Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1

Size: px
Start display at page:

Download "Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1"

Transcription

1 Peao-Jorda-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newto Leibiz Cauchy Daiell (1963) ( 4,200) 1

2 (1965) ( 2,600) (1966) (1972) ( 2,700) (1980) (1995) (2000) ( 2,500) (2000) ( 3,200) (2004) ( 3,600) (2005) ( 4,000) (2006) ( 4,000) P. Halmos, Measure Theory, Va Nostrad (1950) L.H. Loomis, A Itroductio to Abstract Harmoic Aalysis, Va Nostrad (1953) N. Bourbaki, Itégratio, Herma (1965) W. Rudi, Real ad Complex Aalysis, Academic Press (1970) H.L. Royde, Real Aalysis, 3rd ed., Pretice-Hall (1988) F. Riesz ad B. Nagy, Fuctioal Aalysis, Dover (1990) [ ] [ ] [ ] (F. Riesz ) [ ] Bourbaki ( Daiel ) [ ] W.H. Youg [ ] Riesz [ ] [ ] [ ] [ ] Fubii Riesz-Fisher [ ] [ ] [ ] [ ] 2

3 [Halmos] [Loomis] [ ] [ ] [Rudi] Daiell [Bourbaki] Riesz-Rado Daiell [Rudi] [Royde] Daiell Postscript 43 3

4 N 0 Z = {0, ±1, ±2,... }, R =, R + = [0, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f 0], [f 0] = {x X; f(x) 0} 1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arcta x x = ± y = ±π/2 R (exteded real lie) R = [, + ] A sup A, if A R A B = sup(a) sup(b), if(a) if(b). sup =, if = + {a } 1 sup{a ; 1} sup{a ; 2}... 4

5 lim sup a {a } (upper limit) (lower limit) lim if a lim if{a k ; k } R 1.1. {a } lim if a lim sup a a = lim a lim if a = a = lim sup for a R. {a } a j a k (j k) (icreasig sequece) a j a k (j k) (decreasig sequece) {a } a a a {a } a a a. a j < a k (j < k) {a i } i I a i [0, + ] i I {a i } i I (summable) (sum) a i = a i 0 ( a i ) 0 R i I i I i I I I = j J I j j J {a i } i Ij { i I j a i } j J a i = a i. i I j J i Ij 1. i I a i < + {i I; a i 0} [a, b] [a, b] : a = x 0 < x 1 < < x = b (mesh) = mi{x 1 x 0, x 2 x 1,..., x x 1 } f i = sup{f(x); x [x i 1, x i ]}, f i = if{f(x); x [x i 1, x i ]} S(f, ) = f i (x i x i 1 ), S(f, ) = f i (x i x i 1 ). i=1 i=1 5

6 1.2., S(f, ) S(f, ) S(f, ) S(f, ). S(f) = if{s(f, ); }, S(f) = sup{s(f, ); } Darboux (upper ad lower itegrals) S(f) S(f) 1.3. f : [a, b] R S(f) = S(f) b a f(x) dx f (itegral). Riema (1857) Darboux (1875) 2 Riema f 1.4. f : [a, b] R b a f(x) dx = lim 0 i=1 f(x j )(x j x j 1 ). (improper itegral) f(x) dx < + R 0 f(x) dx = + R lim R 0 f(x) dx 1.5. (i) (ii) (i) 0 si x 1 + x 2 dx. 6

7 (ii) 0 si x 1 + x dx (Bolzao). {a } 1 N N k k {a k } k R K K K 2.3. (X, d) K (compact) X a X B r (a) r > 0 (locally compact) R. (metric space) (metric) d : X X [0, + ) (i) d(x, y) = 0 x = y. (ii) d(x, y) = d(y, x). (iii) [ ] d(x, y) d(x, z) + d(z, y) (i) X = R d(x, y) = j=1 x j y j 2. (ii) * X B(X) d(f, g) = sup{ f(x) g(x) ; x X}. (iii) * X d(x, y) = { 0 if x = y, 1 if x y. X x δ x B(X) 2.5. * (X, d) sup{d(x, y); x, y X} < + M > 0 7

8 M d (K, d K ) X = K N d X (x, y) = d K(x, y ). 2. * K X 3. * K = {0, 1,..., p 1} K N t [0, 1] p 2.6. * X (i) A, B X A B (ii) K X 4. * (X, d) B r (a) = {x X; d(x, a) < r}, B r (a) = {x X; d(x, a) r} a X r > 0 (ope ball) (closed ball). B r (a) B r (a) B r (a) B r (a) (iii) 5. * a X B r (a) r > 0 A d(x, A) = if{d(x, a); a A} x X A X (distace) d(x, A) = 0 x A d(x, A) d(y, A) d(x, y), x d(x, A) 6. x, y X 2.7. * r > 0 K K r = {x X; d(x, K) r} K X K r r > 0 Proof. r > 0, x K, B r (x) is compact K {x } 1 B 1/ (x ) x x K B r (x) r > 0 d(x, x) r/2 1/ r/2 B 1/ (x ) B r/2 (x ) B r (x) 8

9 B 1/ (x ) B r (x) r > 0 K r/2 y K r/2 x K d(x, y ) 2r/3 x x K d(x, x) r/3 d(y, x) d(x, y ) + d(x, x) r B r (x) {y } K r/2 {a } 1 X a X (coverge) lim d(a, a) = 0 a {a } (limit poit) a = lim a Cauchy lim m, d(a m, a ) = 0. ɛ > 0, N, m, N, d(a m, a ) ɛ 7. * lim a = a, lim a = a a = a Cauchy (complete) R (completio) R Q (i) x X, ɛ > 0, δ > 0, y B δ (x) = f(x) f(y) ɛ. (ii) a, b R, [a < f < b] {x X; a < f(x) < b} 8. (i) (ii) f, g : X R Φ : R 2 R Φ(f, g) : x Φ(f(x), g(x)) f + g, fg, f g, f g 9. (a, b) a b, a b f (support) [f] [f 0] f(x) = 0 (x [f]) 10. [f + g] [f g] [f g] [f] [g], [fg] [f] [g]. (i) (ii) R f, g [fg] [f] [g] 11. f f(x) = 0 (x F ) F 9

10 X X C c (X) C c (X) f, g C c (X) = f g, f g, fg C c (X) 12 (F. Riesz). * (X, d) F h : F [0, + ) { h(x) if x F, f(x) = { } d(x, F ) sup h(y) d(x,y) ; y F if x F X 2.8. (X, d) f : X R δ > 0 f (the degree of uiform cotiuity) C f (δ) = sup{ f(x) f(y) ; d(x, y) δ} 13. f : R R M = sup{ f (x) ; x R} C f (δ) Mδ. 2.9 (Heie). f : X R (uiform cotiuity) Proof. δ = 1/ lim C f (δ) = 0. δ 0 ɛ > 0, δ > 0, x, y X, d(x, y) δ, f(x) f(y) > ɛ. x, y X, d(x, y ) 1, f(x ) f(y ) ɛ. {x } 1 x a y a f f(x ) f(y ) ɛ lim f(x ) = f(a) = lim f(y ) 14. R R (rectagular solid) [a, b] = [a 1, b 1 ] [a, b ] f : [a, b] R f(x) dx [a, b] [a,b] S(f, ) S(f, ) C f ( ) (b 1 a 1 )... (b a ) 10

11 15. * [a, b] f C c (R ) [f] [a, b] f(x) dx = f(x) dx R [a,b] [a, b] (i) C c (R ) f R f(x) dx (ii) f 0 R f(x) dx 0. (iii) y R (iv) T : R R f(x + y) dx = R R f(t x) dx = 1 det(t ) f(x) dx. R f(x) dx. R 16. * [a, b] R Φ : [a, b] R f : [a, b] R lim 0 j=1 f(x j )(Φ(x j ) Φ(x j 1 )) = b a f(t)dφ(t) Stieltjes X A (idicator fuctio) 1 A (x) = { 1 if x A, 0 otherwise. A R - A A A = 1 A (x) dx * X {x i } i 1 {r i } i 1 U = i 1 B ri (x i ) F X = R {x i } r i = r/2 i U i (x i r i, x i + r i ) = i=1 r = 2r 2i 1 11

12 3 X f : X R {f : X R} 1 x X, lim f (x) = f(x) f f (coverge poit-wise) f {f } (limit fuctio) {f } x {f (x)} (mootoe sequece) {f } f f f f f {f } f f : X R f = sup{ f(x) ; x X} [0, + ] f f < + f f (coverge uiformly) lim f f = 0 f (x) f(x) f f. lim ( a 1 p + + a p ) 1/p = a 1 a p f : [a, b] R f(x) dx (b 1 a 1 ) (b a ) f. [a,b] 3.2. f f (uiformly) lim [a,b] f (x) dx = [a,b] f(x) dx * X f (Dii). K {f } 1 x K, f (x) 0 lim f = 0 Proof. f 0 r > 0, N 1, N, f > r. 12

13 1 < 2 <... f j > r (j 1) f j > r x j X, f j (x j ) > r {x j } j 1 x j x X m 1 j 1 j m f m (x) = f m (x) f m (x ) + f m (x ) f m (x) f m (x j ) + f j (x j ) > f m (x) f m (x j ) + r. f m x j x (j ) f m (x) r m f : R m R f 0 lim R f (x) dx = 0. m 3.7. * f : X R (lower semicotiuous) (i) lim x = x lim if f(x ) f(x). (ii) x X, ɛ > 0, δ > 0, d(x, y) δ = f(y) f(x) ɛ. (iii) a R [f > a] f (upper semicotious) f 17. * 3.8. * Proof. f f α R [f > α] = 1 [f > α] [a,b], 1 (a,b], 1 [a,b), 1 (a,b) 3.9 (Baire). * X f : X (, ] {f : X R} 1 f (x) = if{f(x ) + d(x, x ); x X} (i) f (x) f (y) d(x, y) (x, y X). f Lipschitz (ii) f f f ( ). Proof. (i) x, y X ɛ > 0, x X, f(x ) + d(x, x ) f (x) + ɛ. f (x) f (y) f (x) (f(x ) + d(y, x )) d(y, x ) + d(x, x) ɛ d(x, y) ɛ. 13

14 ɛ > 0 f (x) f (y) d(x, y). x, y (ii) f f f f(x) x = a ɛ > 0, δ > 0, d(x, a) δ = f(x) f(a) ɛ. if{f(x) + d(x, a); d(x, a) δ}. > 0 δ + if z X f(z) f(a) ɛ d(x, a) δ = f(x) + d(a, x) if f(z) + δ f(a) ɛ. z X f (a) f(a) ɛ lim f f if f(a) ɛ if f(z). δ 19. * (ii) f(a) < + f(a) = + 4 X L f, g L = f g, f g L X (vector lattice) (f g)(x) = max{f(x), g(x)}, (f g)(x) = mi{f(x), g(x)}. L L + = {f L; f 0} 4.1. (i) R C c (R ). X C c (X). (ii) * N 1 X = {1, 2,..., N} N L. (iii) * X f [f 0] L. (iv) * S = {x = (x 0, x 1,..., x ) R +1 ; (x 0 ) 2 + (x 1 ) (x ) 2 = 1} C(S ). 20. f = f 0 f 0 L. L = L + L + 14

15 21. X L (i) L (ii) f L f 0 L. (iii) f L f L L I : L R L (Daiell itegral) (i) [Liearity] I(αf + βg) = αi(f) + βi(g), α, β R, f, g L. (ii) [Positivity] f 0 = I(f) 0. (iii) [Cotiuity] f 0 = I(f ) 0. L I (L, I) (itegratio system) 4.3. Dii (i) f C c (R ) I(f) = f(x) dx. R (ii) * {p 1,..., p N } I(f) = k 1,...,k f(k 1,..., k, )p k1... p k. (iii) * X L = C c (X) I(f) = x X f(x) (iv) * L = C(S ) I(f) = 0< x 1 f ( ) x dx x 22. * Φ : R R L = C c (R) Stieltjes I(f) = f(t)dφ(t) f g = I(f) I(g). f f = I(f ) I(f). 15

16 25. * L + f {h } 1 f =1 h = I(f) I(h ) =1 h L 26. * X C c (X) f 0 K = [f 1 ] g(x) = 1 1 Nd(x, K) g g K = 1 N 2.7 g C c (X) 0 f f g 4.4. X L L = {f : X (, + ]; a sequecef L, f f}, L = {f : X [, + ); a sequecef L, f f} L + = {f L ; f 0} (i) L = L L L L. (ii) α, β R +, f, g L = αf + βg, f g, f g L. (iii) α, β R +, f, g L = αf + βg, f g, f g L.. (i) f(x) = ± 0f(x) = (ii) L L ± L = C c (R ) A R (i) 1 A L A (ii) 1 A L A 28. f(x) = x/(x 2 + 1) C c (R) C c (R) 29. * L = C c (R ) L = {f : R (, ]; f } (i) 1 h C c (R ) (ii) f L Baire fh m f,m C c (R ) f,m fh (iii) f m = 1 m f,m f m f 30. * X L L L C(X) X L = C c (X) L L = L 16

17 4.7. L f, g lim f lim g lim f, lim g L lim I(f ) lim I(g ) Proof. f m lim g f m = lim f m g. (f m f m g 0) m 4.8. I : L (, + ] I(f m ) = lim I(f m g ) lim I(g ). I (f) = lim I(f ), f f, f L I : L [, + ) I (f) = lim I(f ), f f, f L 31. (well-defied) 4.9. L = C c (R ) I I (1 (a,b) ) = (b 1 a 1 )... (b a ) = I (1 [a,b] ). 32. * Φ : R R Stieltjes I : C c (R) R I (1 (a,b) ) = Φ(b 0) Φ(a + 0), I (1 [a,b] ) = Φ(b + 0) Φ(a 0) (i) I ( f) = I (f) for f L ( L = L (ii) I, I I f L L (f) = I(f) = I (f). I (0) = I (0) = 0 (iii) I, I α, β R + f, g L f, g L I (αf + βg) = αi (f) + βi (g) I I (iv) f, g L, f g I (f) I (g). Proof. (iv) f f, g g f g f g = g 17

18 4.11. f f L + {f L + } 1 f = =1 f I (f) = I(f ) = f L + f L + 1 I f = I (f ). 1 1 Proof. {f,m L + } f m f,m I (f ) = m I(f,m) f = m, f,m L + ( ) I f = I(f,m ) = ( ) I(f,m ) = I (f ) m, m L = C c (R) Q = {q } 1 ɛ > 0 A = 1(q ɛ/2, q + ɛ/2 ) R 1 A L. 1 A 1 1 (q ɛ/2,q +ɛ/2 ) I (1 A ) =1 2ɛ 2 = 2ɛ f : X R (upper itegral) (lower itegral) I(f) = if{i (g); g L, f g}, I(f) = sup{i (g); g L, g f} R = [, + ] if( ) = +, sup( ) = f g g L I(f) = Q R 1 Q Dirichlet I(1 Q ) = (i) 1 Q (x) = lim m lim (cos(πm!x)) 2 18

19 (ii) Darboux S(1 Q [a,b] ) = 0, S(1 Q [a,b] ) = b a 5.3. (i) I(f) = I( f) for ay f. (ii) I(λf) = λi(f) for 0 λ < +. I(0) = 0 (iii) f g I(f) I(g). (iv) f + g f(x) = ± g(x) = x X I(f + g) I(f) + I(g). (v) I(f) I(f). (vi) f L L I(f) = I(f). f L f L I (f) I (f) Proof. (i) (iv) (v) (iv) g = f (i) (ii) I(0) = 0 (vi) I(f) = I (f) (f L ) I(f) = Ī(f) (f L ) f L I(f) = I(f) = I(f). f L f f f L I (f) = lim I(f ) = lim I(f ) I(f). f L I(f) = I (f) I(f) = I(f). 34. (i) (iv) 5.4. f : X R (Lebesgue itegrable) I(f) = I(f) R L 1 f L 1 I(f) = I(f) R I(f) 4.10 (ii) 5.3 (vi) L = C c (R ) I L 1 L 1 (R ) 35. [a, b] f : [a, b] R I(f) = b a f(t) dt. ɛ > 0, S(f) ɛ I(f) I(f) S(f) + ɛ f : X R ɛ, f + L, f L, f f f +, I (f + ) I (f ) ɛ. f f f + I (f + ) I (f ) = I (f + f ) 0 0 f ± I (f ) I(f), I (f + ) I(f). Proof. I (f ) I(f) I(f) I (f + ) 19

20 5.6. (i) L 1 X L L (ii) I : L 1 R I(f) = I (f) = I (f) (f L L ). I : L 1 R I : L R Proof. f, g L 1 f +, g + L f, g L f f f +, g g g + f + g f + g f + + g + I (f + + g + ) I (f + g ) = (I (f + ) I (f )) + (I (g + ) I (g )) f + g L 1 I(f + g) = I(f) + I(g). λ > 0 λf λf λf + I (λf + ) I (λf ) = λ(i (f + ) I (f )) λf L 1 I(λf) = λi(f). f + f f ( f + L, f L ) I ( f ) I ( f + ) = I (f + ) I (f ) f L 1 I( f) = I(f). L 1 I L 1 f L 1 = f 0 L 1 f 0 f 0 f f + 0 f 0 f + f 0 I (f + 0) I (f 0) = I (f + 0 f 0) I (f + f ) f 0 I(f) = I(f 0) I (f + 0) 0 I(f) 0 f L L f f f + f ± L 5.3 (vi) I(f) = I(f) [I(f ), I(f + )] 5.7. f : R R f L 1 R lim f(t) dt < + R + R I(f) = R lim f(t) dt R + R f 0 f f f C c (R) + f (t) = f(t) ( t R ) R f (t) dt f(t) dt R 1 20

21 si t t R si t dt lim dt = π R R t 36. α > 0 0 ( ) 1 si t α dt 37. * ɛ > 0, f L 1, g L, I( f g ) ɛ X (L, I), Y (M, J) φ : X Y M φ L I(f φ) = J(f) (f M) M 1 φ L 1 I(f φ) = J(f) (f M 1 ) Proof. M φ L, I (f φ) = J 5.9. (i) φ : X Y L = M φ L 1 = M 1 φ I(f) = J(f φ) (f M 1 ) (ii) X (L, I), (M, J) L M, J L = I (M, J) (L, I) L 1 M 1 M 1 L 1 I A R C c (A) C c (R ) L 1 (A) L 1 (A) L 1 (R ) L 1 (A) L 1 (R ) 1 A = (a, b) b f(x) dx = a R f(x)1 A(x) dx. 8 A f(x) dx = A f(x)1 A (x) dx f L 1 (R ) y R f(x + y) x R f(x + y) dx = f(x) dx. R R 38. f L 1 (R ) λ > 0 f(λx) dx = λ R f(x) dx R 21

22 6 6.1 (subadditivity of upper itegral). f : X [0, + ] f = =1 f (f 0) I(f) I(f ). =1 Proof. I(f ) = + I(f ) < + ( 1) ɛ > 0 g L + f g, I(g ) = I (g ) I(f ) + ɛ 2 f g 4.12 g L + I ( g ) = I (g ) ( ) I(f) I g = I (g ) I(f ) + ɛ 2 = I(f ) + ɛ 6.2 (Mootoe Covergece Theorem). f L 1 f : X R f lim I(f ) < + I(f) = lim I(f ). Proof. I(f ) = I(f ) I(f) lim I(f ) = + I(f) = + f L 1. lim I(f ) < + f f 0 = =1 (f f 1 ) I(f f 0 ) I(f f 1 ) = I(f f 1 ) = (I(f ) I(f 1 )) = lim I(f ) I(f 0 ). =1 =1 =1 I(f) I(f 0 ) + I(f f 0 ) = I(f 0 ) + I(f f 0 ) lim I(f ) f f f L 1 I(f ) = I(f ) I(f) lim I(f ) I(f) I(f) lim I(f ) 6.3. I L 1 f L 1 f 0 I(f ) 0. (L, I) (L 1, I) 22

23 6.4 (Domiated Covergece Theorem). f L 1 g L 1 f g ( 1) if 1 f, sup 1 f, lim if f, lim sup f I(lim if f ) lim if I(f ) lim sup I(f ) I(lim sup f ) f = lim f f L 1 Proof. m I(f) = lim I(f ). g if f f m f f m f sup f g m m f m f if m f, f m f sup f m I if m f, sup m f L 1 I( if f ) = lim I(f m f ) lim I(f m ) I(f ) = if I(f m ) m I( sup f ) = lim I(f m f ) lim I(f m ) I(f ) = sup I(f ). m m I(g) I( if f ) if I(f ) sup I(f ) I( sup f ) I(g) m m m m lim if f, lim sup f L 1 I(g) I(lim if f ) lim if I(f ) lim sup I(f ) I(lim sup f ) I(g). domiated covergece theorem 6.5. (i) t 0 e x2 +tx dx = =0 t! 0 x e x2 dx. (ii) t > t > 0 d dt 0 =1 e tx2 dx = ( 1) x 2 e tx2 dx. 1 t = 1 x t 1 Γ(t) 0 e x 1 dx 0 23

24 40. f(x) (0 x 1) lim 0 f ( x ) e x dx 41. f L 1 (R ) f(x + y) f(x) dx y R 42. f L 1 (R ) R g fg 43. f L 1 (R) a > 0 a a f a (x) = f(x t)e at2 dt = f(t)e a(t x)2 dt π π f a lim f a(x) = 0, x ± f a (x) dx f(x) dx 7 L 1 L X M R X (mootoe class) M f g f(x) = lim f (x) g(x) = lim g (x) f, g M 7.2. S R X M S S M M M M S (the mootoe class geerated by S) M(S) Proof. S. S R X S S 1, S 1 S 2, S 3, S 4,... S M ( = 1, 2,... ). M S = S S (S ) 1, (S ) 2, (S ) 3, (S ) 4,... 24

25 (ordiary umber) 7.3. X L L M(L) Proof. f, g M(L) = f + g M(L) (i) [L + M(L) M(L)] f L L M(L) (ii) [M(L) + M(L) M(L)] g M(L) {g M(L); f + g M(L)} {f M(L); f + g M(L)} L M(L) (lim sup lim if) L 1 M(L) I : L 1 R (itegratio system) 45. X L, X L φ : X X L φ L M(L ) φ M(L) 7.5. (mootoe-complete) f : X R f L, f f lim I(f ) < + f L I(f ) I(f) L 1 M(L) L I : L R (mootoe-completio) f L, g L [f, g] = {h : X R; f h g} (i) M(L) [f, g] = M(L [f, g]) (ii) (L, I) f, g L M(L) [f, g] = L [f, g]. (iii) M(L) = [f, g] M(L). f M(L) f L, f + L f f f + f L,g L M(L) + = M(L + ) 25

26 Proof. f g (i) f f, g g (f, g L) M = {h M(L); (f h) g M([f, g] L)} (f h) g = f (h g) M h L (f h) g = lim lim (f m h) g ([f, g] L) m L M M = M(L) f h g (h M) h = (f h) g M([f, g] L) M(L) [f, g] M(L [f, g]). (ii) L [f, g] (i) M(L) [f, g] = M(L [f, g]) = L [f, g]. (iii) h M(L), f L, g L, f h g h 4.12 L M(L) h M(L) + h g g L (i) h M(L) [0, g] = M(L [0, g]) M(L + ) M(L + ) M(L) + M(L) + L X L + M(L)+ = M(L + ) (i) L = C c (R ) 7.7. (L, I) M(L) + = L+ L1 M(L) = L Proof. f M(L) + f f (f M(L) + ) (iii) f g g L L h sup g = lim g 1 g 1 L f h h h h L + f = f h (ii) f M(L) [0, h ] = L [0, h ] L + f f f L +. f L 1 M(L) (±f) 0 L 1 M(L) + L + g, h L + g (f 0), h ( f) 0 I(g ) I(f 0) < +, I(h ) I(( f) 0) < + 26

27 f 0 = lim g, L + f = f 0 ( f) 0 L. ( f) 0 = lim h 7.8. (L, I) M(L) + = (L1 M(L)) +. f M(L)+ I(f) = I(f) f f f L 1 M(L) + f I(f ) I(f) = I(f) 47. M(L) = (L 1 M(L)) 7.9. I M(L) + I(f) = lim I(f ), f f, f (L 1 M(L)) +. L 1 M(L) + L+ I. f I(f) = I(f) ± I(f) = I(f) = ± f α,β { x α e x β if 0 < x, f α,β (x) = + if x = 0 f M(C c (R)) + I(f) = { 2 β Γ ( ) 1 α β if α < 1, + if α (i) A X L- (L-measurable) 1 A M(L) L- M(L) (ii) L X M(L) 1 X M(L) σ- (σ-fiite) (L, I) L σ- σ X (i) X K C c (X)- (ii) C c (X) σ- X = 1 X (X X σ- (σ-compact) Proof. (i) 1 K 1/ ( 2.7) 1 1 (d(, K)) 1 K = lim (1 1 d(, K)) 27

28 K C c (X) (ii) (i) M = {f M(L) + ; [f 0] 1 K } {K } f M C c (X) + M = M(L + ) = M(L) + 1 X M(L) + [1 X ] = X = 1 K X = R C c (X) σ- σ L σ- M(L) σ- (σ-boolea algebra) (i), X M(L). (ii) {A } 1 M(L) = 1 A, (iii) A M(L) = X \ A M(L). 48. A M(L). 1. σ- σ- (σ-field) σ- (σ-rig) 8.5. L = C c (R ) M(L) 8.6. A M(L) I- (I-measure) A I [0, + ] A I = I(1 A ) A I = { I(1 A ) if 1 A is itegrable, + otherwise. L = C c (R ) I- (Lebesgue measure) I A 8.7. [a, b] R [a, b] = (b 1 a 1 )... (b a ). 49. (i) (i) T T (A) = det(t ) A 8.8. I- (i) I = 0. 28

29 (ii) A = A = A I = A I. 1 = σ- B 2 X [0, + ] µ (measure) (i) µ( ) = 0, (ii) {A } 1 B A m A = (m ) µ A = µ(a ) 1 σ- µ X = 1 X (µ(x ) < + ) σ- µ(x) < + (fiite measure) µ(x) = 1 (probability measure) X σ- B 2 X B µ (X, B, µ) (measure space) =1. 2 X X (power set) X 50. A B A µ(a 1 ) < + µ(a ) σ- L I M(L) σ- [ 7.6 (iii) ] X σ- B f : X R (i) a R, [f > a] B. (ii) a R, [f a] B. (iii) a R, [f < a] B. (iv) a R, [f a] B. {x X; f(x) > a} = [f > a] σ- B 2 X f : X R B- (B-measurable) (radom variable) f : X R {f(x); x X} (simple fuctio) S S M(S) B- Proof. f f(x) = {a 1 < < a m } A i [f = a i ] = [f a i ] [f a i ] B m f = a i 1 Ai, i=1 i A i 29

30 g S g = i,j A i B j b j 1 Bj, j=1 j B j f + g = i,j (a i + b j ) 1 Ai B j, fg = i,j a i b j 1 Ai B j, f g = i,j (a i b j ) 1 Ai B j, f g = i,j (a i b j ) 1 Ai B j M M {f } f f = [f a] = 1[f a] B, f f = [f a] = 1[f a] B. M(S) M. f M m if f(x) > m, f m, (x) = m + 2mj/ if m + 2m(j 1)/ < f(x) m + 2mj/ for 1 j, m if f(x) m f m, (x) f(x) 1 if m < f(x) m lim f m,(x) = f(x) if m < f(x) m. lim lim f m,(x) = f(x) m for ay x X M M(S) 53. B- {f : X R} 1 {x X; lim f (x) } B µ : B [0, + ] f µ([f = a]) < + (0 a R) µ- µ- S µ µ σ- M(S) = M(S µ ) f S µ f = i=1 a i 1 Ai (µ(a i ) < + ) I µ (f) = a i µ(a i ) i=1 I µ : S µ R σ- I µ (S µ, I µ ) µ f(x) µ(dx) 30

31 A B f(x) µ(dx) = 1 A (x)f(x) µ(dx) A 54. * f S µ f 0 ɛ > 0, I(f ) = I(1 [f ɛ]f ) + I(1 [f >ɛ]f ) ɛi(f 1 ) + f 1 µ([f > ɛ]) [f > ɛ] µ lim I(f ) ɛi(f 1 ) ( ɛ > 0) X σ- (L, I) f : X R M(L)- f ± = (±f) 0 M(L) +. f M(L) + Proof. f ± = 0 (±f) M(L) + I(f) = lim r 1+0 = r 0 r [r < f r +1 ]. I 1 X ((f ± f ± r)) 1 [f±>r] (σ- 1 X M(L) ) [f ± > r] M(L) [f > a] M(L) (a R) [f > a] M(L) ( a R) h = f ± [h > r] M(L) (0 r < + ) r > 1 Z [r < h r +1 ] M(L) h r r 1 [r <h r +1 ] M(L) + = h r h (r 1) h M(L) + (h = f ±) 55. h r (x) = r r < h(x) r +1 (i) lim r 1 h r (x) = h(x) (x X). (ii) 1 < s < r h r h s (L, I) (X, M(L), µ) (S µ, I µ ) (L, I) (S µ, I µ ) M(S µ ) = M(L) (i) M(L)- f f α M(L) + (α > 0) (ii) M(L) f, g M(L) 4fg = (f + g) 2 (f g) 2 M(L). 31

32 56. (i) I µ L 1 L 1 (X, µ) * C c (R ) Proof. µ C = µ((0, 1] (0, 1]) µ m = 1, 2,... µ((0, 1/2 m ] (0, 1/2 m ]) = C 2 m = (0, 1/2m ] (0, 1/2 m ] f f(x) µ(dx) = C f(x) dx g C c (R ) f C c (R ) 57 (Chebyshev s iequality). f(x) α dx r α µ([ f r]). X * R T Z T = Q T = Z + θz (θ Q). R/T W W [0, 1) (wild set) W (W + t + Z) [0, 1) = W (t T ) Z t < + 1 (W + t + Z) [0, 1) = (W + t 1) [0, t ) (W + t ) [t, 1) (W + t + Z) [0, 1) = (W + t) [ + 1, t + 1) + (W + t) [t, + 1) = W + t = W R = ṫ T/Z (W + t + Z) [0, 1) = ṫ T/Z (W + t + Z) [0, 1) 1 = ṫ T/Z W

33 f : X R I( f ) < I((±f) 0) < I(f) = I(f 0) I(( f) 0) R ξ (expectatio) (mea) ξ f : X C Rf If f I(f) = I(Rf) + ii(if) f : X C f f f I(f) I( f ) Proof. I(f) = I(f) e iθ I(f) = I(Rf) cos θ + I(If) si θ = I ( (Rf) cos θ + (If) si θ ) I( f ) 9.3. e x2 +itx dx = πe t2 /4 59. f : R C a > 0 x R a f a (x) = f(x t)e at2 dt π C 9.4. f : X R I( f ) = 0 (ull fuctio) A (ull set) 1 A 1 A M(L) I(1 A ) = 0 N(I) 9.5. (i) R (ii) Cator (iii) R 60. R 33

34 9.6. (i) N(I). (ii) N N(I) (iii) {N } 1 =1 N (i) f M(L) [f 0] M(L) I( f ) = 0 (ii) f M(L) + I(f) < + [f = + ] M(L) Proof. (i) f (1 [f 0] ) f ( f ) 1 = 1 [f 0] I( f ) = lim I( f (1 [f 0]) lim I(1 [f 0]) I(1 [f 0] ) = lim I(( f ) 1) lim I( f ). (ii) A = [f = + ] 1 A f ( = 1, 2,... ) A I I(f) (i) N(I) M(L) f N(I), g M(L) = fg N(I). (ii) f, g L 1 I( f g ) = 0 N f(x) = g(x) (x N) (0,1] f(x) dx, [0,1] f(x) dx 9.9. f, g : X R [f g] f = g (a.e.) a.e. almost everywhere N 1, N 2 f j : X \ N j R (j = 1, 2) f 1 + f 2 X \ (N 1 N 2 ) f 1 (x) + f 2 (x)

35 9.10. Dirichlet 63. f g L 1 M(L) f = g (a.e) L 1 L 1 M(L) f(x) = ± x {f } 1 I( f ) < + 1 N (i) X \ N f (ii) x X \ N f(x) < +. f(x) = f (x) (x N) f I(f) = I(f ) Proof. f j N j f j (x) = f j (x) (x j N j ) 0 f j f M + 1 I f = I( f ) = I( f ) < f (x) = + 1 x N 0 N = 0 N j x N f(x) = 1 f (x) = 1 f (x) {q ; 1} f(x) = 1 e 3 (x q ) 2 35

36 x R f(x) dx = π 3 < +. (i) L 1 L f 1 = I( f ) (ii) L 1 = L 1 L L 1 L f L 1 f ± L 1 L N f(x) = f + (x) f (x) (x N) Proof. (ii) L f f I(f f) 1/2 f,m L f,m f (m ), I(f f,m ) 1 2 m+ 0 I(f,m f,m 1 ) = I(f f,m 1 ) I(f f,m ) 1 2 m = 2 2 m+ m, 1 (f 1,m f 1,m 1 ) lim f = f 0 + (f f 1 ) 1 = f 0,0 + (f 0,m f 0,m 1 ) +,0 f 1,0 ) m 1 1(f + (f,m f,m 1 ) (f 1,m f 1,m 1 ) m, 1 m, 1 I( f,0 f 1,0 ) I( f,0 f ) + I( f f 1 ) + I( f 1 f 1,0 ) 6 2 f 0,0 = 0 f 0,0 0 ( f 0,0 ), f,0 f 1,0 = 0 (f,0 f 1,0 ) 0 (f 1,0 f,0 ) f(x) = lim f (x) (a.e. x X) (ii) f ± L 1 L f + = 0 f 0,0 + (f 0,m f 0,m 1 ) + 0 (f,0 f 1,0 ) + (f,m f,m 1 ) m 1 1 m, 1 f = 0 ( f 0,0 ) + 0 (f 1,0 f,0 ) + (f 1,m f 1,m 1 ) 1 m, 1 (i) f L 1 lim m lim sup I( f m f ) = 0. 36

37 { k } k 1 I( f k f k+1 ) 1/2 k f = lim k f k = f 0 f f k f f 0 + (f k f k+1 ) k=0 f k f k+1 L 1 k=0 0 = lim I( f f k ) = lim I( f f ). Riesz L 1 L = {f; f L, f f, sup I(f ) < + }, 1 I(f ) I(f) (ii) L 1 f = f + f I(f) = I(f + ) I(f ) 1 [Riesz-Nagy] [ ] [ ] 9.14 ( (the law of large umbers)). * (X, µ) {ξ } 1 (i) { ξ } 1 Cesaro (ii) σ 2 = (ξ ξ ) 2 {σ} 2 1 Cesaro (iii) {ξ (x) ξ } 1 {ξ } Cesaro ξ 1 (x) + + ξ (x) ξ ξ lim = lim (µ-a.e. x X). Proof. η = ξ ξ η 1 (x) + + η (x) lim = 0 (µ-a.e. x X). 1 (η 1 (x) + + η (x)) 2 µ(dx) = 1 1 j,k η j (x)η k (x) µ(dx) = σ σ 2 σ σ 2 sup < + 1 ( ) 2 η1 (x) + + η k 2(x) µ(dx) < +. k=1 k 2 k=1 1 k 4 (η 1(x) + + η k 2(x)) 2 < + 37 (µ-a.e. x X),

38 η 1 (x) + + η lim 2(x) m m 2 = 0 (µ-a.e. x X) 1 m 2 < (m + 1) 2 m 1 η 1 (x) + + η (x) η 1 (x) + + η (x) m 2 η 1 (x) + + η m 2(x) m 2 + η m 2 +1(x) + + η (x) m 2 η 1 (x) + + η m 2(x) m 2 + η m 2 +1(x) + + η (m+1) 2(x) m 2 η 1 (x) + + η m 2(x) m 2 + (m + 1)2 m 2 m 2 sup η k (x) k 1 (m ) (Borel s ormal umber theorem). * N 2 X = {0, 1,..., N 1} N {p j = 1/N} 0 j N 1 X µ N X = {0, 1,..., N 1} N x = (x k ) k 1 x = N k x k [0, 1] d 1, d 2,..., d m 1 {0, 1,..., N 1}, d m {0, 1,..., N 2} x k = d k (1 k m) ξ (j) k ξ (j) k = 1/N N 1 d N m d m x N 1 d N m+1 d m 1 + N m (d m + 1). : X {0, 1} (0 j N 1, k 1) ξ (j) k (x) = f (j) k f (j ) k = (ξ (j) k 1/N)(ξ (j ) k 1/N) = { 1 if x k = j, 0 otherwise k=1 1 N if k k, 2 1 N if k = k, j = j, 0 if k = k, j j. 0 if k = k, N 1 N if k = k, j = j, 2 1 N if k = k, j j. 2 j {0, 1,..., N 1} {ξ (j) k } k 1 lim ξ (j) 1 (x) + + ξ(j) (x) = 1 N 65. * N = 10 (µ-a.e. x X) 38

39 10 σ- π : Ω X Ω σ- F X (L, µ) x X π 1 (x) (L x, µ x ) f F (i) x X, f π 1 (x) L x (ii) f(ω) µ x (dω) x L π 1 (x) (F, (L, µ), {(L x, µ x )}) (fibered itegratio system) I(f) = µ(dx) µ x (dω) f(ω) X π 1 (x) F σ- (L X, I X ), (L Y, I Y ) µ X, µ Y S X, S Y { } S X S Y = f i g i ; f i S X, g i S Y i=1 f g : X Y R (f g)(x, y) = f(x)g(y) (i) S X S Y X Y (ii) f S X S Y x X Y f(x, y) S Y I Y Y f(x, y) µ Y (dy) x S X X Y (iii) f S X S Y ( ) f(x, y) µ Y (dy) µ X (dx) = X Y Y ( X ) f(x, y) µ X (dx) µ Y (dy). (iv) I(f) I : S X S Y R S X S Y 66. L X L Y (repeated itegratio system) X, Y * X, Y L X = C c (X), L Y = C c (Y ) C c (X Y ) M(S X S Y ). 39

40 Proof. X Y d(x, y; x, y ) = max{d X (x, x ), d Y (y, y )} B r (x, y) = B r (x) B r (y) f C c (X Y ) K r > 0, x 1, x 2,..., x K, r > 0, fiite F K, K B r (x j ). j=1 K B r (y). y F K {x j } j 1 x 1 K, x 2 B r (x 1 ), x 3 B r (x 1 ) B r (x 2 ),... d(x i, x j ) r (1 i < j) {x j } K f ɛ > 0, δ > 0, x 1,..., x K, x K, i 1, d(x, x i ) < δ, f(x) f(x i ) ɛ. B i = B δ (x j ) X = (B 1 B c 1) (B B c ) X = 2 j=2 A j (B 1 B ) c 2 j 2 a j = x i (x i A j ) { f(a j ) if x A j (2 j 2 ), f ɛ (x) = 0 if x (B 1 B ) c f ɛ S X S Y f f ɛ ɛ (π : Ω X, F, (L, µ), {(L x, µ x )}) (i) f M(F ) + x X f π 1 (x) M(L x ) + f(ω) µ x (dω) π 1 (x) x M(L) + I(f) = X ( f(ω) µ x (dω) π 1 (x) ) µ(dx). (ii) f M(F ) F 1 N X x X \ N f π 1 (x) M(L x ) L 1 x X \ N x f(ω) µ x (dω) 40 π 1 (x)

41 M(L) L 1 ( ) I(f) = f(ω) µ x (dω) µ(dx). X π 1 (x) Proof. (i) F σ- 1 Ω M(F ) + φ F + 1 Ω φ 7.6 (iii) φ F + φ φ ϕ = 1 Ω φ ϕ M(F ) F 1 ϕ 1 Ω [0, ϕ ] M M F [0, ϕ ] ϕ φ φ F M M(F ) [0, ϕ ] f M(F ) + f = f ϕ f M(F ) [0, ϕ ] (i) f f f (ii) f = f 0 ( f) 0 f M(L) + (i) ( ) 9.7 (ii) f(ω) µ x (dω) π 1 (x) µ(dx) = I(f) < Ω = R 2, X = R, X = R, π : Ω (t, x) t X, F = C c (Ω), L = C c (X), π 1 (t) = {t} R = R L t = C c ({t} R) = C c (R), { 1 µ t (dx) = 4πt e x2 /4t dx if t > 0, δ(x) otherwise, I(f) = dt R f(t, x) µ t(dx) (Lebesgue-Fubii-Toelli). F = S X S Y I (i) M(L X ) M(L Y ) = M(S X ) M(S Y ) M(F ) (ii) f M(F ) + x X f(x, ) M(L Y ) + M(L X ) + I(f) = X Y X µ X (dx) µ Y (dy)f(x, y). Y Y f(x, y) µ Y (dy) x (iii) f M(F ) F 1 N X X x X \ N X f(x, ) M(L Y ) L 1 Y f(x, y) µ Y (dy) x M(L X ) L 1 X Y I(f) = X Y X µ X (dx) µ Y (dy)f(x, y). Y 41

42 10.6 ( ). f L 1 (R m+ ) N R m x R m \ N f(x, ) L 1 (R ) R m \ N x f(x, y) dy R L 1 (R m ) ( ) f(x, y) dxdy = f(x, y) dy m+ R R m R e t e tx2 dtdx = e t e tx2 dxdt = C 0 0 dx. 1 x dx = π 2, e t 1 t dt = 2C 2. C = 0 e y2 dy = e t 1 t dt. 67. t > * α R, β > 0 0 R e x β t x α dx = 0 e xy si x dxdy tx si x e x dx = π 2 arcta t ( ) βγ(/2) Γ α β if α <, + if α. { 2π / dxdy < + x y α α 70. f : R C a > 0 a f a (x) = f(x t)e at2 dt π lim x ± f a (x) = 0 lim f(x) f a (x) dx = 0. a + 42

43 11 Postscript Dieudoe Rado-Nikodym 43

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a +

3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a + I 6 I. I. f a I 3. fx = fa I a. fx fx 45 + I f I I I I f I a 6 fx fa. x a f a f a I I 7.. f a f a F, G F x = α, Gx = β F x ± Gx = α ± β, F xgx = αβ * 5 /5 5 5 a iterval; a ope a closed iterval. a fuctio.

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

II

II II 2009 1 II Euclid Euclid i 1 1 2 7 3 11 4 18 5 20 6 22 7 26 8 Hausdorff 29 36 1 1 1.1 E n n Euclid E n n R n = {(x 1,..., x n ) x i R} x, y = x 1 y 1 + + x n y n (x, y E n ), x = x, x 1/2 = { (x 1 )

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( ) 1 (Introduction) 1 1.1... 1 1.2 Riemann Lebesgue... 2 2 (Measurable sets and Measures) 4 2.1 σ-... 4 2.2 Borel... 5 2.3...

More information

I

I I io@hiroshima-u.ac.jp 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3) Lebesgue (Applications of Lebesgue Integral Theory) (Seiji HIABA) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

(JAIST) (JSPS) PD URL:

(JAIST) (JSPS) PD URL: (JAIST) (JSPS) PD URL: http://researchmap.jp/kihara Email: kihara.takayuki.logic@gmail.com 2012 9 5 ii 2012 9 4 7 2012 JAIST iii #X X X Y X

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information