X線散乱と放射光科学

Size: px
Start display at page:

Download "X線散乱と放射光科学"

Transcription

1 8 X II (a) (b) (c) Photon Factory PF-AR SPring SASE SACLA

2

3 8 X II 7 I ) ) 7 X I z x y x y σ x σ y (FWHM) σ x 2.35σ y x σ x σ y σ x σ x σ y σ y (8.33) (8.35) σ p convolution x y Σ x = σp 2 + σx 2, Σ y = σp 2 + σy 2 (8.1) σ p x y Σ x = σ 2p + σ2x, Σ y = σ 2 p + σ2 y (8.2) (photon flux) F (photon flux density) D (brilliance ) B

4 306 8 X II F : photons/sec/0.1% bandwidth D : photons/sec/mrad 2 /0.1% bandwidth B : photons/sec/mm 2 /mrad 2 /0.1% bandwidth (brightness) D D nat z (ψ = 0) (7.32) (7.58) F N F D nat d2 N dtdw/w = d 3 N dtdωdw/w D nat dω (8.3) θ σ p z (ψ = 0) (8.4) F θ 2πσ p D nat,ψ=0 (8.5) 2πσ z (ψ = 0) F 2πσ 2 p D nat,ψ=0 (8.6) D eff z (ψ = 0) D eff,ψ=0 = σ p F D nat,ψ=0 = Σ y 2π θσy D eff,ψ=0 = σ2 p D nat,ψ=0 = Σ x Σ y F 2πΣ x Σ y (8.7) (8.8) (8.1) (8.2) B = D eff,ψ=0 2πΣ x Σ y = F (2π) 2 Σ x Σ y Σ x Σ y 1 d 2 N = (2π) 2 Σ x Σ y Σ x Σ y dtdw/w (8.9) 1 mm 2 1 mrad % 1 ma

5 µm 2 1 µrad , 6) (linear accelerator, ) ( 8.1) 3 v p v e MeV v p S (2.8 GHz) 1 m MeV 10 MeV S 2 C (5.7 GHz), 4 X (11.4 GHz) x, y

6 308 8 X II 8.2 (synchrotron) (microtron) (bending magnet) ( ) 8.2 C SPring π/88 (quadrupole magnet) ( 8.3) (sextupole magnet) (radiation loss) RF cavity klystron 8.4 TM 010

7 revolution time L, v c T 0 = L/c (8.10) revolution frequency f rev = 1/T 0 (8.11) RF f RF f RF = hf rev (8.12) h harmonic number) T 0 /h 1 (, bunch ) bucket, 1/f RF SOR-RING 7) SOR-RING SPring-8 ) 380 MeV 8 B 1 B 8 R 1 R 4 S 2 S 4 S 6 S 8 4 S 1 S 3 S 5 S 7

8 310 8 X II 8.5 (a) a-1 r m(d 2 r/dt 2 r(dθ/dt) 2 ) = evb rdθ/dt = v ( d 2 ) r m dt 2 v2 = evb (8.13) r 8.5 R x, y s (= vt) x(s) y(s) s z (8.13) 7.13 r = R + x (x R) d 2 x dt 2 = v2 ( 1 R + x 1 ) v 2 x R R 2 (8.14) t s(= vt) dx/dt = vdx/ds, d 2 x/dt 2 = v 2 d 2 x/ds 2 d 2 x ds 2 = x R 2 (8.15) d 2 y ds 2 = 0 (8.16) a-2 quadrupole magnet) 8.3 N S 2 xy xy = ±r0 2 ±x2 y 2 = K 2 B(ay, ax, 0) F ( ev ax, ev ay, 0)

9 d 2 x ds 2 = ea m x, d 2 y ds 2 = ea m y (8.17) a 0 N S a 0 x Focusing x Defocusing) F D 2 FDFD a-3 (x y ) d 2 x ds 2 + K x(s)x = 0, d 2 y ds 2 + K y(s)y = 0 (8.18) K x (s) K y (s) x, y K x (s) (8.15) (8.18) (betatron oscillation) x β (s) = W x β x (s) sin{ϕ x (s) + ϕ x0 } y β (s) = W y β y (s) sin{ϕ y (s) + ϕ y0 } (8.19) β x,y (s) (x, y ) 1, x, y β W x,y s ϕ x,y (s) β x,y (s) ϕ x0,y0 ϕ x,y (s) = s 0 ds β x,y (s) (8.20) 1 tune 2π f x,y = 1 ds 2π β x,y (s) (8.21) f x,y 1 (8.18) x y x x dx/ds x x W x β = β x (s) [ α x(s) sin{ϕ x (s) + ϕ x0 } + cos{ϕ x (s) + ϕ x0 }] (8.22) x β = W x γ x (s) sin{ϕ x (s) + ϕ x 0} (8.23)

10 312 8 X II 8.6 x, x α x (s) = 1 2 β x(s) γ x (s) = { 1 + α 2 x(s) } /β x (s) (8.24) α x, β x γ x Twiss) (8.19), (8.22) W x = γ x (s)x 2 + 2α x (s)xx + β x (s)x 2 { = 1 ( ) } β x x (s) x β x (s)x β x (s) 2 (8.25) (8.25) x, x 8.6 πw x s (Liouville) s πw x π W x s ϕ x0 x(s) ± W x β x x (s) ± W x γ x a-4 x E (s) x β (s) x(s) = x β (s) + x E (s) (8.26) x E (s) = η x (s) E E (8.27) η x (s) 1 energy dispersion function) η x (s) L E

11 B: QF QD: D O L L = α E E (8.28) α momentum compaction factor (dilation factor) α (7.4) E pc, p/p E/E (8.28) α > 0 a-5 (lattice) (Chasman-Green) 3 Double Bend Achromat ( ) η x a-6 ( ) closed orbit distortion COD steering magnet pf x + qf y = r (p, q, r: ) (8.29)

12 314 8 X II 8.8 (a) ( ) p i : p ph : p RF RF p f RF (b) ( ) 9) a-7 8) radiation damping radiation excitation ) ( 8.8(a)) ( 8.8(b)) 9) ε x (b) (x, y ) z

13 E ϕ radiation loss RF cavity U V RF U 0 = ev RF sin ϕ s (8.30) ϕ s ( ) π/2 < ϕ s < π p U 0 ϕ s ϕ s q U 0 ϕ s (synchrotron oscillation) 0 < ϕ s < π/2 E ϕ 8.10 E separatrix

14 316 8 X II 8.11 RF (bucket) ε max ε max /E RF RF bucket height (ϕ s ) a bunch ϕ (c) c-1 (8.25) W x W x < W x > 1/2, ε x 8.11 s (x, x ) x x σ βx = ε x β x, σ β x = ε x γ x = ε x /β x 1 + β 2 x /4 (8.31) σ E η x σ ηx = η x σ E /E, σ η x = η xσ E /E (8.32) σ x = ε x β x + η 2 x(σ E /E) 2, σ x = ε x γ x + η 2 x (σ E /E) 2 (8.33)

15 SPring-8 β x, β y η x ID/(Q/S/Q/S/Q)/BM/(Q/S/Q/S/Q/S/Q)/BM/(Q/S/Q/S/Q)/ID s = 0, 30 ε y ( ) ε x0 coupling constant κ (0 κ 1) ε x = ε x0 /(1 + κ), ε y = κε x0 /(1 + κ) = κε x (8.34) κ ε y ε x η x σ y = ε y β y, σ y = ε y γ y = ε y /β y 1 + β 2 y /4 (8.35) c-2 SPring β x, β y η x 8.12 (ID) 2 (BM) (Q) 10 (S) 7 6 nm rad 3 nm rad η x η x β x c-3

16 318 8 X II 8.1 SPring-8 (a) (b)-1 (b)-2 (c) σ E E E α f rev t = α E f rev E (8.36) t ϕ = 2πf RF t = 2πhf rev t = 2πhα E E (8.37) 8.10 Ω Ω 2 = 2πf RFαeV RF T 0 E cos ϕ s = αe V RF T 0 E (8.38) V RF V RF = V RF cos ϕ s T 0 σ t = α σ E (8.39) Ω E 8.10 σ E ϕ c σ t σ t ps c-4 SPring (= ) 4.79 µs 1.97 ns σ 13 ps, FWHM 31 ps 10 mm bunch impurity 10 10

17 (b)-1 (b)-2 (c) (b)-1 12 (b) (c) 4 + 1/ SPring-8 (a) (b) 10) c-5 1/e ( 1/2.7) H 2 CO RF (Touschek) RF c-6 (top-up: ) SPring % ( 8.14) 10)

18 320 8 X II ) 8.15 X 8.16 X X

19 X 12) X +, ( 8.17) X X (311) [011] [011] (311) (111), (511), (711) MOSTAB ( monochromator stabilization) 12) SPring W/mm 2 mm 2, (7.22) R 3 (7.55) λ 0

20 322 8 X II λ 0 ( ) (7.22) R ε 2 θ 3 ε γ 2 θ 3 (8.40) parasitic dedicated 100 nm rad 10 nm rad 1960 X (1.3 GeV) SOR-RING X SPEAR CHESS DESY KEK 1997 X X Photon Factory (PF X SRS ( ) NSLS ( ) KEK ( ) 3 km MR (Main Ring, 30 GeV) AR (Accumulation Ring, 6.5 GeV) 1987 AR PF-AR (Photon Factory Advanced Ring)

21 MR ESRF European Synchrotron Radiation Facility, 6 GeV APS Advanced Photon Source, 7 GeV SPring-8 Super-Photon ring-8 GeV 1997 Japan Synchrotron Radiation Research Institute, JASRI SPring JASRI JASRI 3 SPring GeV NewSUBARU 2000 SPring-8 1 GeV 1984 UVSOR 2003

22 324 8 X II UVSOR-II UVSOR-III 165 nm rad 27 nm rad 15 nm rad UVSOR-III 2 HiSOR HiSOR-II Rits SR 2006 X SAGA LS (1.4 GeV) NUSR 1.2 GeV ( 72 m) GeV GeV Swiss Light Source SOLEIL, DIAMOND Light Source, Australian Synchrotron SSRF, ALBA 2.3 km PETRA (12 GeV) PETRA III ( 6 GeV 1 nm rad) NSLS II 791 m ESRF 3 GeV (1.8 T, 50 m ) 0.55 nm rad MAX-IV Siam Photon Source, SORTEC SESAME BESSY SESAME Synchrotron-light for Experimental Science and Applications in the Middle East! Photon Factory PF-AR 1) Photon Factory 2.5 GeV Photon Factory (PF) 14, 15) 400 nm rad 36 nm rad 3 Photon Factory 8.6 KEK 68 m 50 m L = 187 m E = 2.5 GeV 3 GeV 2.5 GeV I = 450 ma

23 (1 GeV ) 13) ε x = 36 nm rad ε y 0.4 nm rad R = 8.66 m B = 1 T E c = 4.0 kev, λ c = 0.31 nm RF f RF = MHz f rev = c/l = 1.6 MHz /f RF = 2.00 ns σ 33 ps (rms) 10 mm

24 326 8 X II 8.18 PF PF-AR 16) PF-AR PF EMPW: MPW: VW: U: SGU: Bend: NE: NE NW: NW 17) 8.18 Photon Factory 2) PF-AR PF-AR 6.5 GeV Photon Factory 8.6 PF-AR 2.5 GeV 6.5 GeV L = 377 m f rev = 794 khz RF f RF = MHz 640 1/f rev = 1.30 µs, 62 ps (rms) ma 8.18 PF-AR (4) SPring ) SPring SPring m 1 GeV 396 m 8 GeV 1436 m 8 GeV 4.79 µs 100 ma 3.4 nm rad 0.2 %

25 Photon-Factory PF-AR 16) 8.7 < µm (RF) f RF = MHz f rev = MHz /f RF = 1.97 ns σ 13 ps, FWHM 31 ps (10 mm ) (3) c-4 ) (3) c-6 R = 39.3 m E c 28.9 kev m m 4 X 4.5 m ( 32 mm, 140) 25 m ( 32 mm 780) kev X 4.5 m photons/sec/mm 2 /mrad 2 /0.1% bandwidth 25 m kev 100 kev 120 kev 300 kev 0.3 kev GeV γ

26 328 8 X II 8.7 SPring-8 22) m m m 1 km 200 m RI (250 ev 2 kev) SPring Hz 0.3 µm (1436m 0.1/( ))

27 SPring-8 23) , 24) (Ultimate storage ring, USR) 25) λ/(4π) 100 % 2 3 SPring-8 SPring-8 II SPring-8 6 GeV 300 ma SPring-8 Double Bend Achromat (3) a θ /(2 44) 6 6-Bend Achromat 67 pm rad SPring nm rad 1/ kev 10 23

28 330 8 X II 8.20 (a) (b) SASE 8.2 X (1) 26) free electron laser, FEL 1977 Madey 3.4 µm 27) 8.20(a)

29 (a) (b) dp/dt F dε/dt F v dp dt = F, dε dt = F v (8.41) z B 0 y z x z z ( ) E r B r x F = e {E r + v (B 0 + B r )} (8.42) dε dt = ee r v (8.43) 8.21 A 0 B 0 ee r v A 0 E rx > 0, v x > 0 B 0 E rx < 0, v x > 0 E r x v x (λ 0 /2) (λ/2) A 0 A 1 B 0 B 1 ee r v A 1

30 332 8 X II 8.22 B 1 (λ 0 ) (λ) A 2 B 2 v z λ 0 /2 v z (7.51) (c v z ) λ 0 2 v z = λ 2 (8.44) λ = λ 0 K2 (1 + 2γ2 2 ) (8.45) λ γ ( K ) γ γ r (8.43) dε/dt γ γ r (γ γ r ) /γ r 8.22 γ γ r 1/4N N γ γ r optical klystron ( 8.20(a))

31 SASE (2) SASE 28) 50 nm 1 1 ( ) Self-Amplified Spontaneous Emission, SASE SASE (X-ray Free-electron Laser, XFEL) (1) p p x ε x p x /p 1/p 1/(γv) ε = ε n /(βγ) (8.46) ε n, 8.20(b) 8.23

32 334 8 X II XFEL/SPring-8 (EUV FEL) (a) SASE (b) (a) (b) 1/10, (buncher) 8.24 (chicane) ( 8.20(b)) SASE SASE 3) SASE ( ) XFEL/SPring-8 (EUV FEL) 800 nm nm

33 SACLA 30) 160 nm 8.25 SASE-FEL nm 2, 29) SACLA (SLAC) LCLS (Linac Coherent Light Source) 4 km 2 km 14.3 GeV 0.15 nm (DESY) European XFEL km, GeV nm FLASH 109 nm SPring-8 XFEL / SPring-8 (SACLA, SPring-8 Angstrom Compact Free Electron Laser) 31) 8.26 SACLA 8 GeV, 710 m CeB kev C (5.7 GHz) 40 MV/m S m 18 X 18 mm SASE Å X 3, 32, 33) 0.63 Å 8.8 SACLA

34 336 8 X II 8.8 SACLA X 32) 1 2 XFEL (EUV FEL) 250 MeV 1/32 15 mm nm 10 nm FEL X X XFEL,, 10 10,,, (Energy-Recovery Linac, ERL) ε (8.46) RF x, y 1 ps 100 fs ERL 8.27 RF

35 RF RF ERL (CW) ERL XFEL 34) α-al 2 O 3, ( ) 14.3 kev, 0.2 mm 0.07 mm 100 m ERL RF Cornell KEK 1983 PF ERL 35, 36) ERL (cerl : MeV) KEK ERL 5 GeV 10 pm rad 1 10 kev X ERL 5 GeV 3 GeV 5/3 17 pm rad VUV- 3 GeV

36 338 8 X II X X SASE-FEL SASE-FEL 100 Hz ERL 1.3 GHz 500 MHz SASE-FEL ERL,,. XFEL XFEL ) x, y z x = dx/dz, y = dy/dz x, y x, y rms (σ) x x, y y x x λ 4π, y y λ 4π (8.47) ( diffraction limit ) 4 (x, x, y, y ) V 4 V 4,min (λ/2) 2 V 4 = (2π) 2 x x y y (8.47) x = k x /k, y = k y /k ( ) 2 λ (8.48) 2 x k x 1 2, y k y 1 2 (8.49) ħ x p x ħ 2, y p y ħ 2 (8.50) (1) ( ω) t rms (σ) t ω

37 t ω ω λ 4πc (8.51) ( Fourier transform limit ) (x, x, y, y, t, ω) V 6 V 6 = (2π) 3 x x y y t w/w 1 c ( ) 3 λ (8.52) 2 V 6,min (λ/2) 3 /c (8.51) t ω 1 2 (8.53) ħ t E ħ 2 (8.54) (8.53) z = c t, ω = c k c k z z k z 1 2 (8.55) B (8.9) B = F (2π) 2 x x y y (8.56) Σ x x B V 4 F V 4,min F c F c = V 4,min B = ( ) 2 λ B (8.57) 2 F c F coherent fraction 1 ˆB V 6 N V 6,min photon degeneracy δ (8.59) δ = V 6,min ˆB = 1 c ( ) 3 λ ˆB (8.58) 2 3 X

38 340 8 X II (photons/sec/mm 2 /mrad 2 /0.1% band width) (ps) 8.28 SPring-8 (FEL) (ERL) X ERL FEL δ 1 FEL δ FEL ERL 38) FEL 3 10 FEL ps 100 fs FEL 100 Hz ˆB = N (2π) 3 x y x y t w/w (8.59) ESRF, APS, SPring-8 Swiss LS, SOLEIL, DIAMOND LS 10

39 (USR ) 2 3 SPring-8 II KEK KEKB X XFEL SPring-8 XFEL 3 XFEL XFEL ERL KEK ERL 3 XFEL XFEL ERL

40 342 8 X II X VUV

41 1) 20 (2007) ) 24 (2011) ) 24 (2011) ) : 17 (2004) ) : p.1, ) ( ): (1996). 7) T. Miyahara, H. Kitamura, S. Sato et al.: Particle Accelerators 7 (1976) ) : 16 (2003) ) :. 10) H. Tanaka, M. Adachi, T. Aoki et al.: J. Synchrotron Rad. 13 (2006) ) : 7 (2010) ) : 9 (1996) ) 14) No.243, 9 (1983). 15) PF KEK, ) Photon Factory Activity Report 2010, KEK. 17) 25 (2012) ) 2 (1989) ) 3 (1990) ) 9 (1996) ) 14 (2001) 3. 22) SPring-8 Research Frontiers ) SPring-8 JASRI. 24) 89 JASRI. 25) 24 (2011) ) 37 (1982) 906 ; 57 (1988) ) D. A. G. Deacon, L. R. Elias, J. M. J. Madey et al.: Phys. Rev. Lett. 38 (1997) ) (,(1989) p ) SPring ) SACLA ) 64 (2009) ) 25 (2012) ) 24 (2011) 312.

42 344 34) K- J. Kim, Y. Shvyd ko and S. Reiche: Phys. Rev. Lett. 100 (2008) ), KEK ) ERL 24 (2011) ) ) 14 (2001) 323.

43 309, A ALBA 324 APS 323 AR 322 Australian Synchrotron 324 C CHESS 322 D DESY 322 DIAMOND Light Source 324 D 311 E ERL 336 ESRF 323 European XFEL 335 EUV FEL 336 F F 311 H HiSOR 324 HiSOR-II 324 J JASRI 323 L LCLS 335 M MR 322 N NewSUBARU 323 NSLS 322 NUSR 324 P PETRA III 324 PF-AR 323, 324 Photon Factory 322, 324 R RF 316 Rits SR 324 S SACLA 335 SAGA LS 324 SASE 333 SASE 333 SESAME 324 Siam Photon Source 324 SOLEIL 324 SOR-RING 309, 322 SPEAR 322 SPring-8 308, 309, 323, 326 SRS 322 SSRF 324 Swiss Light Source 324 T TM U UVSOR 323 X , , 314, , , ( ) ,

44 , , , 312, , , (Liouville)

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

加速器の基本概念 V : 高周波加速の基礎

加速器の基本概念  V : 高周波加速の基礎 .... V : KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html 2015 2015 4 16 1 2 (1) 3 (2) 4 5 6 ERL: Energy Recovery Linac LCLS: Linac Coherent Light Source LC : µ-µ Koji Takata (KEK)

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4

1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 -1- -2- 1-3- 2 3 - -4- nm 7. nm -5- APS Advanced Photon Source ESRF European Synchrotron Radiation Facility, APS ESRF, APS, ESRF, APS ESRF -6- 1,, APS ESRF APS ESRF

More information

Microsoft PowerPoint - 島田美帆.ppt

Microsoft PowerPoint - 島田美帆.ppt コンパクト ERL におけるバンチ圧縮の可能性に関して 分子科学研究所,UVSOR 島田美帆日本原子力研究開発機構,JAEA 羽島良一 Outline Beam dynamics studies for the 5 GeV ERL 規格化エミッタンス 0.1 mm mrad を維持する周回部の設計 Towards user experiment at the compact ERL Short bunch

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 極短周期アンジュレータの設置に最適化した小型電子蓄積リングの設計 DESIGN STUDY OF SMALL ELECTRON STORAGE RING FOR INSTALLATION OF VERY SHORT PERIOD UNDULATORS 大熊春夫 A), B), 山本樹 C), D) Haruo Ohkuma A), B), Shigeru Yamamoto C), D) A) 高輝度光科学研究センター

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

500 MHz Koji TAKATA 1 *1 klystron KEK (Photon Factory PF ) [2] MW S *2 UHF * PF 2.5 GeV 3 PF 180 kw 1.2 MW *1 Gilmo

500 MHz Koji TAKATA 1 *1 klystron KEK (Photon Factory PF ) [2] MW S *2 UHF * PF 2.5 GeV 3 PF 180 kw 1.2 MW *1 Gilmo 500 MHz Koji TAKATA 1 *1 klystron KEK (Photon Factory PF ) 1970 1960 [2] MW S *2 UHF *3 1976 PF 2.5 GeV 3 PF 180 kw 1.2 MW koji.takata@kek.jp *1 Gilmour [1] *2 2 GHz 4 GHz 2856 MHz 3000 MHz L 1 GHz 2 GHz

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

X X 50keV X X (I) 15 2 (I) K keV X 5.4 X X X X (SR) 33keV X 33keV X KEK-AR 33keV, photons/s X 10x10cm 2 33 shots/s 33keV X GeV X X X Compt

X X 50keV X X (I) 15 2 (I) K keV X 5.4 X X X X (SR) 33keV X 33keV X KEK-AR 33keV, photons/s X 10x10cm 2 33 shots/s 33keV X GeV X X X Compt Development of Compact Laser Super-Cavity for High Flux X-ray X Abstract We are developing Pulsed Laser Super-Cavity for compact high brightness X-ray generator based on Inverse Compton Scattering with

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ 13030607050208 2007 03. 070503 177, 02 4 0806 タ07 09 090908090107060109 04030801 080607040500 0505 タ080601 ァ080504030203 "0806 タ07 09 090908090107060109 04030801" 0908050107050905040905 05.02. 閨090408010007030503

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad SuperKEKB EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC Y. Seimiya, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe) 1001 µµ 1.... 2 2.... 7 3.... 9 4. InGaAs/GaAs PIN... 10 5. InGaAs... 17 6. PbS/PbSe... 18 7. InSb... 22 8. InAs/InSb... 23 9. MCT (HgCdTe)... 25 10.... 28 11.... 29 12. (Si)... 30 13.... 33 14.... 37

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> マイクロメカトロニクス サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077331 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1984.10 1986.7 1995 60 1991 Piezoelectric Actuators and Ultrasonic Motors

More information

飽和分光

飽和分光 3 Rb 1 1 4 1.1 4 1. 4 5.1 LS 5. Hyperfine Structure 6 3 8 3.1 8 3. 8 4 11 4.1 11 5 14 5.1 External Cavity Laser Diode: ECLD 14 5. 16 5.3 Polarization Beam Splitter: PBS 17 5.4 Photo Diode: PD 17 5.5 :

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

untitled

untitled 大学加速器施設一覧 大学加速器連携協議会 305-0801 1-1 029-864-5214 e-mail uac@kek.jp URL http://www2.kek.jp/accl/kek_university/index.html 1 YU-AMS 2 3 CYRIC 4 5 6 1.3 GeV BST 7 t-acts 8 9 UTTAC 10 GHMC 11 FEL-TUS 12 LEBRA

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

支持力計算法.PDF

支持力計算法.PDF . (a) P P P P P P () P P P P (0) P P Hotω H P P δ ω H δ P P (a) ( ) () H P P n0(k P 4.7) (a)0 0 H n(k P 4.76) P P n0(k P 5.08) n0(k P.4) () 0 0 (0 ) n(k P 7.56) H P P n0(k P.7) n(k P.7) H P P n(k P 5.4)

More information

untitled

untitled ( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information