Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Size: px
Start display at page:

Download "Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))"

Transcription

1 Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) s00x0427@ip.media.kyoto-u.ac.jp 1 1

2 Van der Pol Bergers 2 KdV 2

3 Fourier Lax Kreiss van der Pol / / Poisson

4 4.6.2 x Burgers Burgers KdV Laplace Poisson Lax Kreiss Bergers KdV

5 y(t) di y (i = 0, 1,, p) dti y (ordinary differential equation) u i u(x 1, x 2,, x n ) (i = 0, 1,, p) x j1 x j2 x ji u (partial differential equation) d2 r dt 2 = ω2 x 2 2 5

6 (1) (2) (3) 3 t R : : : : : dx dt = x d 2 x dt = x 2 dx dt = x2 + p(t)x + q(t) d 2 x dt + 1 ) dx (1 2 t dt + n2 x = 0 t 2 d 2 x dt + 2tdx 2 dt + 2nx = 0 : (1 t 2 ) d2 x dt + 2tdx + n(1 + n)x = 0 2 dt : x(1 x) d2 y + (γ (α + β + 1)x)dy dx2 dx αβy = 0 Painlevé 3 [ ] [ ] 6

7 Painlevé P : P : P : P : P : P : d 2 y = 6y 2 + t dt 2 d 2 y = 2y 3 + ty + α dt 2 d 2 y = 1 ( ) 2 dy 1 dy dt 2 y dt t dt + 1 t (αy2 + β) + γy 3 + δ y d 2 y = 1 ( ) 2 dy + 3 dt 2 2y dt 2 y3 + 4ty 2 + 2(t 2 α)y + β y ( d 2 y 1 = dt 2 2y + 1 ) ( ) 2 dy 1 dy (y 1)2 + y 1 dt t dt t 2 d 2 y = 1 ( 1 dt 2 2 y + 1 y ) ( ) 2 dy y t dt y(y 1)(y t) + t 2 (t 1) 2 ( αy + β y ) ( 1 t + 1 t ( α + β t y + γ t 1 t(t 1) + δ 2 (y 1) 2 (y t) 2 ) dy y t dt ) Newton Newton Newton : m d2 r dt 2 = F (r) : d 2 x dt 2 = ω2 x 7

8 : d 2 x dt + f(x)dx 2 dt + xg(x) = 0 van der Pol : dx 2 dt a(1 2 x2 ) dx + x = 0 (a > 0) dt : d 2 x dt + adx 2 dt + x x3 = 0 Hill : : d 2 u dt + q(t)u = 0 2 d 2 u dt + 2 (ω2 2ɛ cos t)u = 0 : dx = αx γxy dt dy = βy + δxy dt : : : dn = αn(1 λn) dt dx dt = y z dy dt = x + αy dz = b cz + xz dt dx = σ(x y) dt dy = γx y xz dt dz = bz + xy dt 8

9 3 2 3 or : [ ] : a : : b : u t = ν u u = µ u + f(x, t) t u t = ν 2 u x β u 2 x u t = ν 2 u x + 2 ku2 u t = ν 2 u + au ku2 x2 a Brown b 1930 Fisher Kolmogorov-Petrovskii-Piskov u u t = u + f(u) 9

10 : [ ] : a 1 : b : KdV : : : 2 u t = u 2 2 u = u + f(x, t) t2 [ ] 2 u t + k u 2 t 2 u c2 x 2 u t + c u x = 0 [1 ] u t + cu u x = 0 u t + cu u x ν 2 u x = 0 2 u t + 6u u x + 3 u x = 0 3 a Heaviside b Navie-Stokes Laplace Poisson Laplace a : u = 0 P oisson [Laplace ] : u = f Helmholtz b : u + k 2 u = 0 Helmholtz : u k 2 u = 0 a Laplace b Schrodinger 2 φ + Eφ = 0 2m 10

11 : ρ 2 u = µ u + (λ + µ) grad div u + ρf t 2 : µ u (λ + µ) grad div u = ρf : ρ 2 ν t = (λ + 2 µ) 2 ν + ρg : ρ 2 u t 2 = 2 x 2 ( EI 2 u x 2 ) + f Schrodinger : i ( ) t φ = 2 2m + V (r) φ div E = ρ ε div B = 0 Maxwell : rot E + B t = 0 E rot B εµ 0 t = µ 0i v Eular : t + (v )v + 1 ρ grad p = f Navie Stokes : Eular Lagrange : Hamilton : v t + (v )v + 1 grad p ν v = f ρ d L L = 0 dt q i q { i qi = H p i p i = H q i Hamilton Jacobi : H (q, q S, t) + S Klien Gordon : Dirac : ( 1c µ=1 t = 0 t m2 c γ µ φ x µ + iκφ = 0 ) φ = 0 Einstein : R i j(x) 1 2 δi jr(x) = κt i j (1 i, j 4) [ ] : R i j(x) 1 2 δi jr(x) + Λδ i j = κt i j (1 i, j 4) 11

12 2 d 2 x dt 2 = ω2 x t 0 x(t 0 ) dx dt (t 0) n n (1): (2): (3): (1):Derichlet (2):Neumann (3): 1.2 Painlevé 12

13 2 (1): (2): (3): (4):

14 [0, 1] [ ] 14

15 Lax Fourier 2.1 Step f x f(x + x) f(x) x 2 x, D ) t t D D 2 D 1 D 15

16 (1): (2): (3): (4): 2.2 df f(x + h) f(x) (x) lim dx h 0 h f x f(x + x) f(x) x f x f(x) f(x x) x 1 2 f x f(x + x) f(x x) 2 x 16

17 2.1. df/dx f/ x f(x + x) f(x), x f(x) f(x x), x f(x + x) f(x x) 2 x, f(x) x f 0 x x x x + x x f(x) Taylor f(x + x) = f(x) + ( x) df ( x)2 d 2 f ( x)3 d 3 f (x) + (x) + dx 2! dx2 3! dx + 3 O(( x)4 ) Taylor f(x + x) f(x) x = df ( x) d 2 f (x) + dx 2! dx (x) + 2 O(( x)2 ) x x 1 f(x) f(x x) x f(x + x) f(x x) 2 x = df dx x d 2 f (x) 2 = df ( x)2 (x) + dt 6 dt (x) + 2 O(( x)2 ) d 2 f dx (x) + 2 O(( x)3 ) x 1 x 2 3f(x) 4f(x x) + f(x 2 x) 2 x 17

18 3f(x) 4f(x x) + f(x 2 x) 2 x = df ( x)2 d 3 f (x) dx 3 dx (x) + 3 O(( x)3 ) x 2 2f(x + x) + 3f(x) 6f(x x) + f(x 2 x) 6 x 2f(x + x) + 3f(x) 6f(x x) + f(x 2 x) 6 x = df ( x)3 d 4 f (x) + dx 12 dx (x) + 4 O(( x)4 ) x 3 f(x ± s x) (s = 0, 1, 2, ) Remark Remark d 2 f f(x + x) 2f(x) + f(x x) dx2 ( x) 2 Taylor f(x + x) 2f(x) + f(x x) ( x) 2 = d2 f ( x)2 d 4 f (x) + dx2 12 dx + 4 O(()4 ) x 2 f(x + 2 x) + 16f(x + x) 30f(x) + 16f(x x) f(x 2δx) ( x) 2 x KdV 1 18

19 Laplace 3 Laplace 1 u t (x, t) = 2 u (x, t) x [0, 1], t [0, T ] x2 u(0, t) = u(1, t) = 0 t [0, T ] u(x, 0) = sin x x [0, 1] [0, 1] sin x 0 5 Step u (x, t) 1 t u(x, t + ) u(x, t) 2 u(x + x, t) 2u(x, t) + u(x x, t) ( x) 2 u t (x, t) = 2 u (x, t) x2 u(x, t + ) u(x, t) = u(x + x, t) 2u(x, t) + u(x x, t) ( x) 2 1 [0, 1] N = 1/ x (j, k) (j x, k) (0 j N, k = 0, 1, 2, ) x,

20 (i, j) u u(j x, k) u k j u k+1 j u k j = uk j+1 2u k j + u k j 1 ( x) 2 u k+1 j = λu k j+1 + (1 2λ)u k j + λu k j 1 λ = ( x) 2 λ u k+1 j (k + 1) 3 k u k j 1 u k j u k j+1 20

21 x 2 x 3 x 1 = N x u k j u 0 j = sin (j x) (j = 0, 1, 2,, N 1, N) u k j u k 0 = u k N = 0 (k = 0, 1, 2, ) j = 0, j = N 2 2 C++ TeX Visual 21

22 λ 1/2 λ > 1/2 λ = ()/(δx) 2 1/2 λ 1/2 sin 0 λ < 1/2 λ > 1/2 λ δx Fourier Lax Kreis Lax

23 Burgers 1 Banach Key Word Banach {u k j } max j (u k j ) = u k C k u k C u k u k λ > 1/2 k C 7 /( x) 2 1/2 / 6 [ ],[ ] 7 23

24 2.4.2 Fourier Fourier u k+1 = Su k S S = m c m T m T f(x) T (f(x)) = f(x + x) m Z c m, x u k j = g n exp(iξj x) i = 1 ξ g x, T exp(iξj x) T exp(iξj x) = T exp(iξx) (j x = x ) = exp(iξ(x + x)) (T ) = exp(iξ x) exp(iξj x) T m exp(iξj x) = exp(iξm x) exp(iξj x) u k+1 = Su k S g k+1 exp(iξj x) = m c m g m exp(iξm x) exp(iξj x) g = m c m exp(iξm x) g S 1 S x x = h() k ξ 1 24

25 0 k T n, g n C C C = exp(kt ) (1 + KT/n) n (1 + K) n von Neumann von Neumann u k+1 = Su k S g g 1 + K() K g x, g 1 + K x = h() 2 S 1 u k+1 = S 0 u k S 0 = p C (0) p T p, S 1 = q C ( q1)t q u k j = g k exp(iξj x) S = S 1 1 S 0 g = p C(0) p exp(iξp x) q C(1) q exp(iξq x) 2 c m g k g ( )γ von Neumann γ = 1 + K K 1 von Neumann 2 Fourier 25

26 2.4.3 Lax Lax S t u(x, t) u(x, t + ) = Su(x, t) + O() ν Z >0 u(x, t + ) = Su(x, t) + O(() ν+1 ) ν f t u(x, t) E(t) u(x, t) = E(t)f(x) f 0 t T E(t)f K f K T 8 0 n = t T 0 f U(x, t) u(x, t) = {S n E(t)}f 0 U(x, t) t u(t, x) nk = t 0 n 0 n Lax 8 26

27 2.3. Lax ( ) u t = P u x u = P ( t x) u Lax Fourier Kreiss Fourier Fourier ξ x A(ξ, x) x A ξ x ξ, 0 < < τ, 0 m T A(ξ, x) m K von Neumann m Kreiss 27

28 2.4. Kreiss ξ, x( = h n n A(ξ, h) F (A): C A F A m C m (R):C R z > 1 z A F (A zi) 1 C R z 1 (S):C S, C B A F S (i) S, S 1 C S (ii) B = SAS 1 B = κ 1 B12 B 13 B 1n 0 κ 2 B 23 B 2n 0 0 κ 3 B 3n κ n κ 1 κ 2 κ n κ i 1 (i = 1, 2,, n) B ij C B (1 κ j ) (H): A F Hermite H C H C 1 H I H C HI A HA H n n A, B A B A B 28

29 f(t) p (p = 1, 2, ), δx 2 t δt u k j f k k (k + 1) 1 3 Newton

30 du (t) = λu(t) dt, du u log u = λt + C (t) = λdt u(t) = Ce λt (C ) u(t) 1 (u(t + ) u(t))/ u(t + ) u(t) = λu(t) u n+1 = (1 + λ)u n u n n u(0) = u 0 = a u n = (1 + λ) n a C = a u(t) = ae λt n = t(const.) 0(n ) ( lim u n = lim a 1 + λt ) n = ae λt 0 n n n=const. n = const. 0 t n = const. 0 u(t) u(t ) = λu(t) u n+1 u n = u n+1 n u n = a (1 λ) n 30

31 n = t(const.) 0(n ) ( lim u n = lim a 1 λt ) n = ae λt 0 n n n=const. u(t + ) u(t ) 2 = λu(t) u n+1 = u n 1 + 2λ()u n n + 1 n, n 1 2 u 1, u 0 2 u 0 = a u 0 u 1 u 0 u 1 u 1 2 2f(x + x) + 3f(x) 6f(x x) + f(x 2 x) 6 x u n+1 = 1 2 [ 6()u n 3u n + 6u n 1 u n 2 ] n + 1 n 2, n 1, n 3 u 0 u 1, u 2 = 0.1 =

32 q(t) 0 t 3.3 k m d 2 q dt 2 (t) + ω2 0q(t) = 0 ω 2 0 = k m 0 Hamilton dq p(t) = m 0 (t) 2 dt dp (t) = kq(t) dt dq dt (t) = 1 p(t) m 0 HamiltonianH(t) dh dt H(t) = 1 2m 0 p(t) kq(t)2 (t) = 0 32

33 p(t + ) p(t) = kq(t) q(t + ) q(t) = 1 p(t) m 0 p m+1 p m = kq m q m+1 q m = p m m 0 q m+1, p m+1 p m+1 = p m kq m q m+1 = q m + p m m 0 0 q(0) = q 0 0 p(0) = p 0 q m+1, p m+1 q m, p m q(t) H m (t) = 1 p 2 m + 1 2m 0 2 kq2 m p q p(t + ) p(t) = kq(t) q(t) q(t ) = 1 p(t) m 0 p m+1 = p m kq m q m+1 = q m + m 0 p m+1 q q m, p m p m+1 q m ω ω 0 1 H(t) dh (t) = 0 dt H(t + ) H(t) = 0 33

34 H(t + ) H(t) H(t) = 1 2m 0 p(t) kq(t)2 = 1 [ ] [ ] p(t + ) p(t) p(t + ) + p(t) m 0 2 [ ] [ ] q(t + ) q(t) q(t + ) + q(t) +k 2 0 p(t + ) p(t) = k (q(t + ) + q(t)) 2 q(t + ) q(t) = 1 (p(t + ) + p(t)) 2m 0 { p m+1 p m = k 2 (q m+1 q m ) q m+1 q m = 1 2m 0 (p m+1 + p m ) p m+1, q m+1 ) (1 ()2 4m 0 k p m k()q m p m+1 = ( ) 1 + ()2 4m 0 k ) (1 ()2 q m+1 = 4m 0 k ( 1 + ()2 4m 0 k + m 0 p m ) 3.4 dn (t) = αn(1 λn(t)) (α, λ 0) dt N(t) dn N(t) MN(t) dt M 34

35 M = a bn(t) N 2 ( ) 1 dn 1 N 2 (t) dt = α N(t) λ ( ) 1 n(t) = λ N(t) dn dt (t) = d ( ) 1 dt N(t) λ = 1 dn N 2 (t) dt = αn(t) n(t) = Ce αt N(0) = N 0 N(t) = 1 λ + ( N 1 0 λ ) e αt N(t) 1 λ 0 t N 0 0 < N 0 < 1/λ N(t + ) N(t) = αn(t)(1 λn(t)) N n+1 = ()αn n (1 λn n ) + N n α = λ = 1 N 0 = N = N = Step

36 N(t) = g(t)/f(t) 1 dg f dt + g d dt ( 1 f ) = α g f ( 1 λ f g ) 1 dg f dt g df f 2 dt = α g ( 1 λ g ) f f f 2 f dg dt g df dt = αg(f λg) f, g g(t + ) g(t) f(t + ) f(t) f g = αg(t)(f(t) λg(t)) g(t + )f(t) g(t)f(t + ) = α()g(t)(f(t) λg(t)) f(t) f(t)h(t), g(t) g(t)h(t) {g(t + )f(t) g(t)f(t + )} h(t + )h(t) = α()g(t)(f(t) λg(t))(h(t)) 2 f, g h(t) 2 h(t + )h(t) 3 g(t + )f(t) g(t)f(t + ) = α()g(t + )(f(t) λg(t)) f, g N 2 N n+1 = N n 1 ()α(1 λn n ) g(t + )f(t) g(t)f(t + ) = α()g(t)(f(t + ) λg(t + )) N N n+1 = (1 + ()α)n n 1 + ()α(1 λn n ) 36

37 3 g(t + )f(t) g(t)f(t + ) = 1 α() [g(t + )f(t) + g(t)f(t + )] α()λg(t)g(t + ) 2 N ( N n+1 = ()α) N n 1 1α() + ()αλn 2 n N 2 N(t + ) N(t ) 2 = αn(t)(1 λn(t)) N n+1 = 2α()N n (1 λn n ) + N n 1 1 = N 1 = 1.0 = 0.7 N = 1 N = 1 N = 0 N = 1 37

38 + van der Pol 3.5 van der Pol van der Pol Poincare-Bendixson dx 2 dt a(1 2 x2 ) dx + x = 0 (a > 0) dt 1 dx/dt = p(t) dx (t) = p(t) dt dp dt (t) = a(1 x2 )p x x, p x(t + ) x(t) = p(t) p(t + ) p(t) = a(1 x(t) 2 )p(t) x(t) { x n+1 = x n + ()p n p n+1 = p n + () [a(1 x 2 n)p n x n ] 38

39 a = 0.01 x 0 = 0.01, p 0 = 0.0 = 2.0 a = 10, x 0 = 0.01, p 0 = 0.0 = 0.5 a / 2 / 2 dx = αx γxy dt dy = βy + δxy dt x(t) y(t) x, y { x n+1 = x n + (αx n γx n y n ) y N+1 = y n (βy n δx n y n ) 0 39

40 α, β, γ, δ dx dt = y z dy dt = x + αy dz = b cz + xz dt x n+1 = x n ()(y n + z n ) y n+1 = y n + ()(x n + ay n ) z n+1 = z n + ()(b cz n + x n z n ) a = 0.2, b = 0.2, c = 5.7 xz b bx dx dt = y z dy dt = x + αy dz = bx cz + xz dt x n+1 = x n ()(y n + z n ) y n+1 = y n + ()(x n + ay n ) z n+1 = z n + ()(bx n cz n + x n z n ) 9 9 [ 2] 40

41 3 10 dx = σ(x y) dt dy = γx y xz dt dz = bz + xy dt x n+1 = x n + ()σ(x n y n ) y n+1 = y n + ()(γx n y n x n z n ) z n+1 = z n ()(bz n x n y n ) σ = 10, γ = 26, b = d2 u (x) + q(x)u(x) = f(x) (0 < x < 1) dx2 3 u(0) = 0, u(1) = a Derichlet du du (0) = b, dx dx (1) = c (Neumann ) du (0) = b, u(1) = a ( ) dx [ ] 41

42 1 100 x d 2 u dt 2 u(x + x) 2u(x) + u(x x) ( x) 2 q(x) = λ, f(x) = µx d 2 u (x) = λu(x) + µx (0 < x < 1) dx2 u(x + x) 2u(x) + u(x x) ( x) 2 = λu(x) + µx u m+1 2u m + u m 1 ( x) 2 = λu m + µm x u m+1 (2 + λ( x) 2 )u m + u m 1 = µm( x) 3 Neumann u 0 = 0, u N = a Derichlet u 1 u 0 u N u N 1 = b, = c (Neumann ) x x u 1 u 0 = b, u(1) = a ( ) x Derichlet {j x} (j = 0, 1,, N). (2 + λ( x) 2 ) 1 1 (2 + λ( x) 2 ) (2 + λ( x) 2 ) u 1 u 2.. u N 1 = µ( x) 3 2µ( x) 3.. (N 1)µ( x) 3 a 42

43 0 1 Derichlet u 0, u N 2 Derichlet u 1, u N 1 3 Neumann (2 + λ( x) 2 ) 1 1 (2 + λ( x) 2 ) (2 + λ( x) 2 ) u 1 u 2. =.. u N 1 u N b xµ( x) 3 2µ( x) 3.. (N 1)µ( x) 3 c x 0 1 Neumann 2 Neumann u 1,, u N

44 1 1 1 (2 + λ( x) 2 ) 1 1 (2 + λ( x) 2 ) (2 + λ( x) 2 ) u 1 u 2... u N 1 = b x µ( x) 3 2µ( x) 3.. (N 1)µ( x) 3 a 0 1 Neumann Derichlet 1 1 x

45 4 1 Lax u(t, x) = T (t)x(x) 11 [ ] [ ] [MKI] 45

46 2 4.2 u t (x, t) = 2 u (x, t) x [0, 1], t [0, T ] x2 u(0, t) = φ(t), u(1, t) = ψ(t) t [0, T ] u(x, 0) = f(x) x [0, 1] t x = λu k j+1 + (1 2λ)u k j + λu k j 1 u k 0 = φ(k), u k N = ψ(k) u 0 j = f(j x) u k+1 j λ = ( x) 2 λ (1) (2) / (3) (4) (1) 46

47 4.2.1 Fourier u k+1 = Su k S S T S = λt 1 + (1 2λ)T 0 + λt 1 S = m c m T m g g = m c m exp(iξm x) g g = λ exp(iξ x) + (1 2λ) + λ exp( iξ x) = 1 4λ sin 2 ( ξ x 2 von Neumann 1 K 1 4λ sin 2 ( ξ x 2 K 4λ sin 2 ( ξ x 2 ) 2 + K ) 1 + K ξ x/2 π/2 ξ λ K 4 ) λ 1 2 von Neumann / 1/2 47

48 (1) u t = k u + f (t > 0, x Ω R n, n = 1, 2, 3 ) u(t, x) Ω = ψ(t, x) Ω (Dirichlet 1 ) u(0, x) = ϕ(x) x Ω 4.1. [ ] u = u(t, x) u/ t = u + f(x, t) Dirichlet (1) f f 0 u t k u u(t, x) G T Γ T (2) f f 0 u t k u u(t, x) G T Γ T f = 0 Γ T (2) (2-1) t > 0 (2-2) t < 0 Fourier (2-3) t > 0 t > 0 C 48

49 { 1 x [ 1, 1] f(x) = 0 otherwise (2) (3) (4) x 2 5 (5) [ a, a] 0 t > 0 t > 0 Fourier 49

50 Fourier (4) (5) (5 ) x 0 x t > 0 x 3 / x x P P P A A B B x / x = 1 x AB ()/( x) 2 P λ 1/2 50

51 4.2.3 k u k+1 j u k j = λu k+1 j+1 2λuk+1 j + λu k+1 j 1 u k u k+1 1 2λ λ λ1 1 2λ λ λ λ 1 2λ u k+1 1 u k u k+1 N 1 = u k 1 + λφ((k + 1)) u k 2.. u ( N 1) k + λψ((k + 1)) g = λ sin 2 ( ξ x 2 ) g 1 N = 100 x = 0.01 /( x) 2 1/2 = = (N-1) u k+1 j = u k 1 j + 2λ(u k j+1 2u k j + u k j+1) 51

52 ( ) ( ) ξ x ξ x g = 4λ sin 2 ± λ sin g > 1 u k+1 j = u k j λ(uk j+1 2u k j + u k j 1) λ(uk+1 j+1 2uk+1 j + u k+1 j 1 ) u k u k+1 u k+1 g = 1 2λ sin 2 ( ξ x λ sin 2 ( ξ x 2 ) ) λ 1 4, 3 λ 1 6 1/4 1/6 ( x) 2 ADI :Alternating Direction Implicit Method u k u k+1 2 x u k+1/2 u k+1/2 = u k λ(( x)2 u k+1/2 + y 2 u k ) y u k+1 u k+1 = u k+1/ λ(( x)2 u k+1/2 + ( y) 2 u k+1 ) 2 g 1, g 2 g g = g 1 g 2 = g 1 g 2 = 1 2λ sin 2 ( η x λ sin 2 ( ξ x 2 ) ) 1 2λ sin 2 ( ξ x λ sin 2 ( η x 2 ) ) 1 52

53 u t + c u x = 0 (c > 0) u t 2 = c 2 u x 2 ( ) ( ) u u t + c u x t c u = 0 x 2 2 f, g u(x, t) = f(x ct) + g(x + ct) f(x ct) x u t + c u x = t, x t x t x t, x u(t +, x) u(t, x) u(t, x + x) u(t, x) + c = 0 u k+1 j = u k j c ( ) u k x j+1 u k j 53

54 2 1 u k+1 j (k + 1) 2 k u k j u k j+1 g = 1 c ( (exp(iξ x) 1) = 1 + c ) c x x x exp(iξ x) λ = / x = const. g 1 + cλ cλ g g ξ 1 + K cλ cλ t x u(t +, x) u(t, x) u k+1 j u(t, x + x) u(t, x x) + c = u k j c 2 ( u k x j+1 uj 1) k 3 1 = 0 54

55 u k+1 j (k + 1) 3 u k j 1 u k j u k j+1 k g = 1 c ( ) ( ) (exp(iξ x) exp( iξ x)) = 1 ic sin(ξ x) 2 x x g = ( ) c 2 sin 2 (ξ x) x λ = / x = const. max g = 1 + c 2 λ 2 > 1 λ ρ = /( x) 2 = const. g = 1 + c 2 ( x) 2 sin2 (ξ x) = 1 + c 2 ρ sin 2 (ξ x) c2 ρ K c 2 rho/2 von Neumann / x = const. x 2 t x u(t +, x) u(t, x) u k+1 j u(t, x) u(t, x x) + c = u k j c ( u k x j uj 1) k t, x = 0 u k+1 j (k + 1) 3 k u k j 1 u k j 55

56 g = 1 c (1 exp( iξ x)) = x ( 1 c x ) + c x exp( iξ x) g 1 cλ cλ 1 cλ = c x 1 λ = / x = const. cλ cλ c > 0 c > 0 c < 0 t, x / / 1 y = x ct 1 c > 0 f(x ct) x 1/c 56

57 1 P = (x, t) P 1/c x P = (x, t) t, x (x, t) / x / x /( x) 2 57

58 4.3.4, x 1 f u(x, t) = f(x ct) f / x 1/c 58

59 λ = / x λ = 1/2 3 u k+1 j = 1 2 (uk j+1 + u k j 1) c 2 x (uk j+1 u k j 1) u k+1 j = u k 1 j c x (uk j+1 u k j 1) u k+1 j = u k j 1 ( ) (u kj+1 u kj 1) ( ) 2 + c2 (u k j+1 2u k j + u k 2 x 2 x j 1) λ 1/c u t 2 = u

60 u(t +, x) 2u(t, x) + u(t, x) () 2 u k+1 j u(t, x + x) 2u(t, x) + u(t, x x) = c ( x) 2 = λ 2 cu k j ( 1 λ 2 c ) u k j + λ 2 cu k j 1 u k 1 j 2 2 (k + 1) k (k 1) (j 1) x (j + 1) x j x u t2 = u t [0, ), x [0, 1] u(x, 0) = φ(x), t u (x, 0) = ψ(x) u(0, t) = 0, u(1, t) = 0 Neumann u k 0 = u k N = 0, u 0 j = φ(j x) u 1 u(t + ) u(t) 60 = ψx

61 u 1 j = u 0 j + ()ψ(j x) u(x, t) t Taylor u(x, t) = u(x, 0) + u ()2 2 u (x, 0) + t 2 t (x, 0) + 2 O(()3 ) t = 0 2 u t (x, 0) = u 2 c 2 x (x, 0) = 2 cu0 j+1 2u 0 j + u 0 j 1 ( x) 2 u 1 j = u 0 j + ψ(j x) + c 2 ( ) 2 (u 0 j+1 2u 0 j + u 0 x j 1) 61

62 c = 1 1/c u k+1 j = λ 2 cu k j ( 1 λ 2 c ) u k j + λ 2 cu k j 1 u k 1 j u k j = g k exp(iξj x) g 2 g 2 2g + 1 = 4g ( ) 2 ( ) ξ x sin 2 x 2 a = x sin ( ) ξ x 2 g 2 2(1 a 2 )g + 1 = 0 a 1 g = 1 2a 2 ± i2a 1 a 2 g = 1 a > 1 g g 1 g 2 g 1 g 2 = 1 g 1, g 2 1 ( ) ( ) a = ξ x x sin 2 (1) (2) x 1 a 1 g 1 = g 2 = 1 x > 1 a > 1 ξ max ( g 1, g 2 ) > 1 2 / [ ] 62

63 bababababababababababababababababababababababab 63

64 4.5 Laplace Poisson Derichlet Neumann Derichlet Neumann 64

65 Poisson Poisson 2 u x + 2 u = f(x, y) x (0, 1), y (0, 1) 2 y2 u(x, 0) = a(x) x (0, 1) u(x, 1) + u (x, 1) = 0 x (0, 1) y u(0, y) = 0 y (0, 1) u (1, y) = b(y) y (0, 1) x 1 OABC u(x, y) OA OC BC 0 AB C u(x, 1) + u (x, 1) = 0 y B u(0, y) = 0 u(1, y) = b(y) x O u(x, 0) = a(x) A x x,y y P ij = (i, j) = (i x, j y) 2 u i+1,j 2u i,j + u i 1,j ( x) 2 + u i,j+1 2u i,j + u i,j 1 ( y) 2 = f(i x, j y) 65

66 f x y x = y = h u i+1,j + u i,j+1 4u i,j + u i 1,j + u i,j 1 h 2 = f(ih, jh) (i, j = 1, 2,, N 1) u i,0 = a(ih) (i = 0, 1, 2,, N 1) u 0,j = 0 (j = 0, 1, 2,, N 1) u N,j u N 1,j = b(jh) (j = 1, 2,, N 1) h u i,n + u i,n u i,n 1 h = 0 (i = 1, 2,, N 1) 4 1 u i,j 4 (i + 1, j), (i, j + 1), (i 1, j), (i, j 1) 1 Poisson 66

67 x y x 0, y 0 [ ] L ( 2 = 1 h x y 2 u(x + h, y) 2u(x, y) + u(x h, y) u(x, y + h) 2u(x, y) + u(x, y h) h u(x, y) = + h 2 h 2 = 4 ( ) u(x + h, y) + u(x, y + h) + u(x h, y) + u(x, y h) u(x, y) h 2 4 (x, y) h 4 u(x, y) ) h u = 4 u(x, y) u(x, y) h2 67

68 h (x, y) (x, y) u u = 0 Laplace h u(x, y) = 0 4 Laplace Laplace 4.2. Laplace Laplace 2 1 d 2 u/dx 2 ( ) 2 u(x + h) u(x h) u(x) h 2 2 d 2 u/dx 2 = 0 ( 2 u(x + h) u(x h) h 2 2 ) u(x) = u(x) u 3 u t = u [resp. ] u u < 0[> 0] [ ] [ ] [ ] Laplace 68

69 1 2 u t 2 = 2 u x 2 u(x, t) 3 Poisson u = f(x, y, z) u(x, y, z) f f > 0[resp. < 0] u < 0[> 0] u u < 0[> 0] [ ] u(x, y, z) [ ]

70 u t (x, t) = u d 2 (x, t) + a(1 u)u x [0, 1], t [0, T ], a > 0, d > 0 x2 u(0, t) = U(1, t) = 0 t [0, T ] u(x, 0) = φ(x) x [0, 1], φ(0) = φ(1) = 0 1 x u 2 2 u(x, t) u(x, t) t x 2 u(x, t + ) u(x, t) u(x + x, t) 2u(x, t) + u(x x, t) = d + a(1 u(x, t))u(x, t) ( x) 2 u k+1 j = λu k j+1 + (1 2λ)u k+1 j + λu k j 1 + a(1 u k j )u k j λ = d/( x) 2 0 φ(x) 1 λ : [ a + 2d ] 1 > ( x) 2 14 [ 2] 70

71 4.3. (1) u/ t 0 ( ) 0 a dπ 2 lim t u(x, t) = 0 x (0, 1) ( ) dπ 2 < a lim t u(x, t) = W (x) x (0, 1) W (x) u, t = 0 1 t x 2 0 = d w j+1 2w j + w j 1 ( x) 2 + a(1 w j )w j w 0 = w N = 0 ξ 1 = 4d sin ( 2 x π) ( x) 2 2 ( ) 0 ξ 1 W j = 0 ( ) ξ 1 < a 0 W j W j > ( ) 0 a ξ 1 u 0 j µ > 0 u0 j = µ sin(j xπ) lim k uk j = 0 ( j = 0, 1,, N) ( ) ξ 1 < a u 0 j δ (0 < δ 1 ξ 1/a) u 0 j = δ sin(j xπ) lim k uk j = W j ( j = 0, 1,, N) W j lim ξ 1 = dπ 2 x

72 2 2 1 a 3 2λ 0 0 u o j a < 2λ < 1 a x d T = 1/ T λ 1/2 u k+1 j u k j = d uk j+1 2u k j + u k j 1 + a(1 u k+1 ( x) 2 j )u k j 2 () u k j uk+1 j 72

73 4.6.2 x x u t (x, t) = u d 2 x (x, t) + (R 2 1 a 1 u b 1 v)u x [0, 1], t [0, T ], a > 0, d > 0 v t (x, t) = v d 2 x (x, t) + (R 2 2 a 2 v b 2 u)v x [0, 1], t [0, T ], a > 0, d > 0 u(x, 0) = φ(x), v(0, x) = ψ(x) x [0, 1], φ(0) = φ(1) = 0 u v u u (t, 0) = (t, 0) = (t, 1) = (t, 1) = 0 x x x x t 0 t x 2 u k+1 j v k+1 j u k j v k j = d uk j+1 2u k j + u k j 1 ( x) 2 = d vk j+1 2v k j + v k j 1 ( x) 2 + (R 1 a 1 u k j b 1 v k j )u k j + (R 2 a 2 v k j b 2 u k j )v k j 4.5. R 1 = R 2 = R, a 1 = a 2 = a, b 1 = b 2 = b x 1 [0, 1]

74 4.7 Burgers Burgers Navie-Stokes 1 Burgers Burgers Burgers u t + cu u x ν 2 u x 2 = 0 Navie-Stokes 1 Navie-Stokes 1 Burgers Burgers u t + c u x ν 2 u x 2 = 0 u/ t = ν 2 u/ x u/ t + c u/ x 2 c 0 1 Burgers ν u t + cu u x = 0 Burgers Hopf u t + ( ) 1 x 2 u2 = 0 Burgers 1 u t + c u x = 0 74

75 Burgers u t + cu u x ν 2 u = 0 x (0, 1) x2 u(x, 0) = f(x) u(0, t) = u(1, t) = Burgers Burgers u t + cu u x = 0 3 t x x 1 c > 0 3 cu u/ x u u u k j u(x, t + ) u(t, x) u(x, t) u(x x, t) + cu(x, t) x = 0 u k+1 j u k+1 j u k j = u k j + cu k j u k j u k j 1 x = 0 [ 1 c ] x (uk j u k j 1) u k j uk+1 j u k+1 j u k j u k + cu k+1 j u k j 1 j x = 0 u k+1 j = u k j 1 + c x (uk j uk j 1 ) 75

76 u k j (uk j + u k j 1)/2 u k+1 j u k j u k+1 j = u k j c 2 + c uk j + u k j 1 2 uk j u k j 1 x = 0 ( ) (u k j + u k x j 1) (u k j u k j 1) 3 16 Burgers sin 16 [ ] 76

77 sin x 17 sin x 17 [ ] 77

78 4.7.3 Burgers 1 1 cuu x { u u x u uk j uk j 1 x if u > 0 u uk j+1 uk j x if u < 0 u k+1 j u k j + uk j + u k j 2 uk j u k j 1 x Burgers + uk j u k j 2 ν uk j+1 2u k j + u k j 1 ( x) 2 uk j+1 u k j x u u Lax-Wendorf [ ] = 0 Burgers 1 78

79 2 1 79

80 4.8 Blow-up Solution 18 u t = 2 u x + 2 u1+a (t, x) (0, ) (0, 1) u u (t, 0) = (t, 1) = 0 t (0, infty) x x u(0, x) = f(x) x (0, 1) t x 2 u k+1 j u k+1 j u k j u k+1 j = [ ( x) 2 + (uk j ) a u k 1 u k 0 x = uk j+1 2u k j + u k J 1 ( x) 2 + (u k j ) 1+a = 0, ] u k j + ( x) 2 uk j+1 + u k j 1 ( x) 2 u k N uk N 1 x u k 1 = u k 0, u k N = uk N =

81 ( ) 1 k = t min 1, max j u k j a 81

82 / 2 u t + c u 1 x = uv v t + c v 2 x = uv t, x 19 u k+1 j v k+1 j u k j vj k + c 1 u k j+1 u k j x + c 2 v k j+1 v k j x = u k j v k j = u k j v k j u k+1 j, v k+1 j u k+1 j v k+1 j = u k j c 1 x (uk j+1 u k j ) u k j v k j = v k j c 2 x (vk j+1 v k j ) + u k j v k j 2 20 c 1, c 2 19 [ ]

83 4.10 KdV KdV J.Scott-Russell Korteweg de Vries KdV u t + cu u x + ν 3 u x 3 = 0 N.J.Zabusky M.D.Kruskal KdV sech KdV 3 Zabusky-Kruskal 21 u(x, t + ) u(x, t ) 2 u(x + x) + u(x, t) + u(x x, t) = c 3 u(x + 2 x, t) 2u(x + x, t) + 2u(x x, t) u(x 2 x, t) 2 x u(x + x) + u(x, t) + u(x x, t) ν 2( x) 2 21 [ ]p

84 t u(x, t + ) u(x, t) u(x + x) + u(x, t) + u(x x, t) = c 3 u(x + 2 x, t) 2u(x + x, t) + 2u(x x, t) u(x 2 x, t) 2 x u(x + x) + u(x, t) + u(x x, t) ν 2( x) 2 u k+1 j = u k j c 6 x (uk j+1 + u k j + u k j 1)(u k j+1 u k x j 1) ν 2( x) 3 (uk j+2 2u k j+1 + 2u k j 1 u k j 2) KdV Derichlet [0, 1] 0 f(x) sin Zabusky,Kruskal sech 2, x, c, ν 84

85 2 = 0.001, N = 100, c = 1, ν = s 1 = 1, s 2 = 15, s 3 = 70, t 1 = 16, t 2 = 55, A = 1, B = 0.4 s 3 A s 1, s 2 2 B t 1, t 2 c ν KdV 85

86 bababababababababababababababababababababababab 86

87 Laplace Poisson 9.6 Lax Kreiss 9.7 Bergers KdV bababababababababababababababababababababababab 87

88 [ ] [ ] [ ] [ ] [MKI] [ ] 1977 [ ] 1969 [ 1] [ 2] [ ] [ ] 1994 [ ] [ ] [ ] SGC

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f : ( ) 2008 5 31 1 f(t) t (1) d 2 f(t) + f(t) = 0 dt2 f(t) = sin t f(t) = cos t (1) 1 (2) d dt f(t) + f(t)2 = 0 (1) (2) t (c ) (3) 2 2 u(t, x) c2 u(t, x) = 0 t2 x2 1 (1) (1) 1 t, x (4) 3 u(t, x) + 6u(t,

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

00 3 9 ........................................................................................................................................... 4..3................................. 5.3.......................................

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information