K E N Z OU

Save this PDF as:

Size: px
Start display at page:

Download "K E N Z OU"

Transcription

1 K E N Z OU

2 y = ax + b y = ax + bx + c x + y = r y = fx 1 x y t { x = xt a < = t < = b y = yt 1.1 xt, yt t t, 3 x + y a = { x = a cost y = b sint 3 x = xt, y = yt, z = zt n x i = x i t, x = x t,, x n = x n t x i i p 1. p = pt p = pt 1.3 t pt = xt, yt 1.4 ṗt dp dxt dt =, dyt dt dt ṗt p = pt t ṗt ṗt ṗt ṗt = ẋt + ẏt 1.5 t p p t = pt + t pt t 1 C C 3

3 t pt dpt pt pt + t pt lim = lim = dpt = ṗt t t t t dt... dpt = ṗtdt t a < = t < = b s s = b a dpt = b a ṗt dt = b a ẋt + ẏt dt 1.6 y pt + t dp dxt dt =, dyt dt dt pb pt + t pt B p = pt + t pt A pt x pa s pt t = a t = b a b t s = t ṗt dt 1.7 s t s = st t s t = ts pt t s s p = ps = xs, ys 1.8 dp = lim p s s = e 1, e 1 = 1 e 1 = x s, y s 1.9 e 1 P s 1 t = s e t = t P ps e 1 p Q s s ps ps = ps + e 1 s s s e 1 ps O O 3

4 s e 1 s ps = ps + e 1 s s s 1.1 { x = xs + x s s s y = ys + y s s s 1.11 e 1 e 1 π/ e k e 1 e e 1 e 1 = 1, e e = 1, e 1 e = 1.1 e 1, e s e 1 e 1 = 1 s d e 1 e 1 = e 1 e 1 = e 1 e 1 + e 1 e 1 = e 1 e 1 = e 1 e 1 e 1 e κs 3 e 1s = κse 1.13 e e e e 1 e 1 e = s e 1 e = e 1 e + e 1 e = κ + e 1 e = e = κe e e 1 κ 4 e 1 e = κ κ e 1 e 1.15 κ ps e 1 s, e s ps 1 ps e 1, e frame s P s + s Q s P e P 1 Q eq 1 θ P θ lim θ s = dθ s e 1 e 1s 4 - Frenet-Serret 4

5 e = e Q 1 ep 1 θ e 1.16 θ lim θ s = dθ = lim θ κ e s = de P 1 = κ e P = κ 1.17 s P e P ρ e P 1 sq p ρ θ e Q 1 κ = dθ e P 1 θ e Q 1 e = e Q 1 ep 1 C C C d p = κe 1.18 ρ p ρ θ dp = ρdθ = ρκ = e 1 = 1 ρ = 1 κ ps ps Cs e 1 s x θ 1.11, Cs = ps + ρe s 1. e 1 s = x 1s, y 1s = cos θ, sin θ tan θ = y 1 s x 1 s θ = tan 1 y 1 s x 1 s e s = sin θ, cos θ = y 1s, x 1s e 1s = κe s 1.1 e 1s = de 1 = de 1 dθ dθ = d = dθ tan 1 y 1 s x 1 s x 1 x 1 + y 1 x 1 y 1 x 1 y 1 x 1 = d dq tan 1 q dq = x 1 y 1 x 1 y 1 x 1 + y 1 q = y 1 s x 1 s = x 1y 1 x 1y 1... x 1 + y 1 = e 1 = 1... κs = x 1sy 1s x 1sy 1s, ρ = 1 κ = 1 x 1 sy 1 s x 1 sy 1 s

6 κ = dθ y = fx C θ ρ θ s θ + θ C ρ ps e e1 1: O Cc 1, c Cs 1. Cs = ps + ρe s 1.3 Cs 1.3 s Cs C s = p s + ρ se s + ρse s = ρ se s c 1 s = x 1 s c s = y 1 s + y 1 s x 1 sy 1 s x 1 sy 1 s x 1 s x 1 sy 1 s x 1 sy 1 s 1.5 y = fx x, y 1.17 κ = dθ 1.6 dy dx = y = tan θ θ = tan 1 y = dx + dy = dx 1 + y dx = 1 + y dθ = dθ dx dx = dθ dy dx dy dx = y y 1 + y = y 1 + y 3/... κ = y 1 + y 3/ ρ = 1 κ = 1 + y 3/ y e 1 e 1 e 1 =, y y, e =, y 1 + y 1 + y 1 + y Cc 1, c y c 1 = x ρ = x y 1 + y 1 + y y 1 c = y + ρ = y y 1 + y y

7 1. xt = r cost, 1.7 s = yt = r sint t ẋt + ẏt dt = rt t = s/r 1.3 xs = r cos s r ys = r sin s r ps = r cos s r, r sin s r dp = e 1s = sin s r, cos s r e s e 1 s 9 s e s = sin r + π s, cos r + π = cos s r, sin s r de 1 = 1 cos s r r, sin s = κe s κ = r r κ ρ = 1/κ = r 1.5,. y = ax a e 1 =, y 1 = 1 + y 1 + y 1 + 4a x, ax 1 + 4a x y 1.35 e =, 1 ax = 1 + y 1 + y 1 + 4a x, a x κ = y 1 + y 3/ = a 1 + 4a x 3/ ρ = 1 κ = 1 + 4a x 3/ a c 1 = x y 1 + y y = c = y y y = 1 + 4a x 3/ a a 1 + 4a x 3/ = 4a x 3 = 1 a + 3ax y y = x x 7

8 y = ±x e C 1 C 1 y = x κ =, ρ = 1/ C 1 c 1, c =, 1/ e C C y = x κ =, ρ = 1/ C c 1, c =, 1/. xt = t, yt = at a t s = ẋ + ẏ dt dt = ẋ + ẏ = 1 + 4a t dp dt = d dt t, at = 1, at e e 1 = dp = dp dt dt = a t, at 1 + 4a t e e 1 e =, e = 1 at e = 1 + 4a t, a t κ ρ 1.13 de 1 = de 1 dt dt = 4a t 1 + 4a t 3/, 8a 3 t 1 + 4a t 3/ + a a t 1 + 4a t a at = 1 + 4a t 3/ 1 + 4a t, a t... κ = = κe a 1 + 4a t 3/, ρ = 1 κ = 1 + 4a t 3/ a 3. x = a cos t, y = b sin t a > b > t e e 1 = dp = dp dt dt = s = ẋ + ẏ dt dt = a sin t + b cos t dp dt = d a cos t, b sin t = a sin t, b cos t dt a sin t a sin t + b cos t, b cos t a sin t + b cos t

9 e e 1 e =, e = 1 b cos t e = a sin t + b cos t, a sin t a sin t + b cos t κ ρ de 1 = de 1 dt dt = ab cos t a sin t + b cos t 3/, ab sin t a sin t + b cos t 3/ = ab a sin t + b cos t 3/ e 1 a sin t + b cos t... κ = = κe ab a sin t + b cos t 3/, ρ = 1 κ = a sin t + b cos t 3/ ab 1.45 C = p + ρe = a cos t, b sint a sin t + b cos t 3/ b cos t ab a sin t + b cos t, a b = cos 3 t, b a sin 3 t a b a sin t a sin t + b cos t t.. c 1 t = a b cos 3 t. a c t = b a sin 3 t b t 1.46 ac 1 /3 + bc /3 = a b / y x + y 1 = 1 O x 4. x = xt, y = yt y = dy dx = dy dt dt dx = ẏ ẋ, y = d dx ẏ = d ẋ dt ẏ dt ẋÿ ẍẏ = ẋ dx ẋ 3 9

10 1.7 κ = y ẋÿ ẍẏ 1 + y = 3/ ẋ + ẏ 3/ κ = 1 ẋ + ẏ 3/ ẋ ẍ ẏ ÿ = 1 ẋ + ẏ 3/ ṗt pt r = fθ θ = t 1.48 xθ = rθ cos θ, yθ = rθ sin θ xt = rt cos t, yt = rt sin t ẋ = ṙ cos t r sin t, ẏ = ṙ sin t + r cos t, ẍ = r cos t ṙ sin t r cos t ẍ = r sin t + ṙ cos t r sin t 1.48 κ = ẋÿ ẍẏ ẋ + ẏ 3/ = r + ṙ r r r + ṙ 3/ = dr r + r d r dθ dθ { } dr 3/ 1.5 r + dθ t p = pt, pt = xt, yt, zt 1.51 a < = t < = b s 1.6 s = b a ẋt b + ẏt + żt dt = ṗt dt s = a t ṗt dt 1.5 t s p = ps 1.9 e 1 dp = e 1, e 1 s e 1 s = e 1 = x s + y s + z s = e 1 s e 1 s = e 1se 1 s + e 1 se 1s = e 1se 1 s = 1.54 e 1 s e 1s e 1 e 1 π/ e e 1 e 1 s 1

11 e s e 1 s e 1 s e s e 1 s κs κs = e 1s = e 1 s e 1 s = x s + y s + z s 1.55 κs κs > = e s e 1 s = κse s e s = 1 κs e 1s, κs 1.56 κs = e s κs > e 1, e e 3 e 3 = e 1 e, e 3 = e e 3 s = 1 κ y z z y, z x x z, x y y x 1.58 e 1, e, e 3 Frenet Frame e i e j = δ ij = { 1 i = j i j s e i e j + e i e j = 1.6 e 1 e + e 1 e = κ + e 1 e = 1.61 i =, j = e e = 1.6 e e e e 1 e 3 e = αe 1 + βe α = κ e = κe 1 + βe i = 1, j = 3 e 1 e 3 + e 1 e 3 = e 1 e 3 = 1.64 i =, j = 3 e e 3 + e e 3 = κe 1 + βe 3 e 3 + e e 3 = β + e e 3 =... e 3 = βe 1.65 i = j = e 3 e 3 =

12 e x z e e 3 e 3 e 1 z e y e 1 e 3 e 3 e x e e 1 e β τ e 1 = κe e = κe 1 + τe 3 e 3 = τe 1.67 d e 1 e e 3 = e 1 e e 3 = κ k τ τ e 1 e e τ ρ = 1/τ 1 κs τs e 1 s, e s, e 3 s κs τs ps κ, τ 1.67 e 1s = κ + τ e 1 + κτc C : 9 e 1 s = C 1 e is κ +τ + C e is κ +τ + C κτ κ + τ = A cos κ + τ s B sin κ + τ s + C κτ κ + τ... ps = e 1 s = A κ + τ sin κ + τ s + B κ + τ cos κ + τ s + C κτ κ + τ + D A, B, C, D e i = 1 ps τ 1.65 e 3 { 9 e 1 = κe e = κe 1 e 1 = κe e = κe 1 + τe 3 e 3 = τe

13 1 ρ e 1 e e 3 τ e 1 e ps a a a ps = ps ps O a ps = c 1.7 s s a p s = a e 1 = 1.71 a e 1 = a κe = 1.7 κ a e = a e 1, e a e = s a e = a κe 1 + τe 3 = a τe 3 = 1.73 a e 1, e e 3 τ = ps τ 1.69 e 3 = e 3 s e 3 ps s e 3 ps = e 3 p s = e 3 e 1 s =... e 3 ps = c ps e 3 ps = c 1 6. helix pt = a cos t, a sin t, bt a, b > 1.75 t t s = ṗt dt = a + b dt = a + b t,... t =... ps = a cos sc, a sin sc, bc s s a + b = s c c = a + b

14 s p s = e 1s = a c sin s c, a c cos s c, b = e 1 s c a c cos s c, a c sin s c, = κe s, κ = cos s c, sin s c, e s = b e 3 s = e 1 e = c sin s c, b c cos s c, a c 1 e s = c sin s c, 1 c cos s c, e 1 e 1 = a c = a c e 1 + b c e 3 = κe 1 + τe κ = a a + b, τ = b a + b 1.78 κ τ p = pt κ τ ṗ p p κ = ṗ p ṗ ṗ p p τ = ṗ p ṗ, p, p 3 ṗ p p = ẋt ẏt żt ẍt ÿt zt xt 1.68 yt zt

15 ṗ = dp = p dt dt, ṗ = e 1 dt = dt p = p + p d s dt dt ṗ p = p dt { p dt p p = e 1 κe = κe 3,... κ = ṗ p ṗ 3 ṗ = p dt = dt e 1, { d 3 s p = dt 3 κ dt = αe 1 + βe + κτ ṗ p p } + p d s dt = 3 p p = ṗ 3 p p dt p p = κ,... ṗ p = κ ṗ 3 p = d s dt e 1 + κ e... e = κe dt } { 3 } 3 e 1 + κ + 3κ d s dt dt dt e + κτ = 3 e 3... e = κe 1 + τe 3 dt dt d s dt κ dt 3 dt α β κτ ṗ p = κ ṗ 6 = κ dt.. ṗ p p. τ = ṗ p 6 = κ τ 6 dt 3 e 3 dt p = ps 1.8 τ = 1 κ p p p 1.8 p = e 1, p = κe, p = κe = κ e + κe = κ e 1 + κ e + κτe p p p = κ = κ τ κ κ κτ... τ = 1 κ p p p 15

16 1..3 ps s = Taylor ps = ps + sp + s! p + s3 3! p p s = e 1, p s = κe, p s = κ e 1 + κ e + κτe s 3 ps = p + s 1 6 κ s 3 + e 1 + p + xse 1 + yse + zse 3 1 κs κ s e + 6 κτs3 + e 3 + xs = s 1 6 κ s 3, ys = 1 κs κ s 3, zs = 1 6 κτs κ τ.1 P u, v Qx, y, z x = xu, v, y = yu, v, z = zu, v.1 P u, v Qx, y, z u, v pu, v = xu, v, yu, v, zu, v. v v u pu, v u u u v v u, v pu, v 1 z O v u, v u = a z u = a v = b u y O x v = b x p u O v y 1 uv 3 16

17 x + y + z = a x = a sin u cos v, y = a sin u sin v, z = a cos u x a + y b + z c = 1 x a + y b + z c = 1 z = x a + y b x = a sin u cos v, y = b sin u sin v, z = c cos u x = a sinh u cos v, y = b sinh u sin v, z = c cosh u x = u, y = v, z = u a + v b. pu, v v = b u pu, b u = a v pa, v pa, b pa, b xa, b p u a, b = =, u u pa, b xa, b p v a, b = =, v v 13 p v a, b ya, b, u ya, b, v za, b u za, b v.3 u = a p u a, b v = b p u p v 1 14 p u, p v pa, b p u a, b p v a, b X p u p v 1 pa, b p u p v 1 {X} {X} = {ξp u a, b + ηp v a, b ξ, η }.4 15 X ξ X = ξp u a, b + ηp v a, b = p u p v η.5 13 u, v 14 c 1a 1+c a +, c na n = c 1 = c =, c n = a 1, a,, a n 1 a 1 a 1 p p = c 1a 1 + c a c 1, c

18 .3 1 X X X t X 16 X X = X = X t p X = ξ η u ξ p p u p v v η p = ξ η u p u p u p v ξ E F = ξ η p v p u p v p v η F G = Eξ + F ξη + Gη E, F, G 17 ξ η.6 E = p u p u, F = p u p v, G = p v p v.7 E, F, G pu, v 1 E = p u >, G = p v > 1 18 E F F G = EG F = p u p v p u p v > = p u / p v p u p v 1 E F F G >.8 X 1 = ξ 1 p u + η 1 p v, X = ξ p u + η p v E F ξ X 1 X = ξ 1 η 1 = Eξ 1 ξ + F ξ 1 η + ξ η 1 + Gη 1 η.9 F G X 1, X θ η X 1 X = X 1 X cos θ... cos θ = X 1 X X 1 X = Eξ 1 ξ + F ξ 1 η + ξ η 1 + Gη 1 η Eξ 1 + F ξ 1 η 1 + Gη1 Eξ + F ξ η + Gη.1 Eξ 1 ξ + F ξ 1 η + ξ η 1 + Gη 1 η = X 1 X θ 1 pu, v pu + du, v + dv dp dp = p du + u p dv = p v u du + p v dv = p u p v du dv a b a b = a t b, a b t = b t a t, t : transpose 17 n x 1, x,, x n P n i,j aijxixj A xt Ax A a ij = a ji x t = ` x 1 x x n 18 a b < = a b 18

19 19.5 ξ = du, η = dv u, v dp I = dp = dp dp = = Edu + F dudv + Gdv = du dv E F F G du dv.1 pu, v 1 pu, v 4 P, Q, R, T 4 ds u P u + du Q R T v v + dv P u, v Qu + du, v Ru, v + dv T u + du, v + dv : P Q p u du, P R p v dv ds = p u p v dudv.13 A B C D = A CB D B CA D p u p v = p u p u p v p v p u p v = EG F... p u p v = EG F ds = EG F dudv.15 ds 1.7 S pu, v = r sin u cos v, r sin u sin v, r cos u, p u = r cos u cos v, r cos u sin v, r sin u, p v = r sin u sin v, r sin u cos v, E = p u p u = r, F = p u p v =, G = p v p v = r sin u, EG F = r sin u π π S = ds = r sin ududv = 4πr.8 S xz C x R + z = r z x + y R + z = r 19 pu + du, v + dv pu, v = du u + dv «p + 1 du v! u + dv «p + 1 v 19

20 θ, φ < = θ < = π, < = φ < = π xθ, φ = R cos θ + rcosφ cos θ yθ, φ = R sin θ + r cos φ sin θ zθ, φ = r sin φ pθ, φ pθ, φ = R cos θ + rcosφ cos θ, R sin θ + r cos φ sin θ, r sin φ p θ = R + rcosφ sin θ, R + r cos φ cos θ, p φ = r cos θ sin φ, r sin θ sin φ, r cos φ E = p θ p θ = R + r cos φ, F = p θ p φ =, G = p φ p φ = r... EG F = r R + r cos φ S = π π EG F dθdφ = π π rr + r cos φdθdφ = 4π rr P u, v p u, p v 1 e = p u p v p u p v.16 e P α pu, v Q d P u, v Qu + du, v + dv P u, v Qu + du, v + dv P Q d d e P Q d = e P Q.17 Q d P d e P Q α d > d < P Q P Q = pu + du, v + dv pu, v = du u + dv p + 1 du v! u + dv p +.18 v p u du + p v dv + 1 { puu du + p uv dudv + p vv dv }

21 .17 e p u, p v d = 1 { puu edu + p uv edudv + p vv edv } = 1 { Ldu + Mdudv + Ndv }.19 L = p uu e, M = p uv e, N = p vv e. L, M, N.19 { } II = Ldu + Mdudv + Ndv.1 e p u, p v p u e =, p v e = u, v p uu e + p u e u = p uv e + p u e v = p vu e + p v e u = p vv e + p v e v = L M N L = p uu e = p u e u M = p uv e = p u e v M = p vu e = p v e u N = p vv e = p v e v..3 1 P a, b C s C u, v s u = us, v = vs C C X p = pus, vs.4 X = dp = p du u + p dv v = p du u + p dv v X = Eξ + F ξη + Gη = 1 ξ = du, η = dv.5 X P a, b e dx C X = dx/ e κx d du p u = 1

22 du p uu + p dv uv κx = X e = p uu e = = L du du du du + p uv e du dv du p uu e p uv e p uv e p vv e dv + M du dv + N dv + p vv e du du du = = Lξ + Mξη + Nη L M M N du dv.6 κx X = ξp u + ηp v κ X e P, 1 = dp dp II = dp de.7 II = dp de = p u du + p v dv e u du + e v dv = Ldu + Mdudv + Ndv.8 L M du = du dv M N dv X 1 X = 1 X e = X e = X e + X e = X e = X e.9 κ = dx de e = X = dp de de = dp = Ldu + Mdudv + Ndv Edu + F dudv + Gdv = II I P a, b e hu, v P a, b hu, v = {pu, v pa, b} ea, b.31 dha, b = h u a, bdu + h v a, bdv = p u a, b ea, bdu + p v a, b ea, bdv = P a, b C e X 1 1

23 P a, b h h H H =... Ha, b = h uu h vu h uv h vv = La, b Ma, b Ma, b Na, b p uu e p vu e p uv e p vv e, det H = LN M.3 det Ha, b h 1. det H > II LN M > p P a, b e. det H < II LN M < p P a, b e e II e P e P P e II II II Eξ + F ξη + Gη = κx = Lξ + Mξη + Nη.34 Gξ, η, λ = Lξ + Mξη + Nη λeξ + F ξη + Gη

24 ξ, η.33 G = Lξ + Mη λeξ + F η = ξ G = Mξ + Nη λf ξ + Gη = η.36 X ξ, η X = ξp u + ηp v.36 L λe M λf M λf N λg ξ η =.37 ξ, η, λ L λe M λf M λf N λg = EG F λ EN + GL F Mλ + LN M =.38 EG F > D = EN F M + GL 4EG F LN M EG F = 4 EM F L + EN GL F E EM F L >= E.39 λ λ 1, λ, λ 1 < = λ 1 λ ξ, η ξ 1, η 1 ξ 1, η 1 Eξ1 + F ξ 1 η 1 + Gη1 = 1 { L λ 1 Eξ 1 + M λ 1 F η 1 = L λ 1 Eξ1 + M λ 1F ξ 1 η 1 =.4 M λ 1 F ξ 1 + N λ 1 Gη 1 = M λ 1 F ξ 1 η 1 + N λ 1 Gη1 = Lξ 1 + Mξ 1 η 1 + Nη 1 λ 1 Eξ 1 + F ξ 1 η 1 + Gη 1 =... λ 1 = Lξ 1 + Mξ 1 η 1 + Nη 1 = κ 1 ξ 1, η 1.41 λ = κ ξ, η.38 κ 1, κ K κ 1 κ = LN M EG F.4 H 1 κ 1 + κ = EN + GL F M EG F.43 K H κ 1, κ κ 1, κ X 1 = ξ 1 p u + η 1 p v, X = ξ p u + η p v.8 EG F > K LN M 3 3 ax + bxy + cy + d = a, b, c 8 < ac b > ac b < : ac b =

25 K > 4 K < K =.4,.43 κ 1, = H ± H K D = EG = F EM = F L L E = M F = N G EN = GL.45 κ 1 = κ κ = L = M = N =.36 Lξ 1 + Mη 1 κ 1 Eξ 1 + F η = L κ 1 Eξ 1 + M κ 1 F η 1 = Mξ 1 + Nη 1 κ 1 F ξ 1 + Gη 1 = M κ 1 F ξ 1 + N κ 1 Gη 1 = Lξ + Mη κ Eξ + F η = L κ Eξ + M κ F η = Mξ + Nη κ F ξ + Gη = M κ F ξ + N κ Gη = 1 ξ, η.46 L κ 1 Eξ 1 ξ + M κ 1 F ξ 1 η + ξ η 1 + N κ 1 Gη 1 η = ξ 1, η 1 κ 1 κ.9 L κ Eξ 1 ξ + M κ F ξ 1 η + ξ η 1 + N κ Gη 1 η =.48 κ 1 κ Eξ 1 ξ + F ξ 1 η + ξ η 1 + Gη 1 η =.49 Eξ 1 ξ + F ξ 1 η + ξ η 1 + Gη 1 η = X 1 X =.5.9 a p = a sin u cos v, a sin u sin v, a cos u, p u = a cos u cos v, a cos u sin v, a sin u p uu = a sin u cos v, a sin u sin v, a cos u, p v = a sin u sin v, a sin u cos v, p vv = a sin u cos v, a sin u sin v,, { e = p/ p = p/a E = p u p u = a, F = p u p v =, G = p v p v = a sin u L = p uu e = a, M = p uv e =, N = p vv e = a sin u 4 P P P http : //ameblo.jp/scitamehtam/entry html 5

26 K H K = κ 1 κ = LN M EG F = 1 a, H = 1 κ EN + GL F M 1 + κ = EG F = 1 a κ 1, κ EG F λ EN F M + GLλ + LN M = a λ + aλ + 1 =... λ= κ 1, κ = 1 a 5.1 xy y = fx z pu, v = u, fu, v x = xu, y = fu, z = v z x y = fu y p u = 1, f,, p uu =, f,, p v =,, 1, p vv =,, p uv =,,, e = p u p v p u p v = f, 1, 1 + f E = 1 + f, F =, G = 1 L = f / 1 + f, M =, N = K = κ 1 κ = LN M EG F = H = 1 κ 1 + κ = EN + GL F M EG F f = 1 + f 3/ κ 1 = κ = H κ 1 =.37 λ = L M ξ f / 1 + f = ξ = M N η η f = H = κ 1 = κ = f ξ = η κ 1 X 1 = p u +ηp v = η,, 1 z κ = H.37 λ = H f /1 + f 3/ 5 1 II = κi ξ η = 6

27 ξ η = κ X = ξ p u + p v = ξ1, f, x, y xy 6 κ = f /1 + f 3/ xy.11 pu, v = R cos u + r cos v cos u, R sin u + r cos v sin u, r sin v < = u, v < = π p u = R + r cos v sin u, R + r cos v cos u, p v = r sin v cos u, r sin v sin u, r cos v p uu = R + r cos v cos u, R + r cos v sin u, p uv = r sin u sin v, r cos u sin v, E = R + r cos v, F =, G = r L = cos vr + r cos v, M =, N = r K = cos v rr + r cos v, R + r cos v H = rr + r cos v u R =, r = 1 det H = LN M = + cos v cos v < v < π/ K > π/ < v < 3π/ K < 3π/ < v < π K > v = π/, 3π/ K =.1 z = x + y xu = u, yv = v, zu, v = u + v, pu, v = u, v, u + v p u = 1,, u, p uu =,,, p v =, 1, v p vv =,,, p uv =,,, e =, 1, E = 1 + 4u, F = 4uv, G = 1 + 4v L = / 1 + 4u + 4v, M =, N = / 1 + 4u + 4v K = κ 1 κ = u + 4v, H = 1 κ 1+κ = 1 + u + v 1 + 4u + 4v 3/ 4 z κ 1, κ.38 λ κ 1 = 1 + 4u + 4v 3/ κ = 1 + 4u + 4v x - y - 6 e X 1 =, e X =, X 1 X = 7

28 7 u, v =, κ 1 = κ u, v =, det H > h uu, = L, >,.13 pu, v = u, v, u v p u = 1,, u, p uu =,,, p v =, 1, v p vv =,,, p uv =,, e = u/ 1 + 4u + 4v, v/ 1 + 4u + 4v, 1/ 1 + 4u + 4v E = 1 + 4u, F = 4uv, G = 1 + 4v L = / 1 + 4u + 4v, M =, N = / 1 + 4u + 4v 4 K = 1 + 4u + 4v, H = 4u v 1 + 4u + 4v 3/ u, v =, det H <,.14 pu, v = coshu cosv, coshu sinv, u p u = cosv sinhu, sinv sinhu, 1, p uu = cosv coshu, coshu sinv, p v = coshu sinv, cosv coshu,, p vv = cosv coshu, coshu sinv, p uv = sinv sinhu, cosv sinhu,, e = cosv/ coshu, sinv/ coshu, tanhu E = cosh u, F =, G = cosh u, L = 1/ cosh u, M =, N = 1/ cosh u... K = 1/ cosh 4 u, H = 8 gx 1, x,, x n = z = fx 1, x,, x n x 1, x,, x n Gx 1, x,, x n, λ Gx 1, x,, x n, λ = fx 1, x,, x n λgx 1, x,, x n 7 κ 1 8 http : // furuhata/ed/hokkyodai/ 8

29 G x 1, x,, x n G = f λ g = x 1 x 1 x 1 G = f λ g = x x x. G = f λ g = x n x n x n gx 1, x,, x n = x 1, x,, x n C ξ, η.36 λ { Lξ + Mη λeξ + F η = Mξ + Nη λf ξ + Gη = Lξ + Mη Eξ + F η Mξ + Nη F ξ + Gη =.53 EM LF ξ + EN LGξη + F N MGη =.54 ξ = du/, η = dv/ EM LF du + EN LG du dv + F N MG dv =.55 C F = p u p v =.54 ξ = 1, η = 9 EM LF = M = 3 F =, M =.54 LG EN ξ = η = C LG ENξη =.56 F = M = F = M = pu, v = R + r cos v cos u, R + r cos v sin u, r sin v u,v u, v 9 ξ =, η = 1 3 E = p u p u 9

30 1 X = ξp u + ηp v.3 F = M = EGλ EN + GLλ + LN = κx = Lξ + Nη Eξ + Gη.58 κ 1 = L E, κ = N G E ξ G ξ κx = κ 1 + κ.6 Eξ + Gη Eξ + Gη X p u θ.1 E ξ G η cos θ = Eξ + Gη, sin θ =.61 Eξ + Gη κx = κ 1 cos θ + κ sin θ.6 R, R 1, R.6 1 R = cos θ + sin θ.63 R 1 R.15 pu, v = u, v, u + v p u = 1,, u, p v =, 1, v 1 e = p u p v / p u p v = u, v, 1 4u + 4v E = p u p u = 1 + 4u, G = p v p v = 1 + 4v F = p u p v = 4uv L = p uu e = 4u + 4v + 1, M = p uv e =, N = p vv e = 4u + 4v + 1 EG F λ EN + GL F Mλ + LN M = κ 1 = 4u + 4v + 1 1/, κ = 4u + 4v + 1 3/ 3

31 EM LF ξ + EN LGξη + F N MGη = uvξ u v ξη uvη = uξ + vηuη vξ =... uξ + vη =, vξ uη = ξ = vk, η = uk, ξ = uk, η = vk k k = 1 1 X 1 = v, u, X = ξp u + ηp v = u + v 1 X = u + v + 4u + v u, v, u + v, X 1 X = EM LF du... u du + v dv =, + EN LG du dv + F N MG v du udv = u + v dv =, u + v = C 1, u = C v C 1, C dv = d ln u u, v =,.16 pu, v = u + v, u v, uv 1 p u = 1, 1, v, p v = 1, 1, u 1 e = u + v, u + v, u + v + 4 = d ln v E = + v, F = uv G = + u 1 L =, M = u + v + 4, N = 5 K = LN M EG F = 4 4u + 4v + 1 H = EN GL GM EG F 4u v = 4u + 4v + 1 3/

32 du EM LF + EN LG du dv dv + F N MG =.. dv + v. du = ± du + u u + = ± dv v + d du lnu + u + = ± d dv lnv + v + u + u + v + v + = C 1, u + u + v + v + = C, C 1, C u, v G OOD L U C K! S E E Y OU A G A I N! by K E N Z OU

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

Fr

Fr 2007 04 02 12 1 2 2 3 2.1............................ 4 3 6 3.1............................. 7 3.2....................... 9 3.3............................. 10 4 Frenet 12 5 14 6 Frenet-Serret 15 6.1 Frenet-Serret.......................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

1 B64653 1 1 3.1....................................... 3.......................... 3..1.............................. 4................................ 4..3.............................. 5..4..............................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d 1 13 Fall Semester N. Yamada Version:13.9.3 Chapter. Preliminalies (1 3) Chapter 1. (4 16) Chapter. (17 9) Chapter 3. (3 49) Chapter 4. (5 63) Chapter 5. (64 7) Chapter 6. (71 8) 11, ISBN 978-4-535-618-4.

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

II 2006

II 2006 II 006 II Introuction of Geometry II i.............................................................3............................ 5................................................................ 6.3.................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. K E N Z OU 8 9 8. F = kx x 3 678 ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx,

More information