π + e + ν e

Size: px
Start display at page:

Download "π + e + ν e"

Transcription

1 π + e + ν e

2 π + e + ν e π + µ + ν µ R = Γ(π + e + ν e )/Γ(π + µ + ν µ ) 0.1% PIENU 2009 TRIUMF R 0.01% 10 R 0.1% 1000TeV PIENU 0.1% 1980 TRIUMF π + e + ν e π + µ + ν µ KEK COPPER 500MHz Flash ADC(FADC) PMT π + e + ν e 69.8 MeV π + µ + ν µ (µ + e + ν µ ν e ) MeV R R

3 π PIENU PIENU π COPPER 500 MHz FADC π + µ + e PDIF π + e + ν

4 4.2.2 NaI CsI µ π + µ + e T

5 1.1 π + l + ν l g e g µ Λ PIENU π + e + ν e π + µ + e + (MC) ( ) ( ) π + e + ν e TRIUMF TINA ch π + µ + e + TINA PDIF M13 F3 PIENU M PIENU NaI(Tl) CsI PDIF NaI(Tl) WC3 CsI S S3 T1 T1 4 PMT 500MHz FADC COPPER COPPER 500 MHz FADC FINESSE COPPER 500 MHz FADC

6 3.1 1 N 1 N PH t COPPER B :B1 TOF(43.3ns) :B WC1 WC NaI T B1 B2 T1 PMT PMT1 PMT2 PMT3 PMT B1 B2 RF B1 B :B1 1 Q Qw (Q/Qw) :Q Qw : : E NaI + E CsI < 50 MeV WC E NaI + E CsI : (E NaI + E CsI 50 MeV) : (E NaI + E CsI < 50 MeV) : : γ y = 2E γ m µ E γ γ m µ [11] π + µ + e + (case2a) π + µ + e + NaI CsI

7 4.4 π + µ + e + (case2b) π + µ + e + NaI CsI MC π + µ + e + ( :NaI :CsI) NaI CsI π + µ + e π + e + ν e γ γ :NaI :CsI π + µ + ν µ γ χ :T1 : T reso T1 y x π + µ + e + T1 y = x y = x± T reso :t < T reso : T reso < t < 0 0 t + T reso ( ) :t > 0 T reso < t < 0 t t + T reso ( ) 3 T1 t : ( T) 45ns ( ) 2 1 T : 45ns T1 PMT1(T1 1) 1 ( 3.1.2) 1 2 t[0] t[1](3.1.1) T : 225 ns 15 ns 225 ns : T1 225 ns

8 (5.2) (5.4) ε π eνe (t) A + B t < 0 t > F U (t) F L (t) f g R

9 (µ + e + ν µ ν e ) π + µ + e + b e + i 3.12 o Reject (3.2) NoTrig 2.15 Trigger t e c d ndf F U (t) F L (t) Br

10 1 π + π + µ + ν µ π + e + ν e π + µ + ν µ 99% π + e + ν e 10 4 π + R = Γ(π + e + ν e )/Γ(π + µ + ν µ ) R (SM) R SM = (1) 10 4 [1] (1.1) TRIUMF PSI R TRIUMF = (1.2352±0.0034(stat)±0.0044(syst)) 10 4 [2] (1.2) R PSI = (1.2346±0.0035(stat)±0.0036(syst)) 10 4 [3] (1.3) π π + l + ν l g e g µ π + R π + l + ν l (l = e, µ) W + R 0 R 0 = g2 e m 2 ( e m 2 π m 2 ) 2 e gµ 2 m 2 µ m 2 π m 2 = (2) 10 4 (1.4) µ m e m µ g e g µ g 2 e = g 2 µ m µ m e 200 m 2 e/m 2 µ π + e + ν e 10 4 (1.4) (1.1) 8

11 R 1.2 R R R R SM R EXP 1 R EXP 2π 1 m 2 π ± R SM G Λ m e (m d + m u ) ( 1T ev ) Λ (1.5) G m π m d m u Λ % 1000 TeV Λ 1.2 Λ g e = g µ W (e, µ, τ)

12 g e /g µ π ± [4] K ±0.005 [5] τ ± [6] W 0.997±0.010 [4] g e g µ R R π + R R R 0.1% PIENU TRIUMF π + e + ν e π + µ + ν µ R PIENU

13 2 PIENU 2.1 PIENU π + e + ν π + µ + ν µ R 0.1% TRIUMF PIENU 2.1 π PIENU π + π + µ + ν µ µ + 1mm e + π + e + ν e µ MeV ( 2.2) π + e + ν e MeV π + µ + ν µ µ + e + ν µ ν e (π + µ + e + ) µ MeV ( 2.3 ) ( 2.3 ) π + e + ν e : ε π eν (t) = exp( t τ π ) τ π (2.1) π + µ + e + : ε π µ e (t) = exp( t τ µ ) exp( t τ π ) τ µ τ π (2.2) R τ π τ µ R R 11

14 2.2 π + e + ν e π + µ + e + (MC) 2.3 ( ) ( ) π + e + ν e TRIUMF R (TRIUMF-E248) ±1 MeV/c π + (B3) π cm 51cm NaI(Tl) (TINA) TINA 12

15 90 B3 e + 2% 2.4 TRIUMF

16 2.5 TINA 2.5 TINA π + e + ν e π + µ + e MeV(3400 channel) ch π + e + ν e (2.1) π + µ + e + 14

17 (2.2) exp( t τ µ ) F πeν (t) F πeν (t) = A π [R ε π eν (t) + A πµe ε π µ e (t)]h(t) + A BG1 exp( t τ µ ) + C BG1 (2.3) H(t) t < 0 H(t) = 0 t > 0 H(t) = 1 t = t t 0 t t 0 A π R A πµe π µ e A BG1 C BG1 t 0 A π R A πµe A BG1 C BG1 π + µ + e + (2.2) exp( t τ µ ) F πµe (t) F πµe (t) = A π [(1 A πµe )ε π µ e (t)]θ(t) + A BG2 exp( t τ µ ) + C BG2 (2.4) A BG2 C BG F πeν (t) F πµe (t) R π + e + ν e π + µ + e π + µ + e + π + e + ν e TRIUMF-E π + e + ν e 0.45% ( (1.2)) R 2.7 π + µ + e + π µ + (pion decay-in-flight:pdif) 15

18 (pion decay-at-rest:pdar) π + µ + e π + µ + e + TINA PDIF 2.3 PIENU PIENU TRIUMF M M13 TRIUMF 100 µa 500 MeV Be 1 cm (T1) 2 TRIUMF RF(Radio Frequency) 23.1 MHz M13 3 (B1,B2,B3) 10 (Q1 10) F1 4 16

19 2.8 M13 F3 PIENU T1 2 π + µ + e + π + B1 F1 77 MeV/c F1 π + B2 F3 µ + e + π + F3 F3 γ π + B3 80% π + 60 khz FWHM 75±1 MeV/c 2.9 B3 17

20 2.9 M PIENU TRIUMF-E248 TRIUMF-E PIENU 75 MeV/c π + 2 (B1,B2) 8mm (Tg) π + T1,T2 (WC3) NaI(Tl) TRIUMF-E NaI(Tl) NaI CsI π + (WC1,2) (S1,2) TRIUMF-E248 PDIF 2.11 PDIF 18

21 MHz FADC NaI CsI 60MHz FADC 1.6GHz TDC 2.10 PIENU NaI(Tl) CsI 2.11 PDIF 19

22 2.12 NaI(Tl) WC3 CsI 2.13 S2 20

23 2.14 S3 T1 T1 4 PMT 500MHz FADC NIM π + e + ν e 2.15 PIENU B1 B1 B2 Tg T1 T2 Tg ( ) ns PIE π + e + ν e 3 1. Prescale trigger π + µ + e + PIE 1/16 2. BinaH trigger NaI CsI 45 MeV 21

24 PIE BinaH trigger ( π + e + ν e ) 3. Early trigger 800 ns 40 ns 4 40 ns Early trigger 2197 ns 26 ns 70% π + e + ν e 2.15 BinaH trigger Early trigger π + e + ν e π + e + ν e π + µ + e + π + e + ν e BinaH trigger Early trigger 22

25 Prescale trigger 1/16 500ns 3 π + µ + e + 1/ Trigger t π +( ) COPPER Trigger t e +( ) VME (VF48 VT48) COPPER 500 MHz FADC PMT 500 MHz FADC(Flash Analog to Digital Convertar) FADC COPPER(The COmmon Pipelined Platform for Electronics Readout) COPPER Belle J-PARC KEK 2.16 COPPER COPPER 9U VME 4 (FINESSE:Front-end INstrumentation Entity for Sub-detector Specifit Electronics) MHz FADC FINESSE MHz FADC FINESSE MHz FADC 500 MHz 500 MHz FADC FINESSE 8-bit ±500 mv PIENU PMT mv (8 µs) 2.18 COPPER 500 MHz FADC 2 FADC ADC1 ADC2 23

26 2.16 COPPER 2.17 COPPER 500 MHz FADC FINESSE 24

27 2.18 COPPER 500 MHz FADC 60 MHz FADC(VF48) NaI CsI PMT VF48 60 MHz FADC VME 6-U bit ±250 mv 48 PIENU 404 (NaI:19 CsI:97 :288) 10 VF48 TDC(VT48) PMT VT GHz TDC VT48 VME 6-U 2006 TRIUMF VT48 25

28 3 π NaI CsI COPPER 500 MHz FADC 3.1 COPPER 500 MHz FADC COPPER -6.4µs +1.35µs DAQ (7.75 µs) (2.3.3) Trigger t π µs 1 COPPER -6.4 µs µs µs 1.35 µs 3.2 t PH t ±20 ns Q t ns Qw ( N ) N N 1 N PH t 26

29 3.2 COPPER T1 B1 COPPER 2 ns T1 B1 PMT B1 27

30 π + µ + e + π + B1 B2 Time-Of-Flight(TOF) TOF RF(23.1 MHz 43.3 ns) B1 TOF B ns 3.4 B1 TOF 3.4 B2 3.4 :B1 TOF(43.3ns) :B TOF TOF 3.4 WC1 WC2 WC1 WC2 3.5 WC1 28

31 3.5 WC1 WC π + π + µ + PDIF µ + T1 B1 B2 TOF T1 π + (π + + p + π + + p + :p + ) NaI 100 MeV 3.6 NaI S3 T1 T2 T1 T1 (0.3 MeV ) ( 3.7) 29

32 3.6 NaI 3.7 T1 30

33 khz ns 30% B1 B2 PMT N ( ) π + 1 PMT B1 PMT 1 B1 π + T1 B1 B2 T1 PMT 3.8 B1: {(N P MT 1 = 1) (N P MT 2 = 1) (N P MT 3 = 1) (N P MT 4 = 1)}&& {(N P MT 1 > 0) (N P MT 2 > 0) (N P MT 3 > 0) (N P MT 4 > 0)} B2: {(N P MT 1 = 1) (N P MT 2 = 1) (N P MT 3 = 1) (N P MT 4 = 1)} T1: {(N P MT 1 = 1) (N P MT 2 = 1) (N P MT 3 = 1) (N P MT 4 = 1)}&& {(N P MT 1 > 0) (N P MT 2 > 0) (N P MT 3 > 0) (N P MT 4 > 0)} 3.8 B1 B2 T1 PMT PMT1 PMT2 PMT3 PMT4 3.9 (E NaI + E CsI ) 50 MeV π + µ + e + B1 B2 31

34 3.9 B1 B2 RF B1 B2 2 Q Qw Q/Qw B1 B2 PMT 3.10 B1 PMT1( B1 1) Q Qw Q Qw :B1 1 Q Qw (Q/Qw) :Q Qw 32

35 3.2.4 PIENU µ µs π + µ + 30% µ + π ( -6.4 µs µs( 3.1)) µ π + µ + e + t < 0 1/10 t > 0 70% π + µ + e + B1,B2,Tg,T1,T2: (N P MT 1 = 0) (N P MT 2 = 0) (N P MT 3 = 0) (N P MT 4 = 0) 3.11 : : E NaI + E CsI < 50 MeV (S3 T1 T2 WC3) NaI WC WC3 60 mm 33

36 3.12 WC % (3.2.1) 30% ( (3.2.3)) ( (3.2.4)) 60% % NaI CsI 3.13 π + e + ν e π + µ + + e 70 MeV T1 B

37 3.13 E NaI + E CsI

38 E NaI + E CsI 50 MeV E NaI + E CsI <50 MeV 3.15 TRIUMF-E248 ( (2.2)) π + e + ν π + µ + e 3.15 t < 0 π + e + ν e (2.1) ns 3.15 t > 150 ns t > : (E NaI + E CsI 50 MeV) : (E NaI + E CsI < 50 MeV) 36

39 t = 0 B1 B2 ( 3.2.2) t < 0 : ns t > 0 : ns t = 0 ( ) t < 0 t > 0 TRIUMF- E248 TRIUMF-E PIENU 4.2 π + µ + e + PDIF µ + e + ν µ ν e π + µ + µ + e + ν µ ν e 4.1 NaI CsI π + µ + e + µ + e + ν µ ν e µ + µ + e + ν µ ν e γ µ + e + ν µ ν e π + µ + e + π + µ + e + π + π + µ + ν µ γ µ + µ + e + ν µ ν e

40 µ π e + ν µ ν e + µ + e + T1-T2i T1-T2o T1b-T2i T1b-T2o T1-T2b T1b-T2b T1-T2i case1 case1 case2b case2b case1 case2b T1-T2o case1 Reject case3 Reject Reject Reject T1b-T2i case2a case3 NoTrig NoTrig case4 Reject T1b-T2o case2a Reject NoTrig NoTrig Reject NoTrig T1-T2b case1 Reject case4 Reject NoTrig NoTrig T1b-T2b case2a Reject NoTrig NoTrig NoTrig NoTrig 4.3 (µ + e + ν µ ν e ) π + µ + e + b e + i 3.12 o Reject (3.2) NoTrig 2.15 Trigger t e + case1: T1 (3.2.3) T1 case2a B: T1 T2 Trigger t e + T1 NaI CsI A (µ + e + ν µ ν e ) B π + µ + e + Trigger t e + case3: WC3 WC3 WC3 case4: T1 T2 100 ns T1 T2 100 ns π + e + ν e π + µ + e C.Malbrunot [7] 4.1 π + e + ν e π + µ + e + π + µ + e + µ + NaI CsI π π + µ + e + PDIF 38

41 case2a C.Malbrunot C.Malbrunot case1 4.1 : : π + µ + e + t > 0 π + µ + e + π + µ + (2.2) π + e + ν e π + µ + e + π + e + ν e 10 4 π + e + ν e 10% π + e + ν e π + µ + e % t < 0 (µ + e + ν µ ν e ) ε µ e νµ ν e (t) = exp( t τ µ ) τ µ (4.1) t > 0 39

42 4.1.3 PDIF PDIF 1.2% µ ε µ e νµ ν e (t) PDIF t > π + e + ν e π + µ + e π + e + ν t > 0 π + e + ν e π + (2.1) NaI CsI NaI CsI π + µ + e + π + H(t)(t < 0 H(t) = 0 t > 0 H(t) = 1) H(t) ε π µ e (t) µ + (ε µ e νµ ν e (t)) t < 0 t > µ + µ + µ + e + ν µ ν e γ γ NaI CsI ( ) π + µ + e + µ + ε π µ e (t) ε µ e νµ ν e (t) 4.2 γ 40

43 4.2 γ y = 2E γ m µ E γ γ m µ [11] π + µ + e + NaI CsI π + µ + e + 2 I T1 T2 π µ + e + T1 T2 ( 4.3) 4.3 case2a II I π µ + e + ( 4.4) 4.3 case2b 41

44 4.3 π + µ + e + (case2a) π + µ + e + NaI CsI 4.4 π + µ + e + (case2b) π + µ + e + NaI CsI µ + e + ν µ ν e π + µ + e + ε π µ νµ ν e (t) ε π µ e (t) T1 (MC) NaI CsI π + µ + e + µ + e + ν µ ν e 4.5 NaI CsI C.Malbrunot casea 42

45 MC casea B 4.5 MC π + µ + e + ( :NaI :CsI) CsI -80 ns CsI 670 ns -80 ns π + µ + e + NaI CsI 4.5 t = 200 π + µ + e

46 4.6 NaI CsI π + µ + e π + µ + ν µ γ γ NaI CsI (µ + e + ν µ ν e ) (4.2.4) NaI CsI π + µ + e + π + µ + ν µ γ (γ 4.7 ) MC C.Malbrunot π + µ + ν µ γ NaI 2.3% CsI 1.8% (4.2.4) NaI CsI NaI CsI π + e + ν e 0.5% 0.17%

47 4.7 π + e + ν e γ γ 4.8 :NaI :CsI π + µ + ν µ γ 1 45

48 4.3 PIMUE(t) PIMUE(t) = H(t)[a(1 r)ε π µ e (t)] + bε µ e νµ ν e (t) (4.2) PIENU(t) PIENU(t) = ah(t)[br{ε π eνe (t) + cg 1 (t) + dg 2 (t)} + rε π µ e (t)] +ef(t) + b ε µ e νµ ν e (t) (4.3) Br π + e + ν e π + µ + e + a π + µ + e + r a(1 r) π + µ + e + a r π + µ + e + b b F(t) NaI CsI π + µ + e + e G 1 G NaI CsI π + µ + ν ν ν e γ c d G 1 G 2 (4.2.5) t = t t 0 t t 0 ( ) Br a r b b e t 0 PIENU(t) PIMUE(t) Br PIENU(t) b b = b a(1 r) a r b a r = b r (4.4) a PIENU(t) Br{ε π eνe (t) + cg 1 (t) + dg 2 (t)} { } Brε π eνe (t) + c G 1 (t) + d G 2 (t) (4.5) c = c Br = (4.6) d = d Br = (4.7) Br (1.1) PIENU(t) PIENU(t) = ah(t)[brε π eνe (t) + c G 1 (t) + d G 2 (t) + rε π µ e (t)] 46 +ef(t) + b rε µ e νµ ν e (t) (4.8)

49 PIENU(t) PIMUE(t) χ 2 ± a (3.5805±0.0005) 10 9 r (1.0022±0.003) 10 3 t ±0.012ns b (1.8194±0.0049) 10 7 Br (1.2215±0.0036) 10 4 c d (6.15±0) 10 7 (2.09±0) 10 7 e (1.2737±0.0360) c d 47

50 ± (ndf) 582 χ 2 = χ 2 /ndf=

51 5 T T1 T1 T2 π + µ + e T1 T1 ( 3.2.3) ( 5.1 ) T1 2 T1 ( 5.1 ) T1 T reso ( T1 15 ns ) E NaI + E CsI 50 MeV 5.1 :T1 : T reso ε π µ νµ ν e (t) ε π µ e (t) π + µ + e T1 T f(x) π + µ + e + g(y) x y 5.2 x y T1 49

52 ( T reso = 0 ns) T1 2 T reso y = x± T reso T T1 y x π + µ + e + T1 y = x y = x± T reso 5.2 y > x T1 y < x T1 π + µ + e + f(x) g(y) f(x) g(y) T1 t y > x ( ) F U (t) t+ Treso F U (t) = f(t) g(y)dy (5.1) t π + µ + e + t > F U (t) 0 t < T reso F U (t) = f(t) t+ T reso g(y)dy T 0 reso < t < 0 f(t) t+ T reso g(y)dy t > 0 t (5.2) 50

53 5.3 :t < T reso : T reso < t < 0 0 t+ T reso ( ) :t > 0 T reso < t < 0 t t + T reso ( ) 3 T1 t y < x ( π + µ + e + ) F L (t) t+ Treso F L (t) = g(t) f(x)dx (5.3) t t < 0 F L (t) F L (t) = { 0 t < 0 g(t) t+ T reso t f(x)dx t > 0 (5.4) T1 F (t) F (t) = F U (t) + F L (t) = f(t) t+ Treso t t+ Treso g(y)dy + g(t) f(x)dx (5.5) t f(t) (4.1) g(t) (2.2) t F U (t) = 0 t < T reso t+ Treso τ µ 0 τµ ) t+ Treso τ µ t τµ ) exp( t τπ ) t+ Treso exp( t τµ ) exp( t + exp( t τ µ τ π exp( y τµ ) exp( y τπ ) τ µ τ π dy T reso < t < 0 exp( y τµ ) exp( y 0 τπ ) τ µ τ π exp( x dy τµ ) τ µ dx t > 0 (5.6) 51

54 5.2 F L (t) t = case3,4 π + µ + e + T1 F L (t) F L (t) F U (t) (5.2) T reso F U (t) i T1 T reso T1 T1 ( 3.2.3) ii T1 ± T T ( 5.4) iii T T1 5.4 : ( T) 45ns ( ) 2 1 T : 45ns T1 PMT1(T1 1) 1 ( 3.1.2) 1 2 t[0] t[1](3.1.1) T1 52

55 ns ( 5.5 ) 5.5 T1 π + e + ν e 100 ns τ N N exp( t/τ) τ = 1059±151.2 ns 5.5 : 225 ns 15 ns 225 ns : T1 225 ns (5.2) (5.4) π + e + ν e ε π eνe (t) 3 (5.2) (5.4) 1 F U (t) F L (t) AF U(t) + BF L(t) + Cε π eνe (t) (5.7) A B C (5.7) 53

56 (5.2) (5.4) ε π eνe (t)

57 5.7 F U (t) F L (t) A B A + B A 5.7 T= 0 T= T reso A + B n χ 2 /ndf ± /11 (2.50±0.03) /10 (3.71±0.07) /9 (3.19±0.15) /8 (3.77±0.34) /7 (4.45±0.74) /6 (3.67±1.77) /5 (7.98±4.56) /4 (2.71±1.31) /3 (5.15±4.44) ndf 5.7 χ 2 /ndf p4 T 4 +p3 T 3 +p2 T 2 +p1 T+p0(p0 p4 ) 55

58 5.8 A + B F U (t) UL 5.8 UL = (3.77±0.34) 10 4 (5.8) 4.8 T1 (5.2) (5.4) PIENU(t) = ah(t){brε π eνe (t) + cg 1 (t) + dg 2 (t) + rε π µ e (t)} +ef(t) + b rε µ e νµ ν e (t) + ff U(t) + gf L(t) (5.9) f (5.8) F L (t) t = 0 Case3 4 π + µ + e + T1 g

59 5.9 t < 0 t > 0 Br F U (t) F L (t) (1.2215±0.0036) 10 4 f g f (1.2179±0.0052) 10 4 (1.2192±0.0039) F U (t) F L(t) Br 57

60 5.10 F U (t) F L(t) 5.9 χ 2 /ndf χ 2 /ndf F U (t) F L (t) Case f (5.8) (5.2) (5.4) (5.9) f g f = UL R (5.10) g = UL (1 R) (5.11) R 0 R 1 f g f g R % R Br R = 0 R = 1 Br 0.4% R R Br 0.1% 58

61 5.11 f g R 59

62 6 PIENU π + e + ν e π + µ + e + 0.1% R π + µ + e + T1 T1 T F U (t) F L (t) 0.4% % F U (t) F L (t) Case3 Case4 60

63 TRIUMF Douglas Andrew Bryman PIENU JP-PIENU KEK Tran Nam Hoai Nguyen Duy Thong Izyan Hazwani Hashim Nguyen Minh Truong 61

64 [1] Vincenzo Cirigliano and Ignasi Rosell. Physical Review Letters. 99, [2] D.I.Britton etal. Phys. Rev. Lette. 68, [3] G.Czapec etal. Phys.Rev.Lette. 70, [4] A. Pich. Tau Physics: Theory Overview. Nucl. Phys. Proc. Suppl., : , [5] C. Lazzeroni et al. Test of Lepton Flavour Universality in K + l + +ν Decays [6] Alberto Lusiani. Measurements of V us and Searches for Violation of Lepton Universality and CPT in Tau Decays at BaBar. PoS, ICHEP2010:251, [7] Chloé Malbrunot. Study of π + e + ν e decay. PhD thesis. The University of British Columbia [8] Kaoru Yamada. Search for Massive Neutrinos in π + e + ν Decay. PhD thesis. Dept of Physics, Graduate School of Science, Osaka University [9] [10] Naosuke Ito. Improvement of COPPER 500-MHz Flash ADC for PIENU experiment. Master thesis. Dept of Physics,Osaka University [11] Feng Xiao. Measurement of the Radiative Muon Decay Branching Fraction in the MEG Experiment. PhD thesis. Univercity of California. 62

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

J-PARC October 14-15, 2005 KEK

J-PARC October 14-15, 2005 KEK J-PARC October 14-15, 2005 KEK 目次 ミューオン 電子転換過程の紹介 MECO実験 PRISM/PRIME実験 @J-PARC まとめ GIM-like mixing! µ! e W e 3 SUSY-GUT Large top Yukawa couplings result in sizable off-diagonal components in a slepton

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

untitled

untitled 2000 (1257) 2001 (1504) 2002 (1427) 2003 (1948) 2004 (2872) 2005 (2424) 2006 (1765) Case1A Case1B Case2A Case2B Case3A Case3B or \ \ \ \

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

SC210301 Ł\†EŒÚ M-KL.ec6

SC210301 Ł\†EŒÚ M-KL.ec6 30 36 01 02 07 08 05 95 11 94 11 97 13 91 13 9T 14 15 15 96 16 BE 16 BF 16 BG 17 CL 17 00 17 17 17 1 180 28 28 180 2 180 181 60 180 180 90 32 180 30 15 29 29 30 14 3 15 30 29 29 14 30 14 19 19 30 30 22

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

TeV b,c,τ KEK/ ) ICEPP

TeV b,c,τ KEK/ ) ICEPP TeV b,c,τ KEK/ ) ICEPP 2 TeV TeV ~1930 ~1970 ~2010 LHC TeV LHC TeV LHC TeV CKM K FCNC K CP violation c b, τ B-B t B CP violation interplay 6 Super B Factory Super KEKB LoI (hep-ex/0406071) SLAC Super B

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011 21 Daya Bay θ 13 Lawrence Berkeley National Laboratory YNakajima@lbl.gov Brookhaven National Laboratory thide@bnl.gov 2012 ( 24 ) 5 16 1 Daya Bay 2011 12,, θ 13, 55 2012 3 sin 2 2θ 13 Daya Bay sin 2 2θ

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

高知工科大学電子 光システム工学科

高知工科大学電子 光システム工学科 卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日 高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

s d

s d s d s s s q1w d d d d q1w q1w d s d d d q1w d d w w d 4q 5q 6q 7q 8q 21q 41q 9q 31q d s d d s d s d d d d s d s d d s d d s d d s d 00w 0910011212 d 72w w 0312345678w

More information

NDIS ( )

NDIS ( ) NDIS 3429 2010 8 25 () mail:ohnishi@jsndi.or.jp NDIS 3429:XXXX Method for Investigating Location of Reinforcing Bars in Concrete Structure by Radar 1 1) 1) 2 JIS A 0203 JIS G 3112 JIS G 3117 JIS Z 2300

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

untitled

untitled /, S=1/2 S=0 S=1/2 - S// m H m H = S G e + + G Z (t) 1 0 t G Z (t) 1 0 t G Z (t) 1 0 t SR G Z (t) = 1/3 + (2/3)(1-2 t 2 )exp(- 2 t 2 /2) G Z (t) 1-1/3 1/3 0 3/ 3/ t G Z (t)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

* 2

* 2 * 2 3 H2400 2 2 3 4 5 5 (at +25 ) H2400-00-0 H2400-0-0 H2400-20-0 420 3(X) (Y) 2-50 26 5 50 80 200 8.0 0.2 80 62 30 5 60 70.6 5 2. 4 0.3 3.2 8.0.3 2 6 3.5 5 +5 +50-20 +50 630 nm mm µa µa 300 µa/lm 400

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

29 1 29 1 K O TO (J-PARC E14 ) BHCV K O TO J-PARC K L π ν ν BHCV BHCV K L π ν ν BHCV 99.5% BHCV CF 4 MWPC BHCV 99.8% BHCV 2 1 K O TO 4 1.1........................................ 4 1.2 K L π ν ν................................

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = 8 8.1 8.1.1 1 Chadwick [ 1 ] 1919,, electron number Q 0.0 0. 0.4 0.6 0.8 1.0 kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = E γ φ φ E e X 153 154 8, 3 H 3 He, ( ) 3 H( 1 ) 3 He(

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

09_organal2

09_organal2 4. (1) (a) I = 1/2 (I = 1/2) I 0 p ( ), n () I = 0 (p + n) I = (1/2, 3/2, 5/2 ) p ( ), n () I = (1, 2, 3 ) (b) (m) (I = 1/2) m = +1/2, 1/2 (I = 1/2) m = +1/2, 1/2 I m = +I, +(I 1), +(I 2) (I 1), I ( )

More information

306 [7] GeV TeV PAMELA 100 GeV PAMELA AMS GeV [8] TeV [9] PAMELA[10] AMS BESS-Polar 95 [11]AMS 1.3 AMS AMS rigidity TOFTime Of Flight TRDE

306 [7] GeV TeV PAMELA 100 GeV PAMELA AMS GeV [8] TeV [9] PAMELA[10] AMS BESS-Polar 95 [11]AMS 1.3 AMS AMS rigidity TOFTime Of Flight TRDE 305 Alpha Magnetic Spectrometer (AMS) Sadakazu.Haino@cern.ch 2013 2 28 1 AMS 1.1 AMS AMS 60 600 1976 LEP L3 LEP GeV TeV 2011 5 AMS ISS ISS 2020 20 BESS [2] HEAT[3] AMS PAMELA [4] Fermi [5] 10 GeV 100 GeV

More information