η + y ξ + η η ξ + η + ξ ξ + η +, η ξ + η + S {N} ξ ξ + η +, η ξ + η +, ξ + η ξ + η uv D pu, v u, v Gauss C { } S ϕ w x u i x v, ϕ w y u i y v, ϕ 3w z u i z v. ϕ 3 g ϕ iϕ g Gauss Reg g +, Img g +, g g + N g uv D pu, v u, v ϕ w x u i x v, ϕ w y u i y v, ϕ 3w z u i z v. ϕ 3 f ϕ iϕ, g ϕ iϕ

104 f g κ, κ Gauss K κ 4 g f g +, κ 4 g f g +, K 4 g f g K e, p uu e, p vv e, p uv p u, p u p v, p v p u, p v, Gauss e Reg e g +, Img g +, g g p u ϕ + ϕ, ϕ + ϕ, ϕ 3 + ϕ 3, p v i ϕ ϕ, ϕ ϕ, ϕ 3 ϕ 3 u w + w, v i w w p uu ϕ + ϕ, ϕ + ϕ, ϕ 3 + ϕ 3, p uv i ϕ ϕ, ϕ ϕ, ϕ 3 ϕ 3, p vv ϕ + ϕ, ϕ + ϕ, ϕ 3 + ϕ 3 p uu ϕ f g, ϕ i f + g, ϕ 3 fg ϕ f g + f gg f g fgg, ϕ i f + g + i fgg i f + g + ifgg, ϕ 3 f g + fg.

105 0 4 i p uu Re f g fgg, Re f + g + ifgg, Ref g + fg, i p uv Im f g fgg, Im f + g + ifgg, Imf g + fg, p vv p uu a, b, c, Rea + ibrec + i + Ima + ibreic + i ac b Rea + ibc + i, Rea + ibrec + i + Ima + ibreic + i ac b Rea + ibc + i Rea + ibimc + i Ima + ibimic + i a bc Rea + ibimc + i Ima + ibimic + i a bc Ima + ibc + i, Ima + ibc + i Gauss K { e, p uu RegRe g + f g fgg } i ImgRe f + g + ifgg + g Ref g + fg g + {RegRef RegRef g RegRefgg +ImgReif + ImgReif g + ImgReifgg + g Ref g + fg } g + {Regf Reḡf g Reḡfgg + g Ref g + g Refg Ref g Refg } g + { g Ref g g Refg + g Ref g + g Refg Refg } Refg, { e, p uv RegIm g + f g fgg } i ImgIm f + g + ifgg g Imf g + fg g + { RegImf + RegImf g + RegImfgg

106 ImgImif ImgImif g ImgImifgg g Imf g + fg } g + { Imgf + Imḡf g + Imḡfgg g Imf g g Imfg + Imf g + Imfg } g + { g Imf g + g Imfg g Imf g g Imfg + Imfg } Imfg, e, p vv e, p uu Refg. Gauss K Gauss K p u, p u p v, p v 4 f + g, p u, p v 0 K 4 Refg + Imfg f + g 4 g. f g + κ, κ 4 fg f + g 4 g f + g κ 4 g f g +, κ 4 g f g Gauss 0 Gauss 4.7. Gauss Gauss g Gauss g g Gauss 0 g 0 Gauss

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f : ( ) 2008 5 31 1 f(t) t (1) d 2 f(t) + f(t) = 0 dt2 f(t) = sin t f(t) = cos t (1) 1 (2) d dt f(t) + f(t)2 = 0 (1) (2) t (c ) (3) 2 2 u(t, x) c2 u(t, x) = 0 t2 x2 1 (1) (1) 1 t, x (4) 3 u(t, x) + 6u(t,

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

Fr

Fr 2007 04 02 12 1 2 2 3 2.1............................ 4 3 6 3.1............................. 7 3.2....................... 9 3.3............................. 10 4 Frenet 12 5 14 6 Frenet-Serret 15 6.1 Frenet-Serret.......................

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

II I Riemann 2003

II I Riemann 2003 II I Remann 2003 Dfferental Geometry II Dfferental Geometry II I Dfferental Geometry I 1 1 1.1.............................. 1 1.2................................. 10 1.3.......................... 16 1.4.........................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

dvipsj.8449.dvi

dvipsj.8449.dvi 9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information