chap10.dvi

Size: px
Start display at page:

Download "chap10.dvi"

Transcription

1 . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l <, C = C( =., A i l= A q C l = [tr(c l C l] /2 C V(ε j = I q A i C(L L ( B-N Δ y j =[C +(C(L C] ε j = Cε j +Δ C(L ε j (2 C(L = l= C l L l, Cl = C k k=l+ C(L ε j C l C k = k C k <. l= l= k=l+ k= (2 j y j = C ε l + y + C(L ε j C(L ε (3 l= j {y j } 2 2 y j y j CZC, Z = j= W (t W (t dt (4

2 {W (t} 2 2 q Brown (4 Z 2 C y j C α C = α ( (2 α Δ α y j = α Cε j +Δα C(Lεj =Δα C(Lεj α y j = α C(Lεj I( y j α y j y j α α α ( ( β y 2j = β yj y j + v j, α =, y j =, v y j = α C(Lεj (5 2j I( C rank(c = r α C = α q r q r Engle-Granger (987 d I(d {y j } α y j I(b b<d d b {y j } CI(d, d b CI(,.2 C j Y j C j = α + βy j + u j I( u j α β α β u j I( 2 ( ( xj σ 2 z j = = ξ y j, {ξ j } i.i.d.(, Σ, Σ= x j σy 2 > (6 Σ 2 {x j } {y j } 2

3 {x j } {y j } r xy = j= (x j x(y j ȳ j= (x j x 2 j= (y j ȳ 2 2 I( r xy W (t W 2 (t dt W 2 (t dt W, Wi (t =W i (t 2 2 (t dt W i (s ds Bm W (t W 2 (t I( (6 x j y j 2 y j = ˆβ x j +û j, y j =ˆα + ˆβ 2 x j +ˆv j (j =,, (7 ˆα ˆβ ˆβ 2 OLS (7 û j ˆv j x j y j 2 I( û j ˆv j I( 2 I( ˆβ = j= x j y j j= x 2 j R = σ y σ x W (t W 2 (t dt W 2 (t dt (8 ˆβ 2 = j= (x j x(y j ȳ j= (x j x 2 R 2 = σ y σ x W (t W 2 (t dt W 2 (t dt (9 2 R R 2 k μ (k μ 2 (k anaka (993 3 μ ( =, μ (2 =.897 σ2 y, μ σx 2 (3 =, μ (4 = μ 2 (2 μ 2 ( =, μ 2 (2 =.3965 σ2 y, μ σx 2 2 (3 =, μ 2 (4 = μ 2 2 (2 - R / μ (2 R 2 / μ 2 (2 N(, R μ (4/μ 2 ( R

4 - (7 t DW Granger-Newbold (974 Phillips (986 (a ˆα = O p (, ˆβ = O p (, ˆβ2 = O p ( (b t O p ( (c O p ( (d 2 = O p ( 2 (e DW O p (/ (b (c t (d (e (d (e DW / Σ 2 I(.3 ( ( y j = β uj Σ Σ x j + v j, Δx j = u j, ξ j = i.i.d.(, Σ, Σ= 2 ( v j Σ 2 Σ 22 y j x j p β p ξ j Σ Σ p p, Σ 2 p, Σ 2 p, Σ 22 Σ 2 x j v k j k β 3 ( y = Xβ + v, ΔX = X X = U ( y =(y,,y, X =(x,, x, X =(, x,, x v =(v,,v, U =(u,, u 4

5 3 ˆβ OLS = (X X X y = β +(X X X v ˆβ 2SLS = (X P X X P y = β +(X P X X P v ˆβ ML = (X M X X M y = β +(X M X X M v P = X (X X X, M = I ΔX(ΔX ΔX ΔX ˆβ OLS LSE ˆβ 2SLS 2 LSE X X ˆX = P X y ˆX ˆβ ML β MLE 4 3 Σ =HH H ( /2 Σ H = Σ 2 Σ /2 Σ /2 22, Σ 22 =Σ 22 Σ 2 Σ Σ 2 ( ( xj uj z j = = z j + = z j + ξ j, V(ξ j =Σ=HH w j v j 5 2 j= z j z j = 2 ( xj x j x j w j w j= j x j wj 2 H W (t W (t dt H W (t =(W (t,w 2(t (p + Brown W (t W 2 (t p Brown (, 2 j= x j x j = 2 X X Σ /2 W (t W (t dt Σ/2 = R (2 2 X P X R, 2 X MX R Ito 5 z j ξ j = j= ( xj u j x j v j w j= j u j w j v j (, 2 H W (t dw (t H j= x j v j = X v = j= x j v j + u j v j Q + Q 2 +Σ 2 j= 5

6 Q =Σ /2 W (t dw (tσ /2 Σ 2, Q 2 =Σ /2 X P v Q + Q 2, X Mv Q 2 W (t dw 2 (tσ /2 22 (3. ( β 3 ˆβ OLS ˆβ 2SLS ˆβ ML (ˆβ OLS β Y OLS = R (Q + Q 2 +Σ 2 (ˆβ 2SLS β Y 2SLS = R (Q + Q 2 (ˆβ ML β Y ML = R Q 2 R (2 Q Q 2 (3 ˆβ OLS ˆβ 2SLS R Q ˆβ ML Phillips 99 3 Σ 2 = x j v j p = P ( ( ˆβ OLS β x P (Y OLS x =P (S S = a 2 x W 2 (t dt ab a = σ, b = σ 2 σ, c = W (t dw (t ac σ 22 σ 2 2/σ, d = σ 2 W (t dw 2 (t d W = {W (t} S E(S W =a 2 x W 2 (t dt ab 2 W 2 ( + ab 2 d V(S W =a 2 c 2 W 2 (t dt S 6. φ (θ = E [ exp{iθe(s W θ 2 V(S W /2} ] { } [ { ( iθ = exp (ab 2d E exp a 2 iθ x + c2 iθ 2 2 { } [ iθ = exp (ab 2d cos ν + abiθ sin ν 2 ν 6 W 2 abiθ (t dt 2 W 2 ( ] /2, ν = a 2 iθ(2x + c 2 iθ }]

7 ( ˆβ OLS β lim P ( ( ˆβ OLS β x = 2 + π θ Im (φ (θ dθ (4 ( ˆβ 2SLS β ( ˆβ ML β φ (θ d =, b = d = 3 2 anaka (993 E(Y OLS = σ 2 (a +2, E(YOLS 2 2σ =σ2 + σ2 2 (a 8σ 2 + a 2 +4 E(Y 2SLS = σ 2 ( a +2, E(Y 2σ 2SLS 2 =σ 2 + σ2 2 ( 6a 8σ 2 + a 2 +4 E(Y ML =, E(Y 2 ML =σ2 a = u du =5.5629, a 2 = cosh u σ 2 = a (σ 22 σ 2 2 /σ σ u 3 cosh u du = , (5 σ 2 Y OLS Y 2SLS σ 2 Y OLS Y 2SLS Y ML σ 2 = 3 a σ 22 /σ ( ( y j = α + β uj Σ Σ x j + v j, Δx j = u j, ξ j = i.i.d.(, Σ, Σ= 2 (6 v j Σ 2 Σ 22 x j u j p y j v j Σ u j v j 3 β OLS = (X MX X My = β +(X MX X Mv β 2SLS = ( X M X X My = β +( X M X X Mv β ML = (X M 2 X X M 2 y = β +(X M 2 X X M 2 v M = I ee /, e =(,, : ( e X =(e,x e e X ( e X e X X X X 7

8 ( e M 2 = I (e, ΔX e e ΔX ( e ΔX e ΔX ΔX ΔX β OLS (6 LSE β 2SLS 2 LSE X X X y X β ML β MLE (6 β 3 β OLS β 2SLS β ML ( β OLS β Z OLS = R ( Q + Q 2 +Σ 2 ( β 2SLS β Z 2SLS = R ( Q + Q 2 ( β ML β Z ML = R Q2 Q =Σ /2 W (t dw (tσ /2 Σ 2, Q2 =Σ /2 W (t dw 2 (tσ /2 22 R =Σ /2 W (t W (t dt Σ/2, W (t =W (t W (s ds p = P ( ( β OLS β x P (Z OLS x =P (S 2 S 2 = a 2 x W 2 (t dt ab W (t dw (t ac S 2 φ 2 (θ =exp W (t dw 2 (t d { }[ iθ 2a 2 b 2 θ 2 ( (ab 2d ( cos ν+ a2 b 2 θ 2 sin ν 2 ν 4 ν 2 ν ] /2 6 ν = a 2 iθ(2x + c 2 iθ Z OLS (4 Z 2SLS Z ML φ 2 (θ d = b = d = 3 2 E(Z OLS = σ 2 b, E(ZOLS 2 2σ =σ2 2 + σ2 2 (4b 8σ 2 8b 2 + b 3 E(Z 2SLS = E(Z OLS, E(Z 2 2SLS =E(Z 2 OLS 8

9 E(Z ML =, E(Z 2 ML =σ2 2 b = b 3 = u 3/2 du =.7583, b 2 = sinh u u(cosh u du =2.645 (7 sinh 3/2 u u 7/2 sinh u du = , σ 2 2 = b (σ 22 σ 2 2 /σ σ (8 β 2SLS β OLS β ML -2 Σ =I 2 ( ˆβ β/σ ( β β/σ 2 N(, % % ( y j = β x j + g (L ε j, Δx j =Φ (L ε j, {ε j } i.i.d.(,i q (9 x j (q g(l ε j q Φ(L q (q Φ( q g (Lε j Φ (Lε j β q ( Δx Δz j = j y j β = x j {z j } ( Φ (L g ε (L j =Ψ(L ε j (2 ( Φ Ω=Ψ(Ψ ( = (Φ( Φ ( (g( Ω Ω g (Φ( g = 2 (g( Ω 2 Ω 22 Ω Ω ( /2 Ω Ω=HH, H = Ω 2 Ω /2 Ω /2, Ω 22 =Ω 22 Ω 2 Ω Ω z j z j H j= W (t W (t dt H 9

10 {W (t} q Brown Ito 8 z j Δz j = j= z j (Ψ(Lε j H j= W (t dw (t dt H + Λ (2 Λ= k= E ( Ψ(Lε j (Ψ(Lε j+k ( Λ Λ = 2 Λ 2 Λ 22 β OLS ˆβ OLS = x j x j j= j= x j y j = β + x j x j j= j= x j g (Lε j.3 (9 β OLS ˆβ OLS (ˆβ OLS β Y OLS = R (Q + Q 2 +Λ 2 Q =Ω /2 W (t dw (tω /2 Ω 2, Q 2 =Ω /2 W (t dw 2 (tω /2 22 R =Ω /2 W (t W (t dt Ω /2, Λ 2 = k= E(Φ (Lε j g (Lε j+k. q =2 2 E(Y OLS = (2λ 2 ω 2 a +2ω 2 2ω (22 E ( YOLS 2 ω 2 = 2 + 4ω 22 3ω2 2 /ω +2ω 2 λ 2 /ω 2 a 2ω 2 + (2λ 2 ω 2 2 a 4ω 8ω 2 2 (23 a a 2 (5 (9 2SLS ML Phillps-Hansen (99 OLS R Q R Λ 2 (2 (, j= x j Δx jω Ω 2 Q +Λ Ω Ω 2

11 ˆβ FM = x j x j j= j= ( x j yj Δx j ˆΩ ˆΩ 2 (ˆΛ2 ˆΛ ˆΩ ˆΩ 2 ˆΛ, ˆΛ 2 ˆΩ ˆΩ 2 Park-Phillips (988 (2 (2 Λ = E(Δx j Δx j+k, Λ 2 = E(Δx j (y j+k β Δx j+k k= k= ˆΛ = ( l k k Δx j Δx j+k l + ˆΛ 2 = k= ( l k= k l + j= k j= Δx j (y j+k ˆβ OLS Δx j+k l (2 {Δz j } f(ω = 2π Ψ(eiω Ψ (e iω ( 2πf( = Ψ(Ψ Ω Ω ( = Ω = 2 Ω 2 Ω 22 f( ˆf( = [ ˆΓ + 2π ( l k ] l + (ˆΓ k + ˆΓ k k= Ω Ω 2 ˆΓ k = ( k Δẑ j Δẑ j+k, Δẑ Δx j j = y j ˆβ OLS x j j= (ˆβFM β Y ML = R Q 2 FM FM fully modified q =2 Y ML 2 (22 (23 ω 2 = λ 2 =,ω 22 = ω 22 E(Y ML =, E(Y 2 ML =ω 22 ω a

12 y j = α + β x j + g (L ε j, Δx j =Φ (L ε j, {ε j } i.i.d.(,i q (24 β 2 β OLS = β FM = (x j x(x j x (x j x(y j ȳ j= j= (x j x(x j x j= j= (x j x ( y j Δx j Ω Ω 2 ( Λ2 Λ Ω Ω ] 2 Λ, Λ 2 Ω Ω 2.4 (24 β OLS β OLS FM β FM ( β OLS β Z OLS = R ( Q + Q 2 +Λ 2 ( βfm β Z ML = R Q2 Q =Ω /2 W (t dw (tω /2 Ω 2, Q2 =Ω /2 W (t dw 2 (tω /2 22 R =Ω /2 W (t W (t dt Ω /2, W (t =W (t W (s ds q =2 2 E(Z OLS = 2λ 2 ω 2 b, E(Z ML = 2ω E ( ZOLS 2 ω 2 = 2 (b 2ω 2 2b 2 + ω 22 b + (2λ 2 ω 2 2 ω 8ω 2 E ( ZML 2 ω 22 = b ω b,b 2,b 3 (7, (8 Phillips-Hansen (99 OLS FM ( uj y j = βx j + u 2j, Δx j = u j, u j = = ξ j +Θξ j =Ψ ε j +Ψ ε j (25 u 2j b 3 2

13 {ξ j } i.i.d.(, Σ, {ε j } i.i.d.(,i 2 Θ= (.6 θ, Σ=.4.3 ( Ψ = δ δ 2 ( δ δ ( δθ +.6 θ δ 2, Ψ =.3δ.4.3 δ 2 ( ( Δxj φ ( (L +(δθ +.6L θ δ2 L Δz j = = y j βx j g ε (L j = δ +(.3δ.4L δ 2 ε ( +.3L j ( φ (φ( φ ( (g( ω ω Ω= g (φ( g = 2 (g( ω 2 ω 22 ω = (δθ θ 2 ( δ 2 ω 2 = (δθ +.6(.3δ.4 +.3θ( δ 2 ω 22 = (.3δ ( δ 2 ( ˆβ OLS β ( ˆβ FM β -3 δ =.8, θ = OLS FM OLS (22 ( FM,.5 OLS FM -3.5 Engle-Granger (987 Phillips-Ouliaris (99 Engle-Granger (987 q I( I( y j q I( x j ˆη j = y j ˆβ x j 2 Δˆη j ˆη j Δˆη j Δˆη j = ˆδˆη j + p ˆφ k ˆη j k +ˆv j (26 k= H : δ = H : δ< ˆδ t 3

14 t t 9 (26 p = ˆη j 2 I( x j y j ˆδ = ˆη j Δˆη j / ˆη j 2, ˆη j = y j ˆβx j, ˆβ = x j y j / x 2 j j= j= ˆδ t ˆδ ˆσ2 / ˆη 2 j Q(t dq(t κ Q2 (t dt ˆσ 2 = (Δˆη j ˆδˆη j 2 / Q(t =W 2 (t W (tw 2 (t dt W 2 (t dt W (t, κ =+ ( W (tw 2 (t dt 2 ( W 2 (t dt 2 (W (t,w 2 (t 2 Brown 8 4 Δy j = δy j + ε j, {ε j } i.i.d.(,σ 2 t δ σ2 / y 2 j W (t dw (t W 2 (t dt δ = y j Δy j / y 2 j σ2 = (Δy j δy j 2 / I( 8 Engle-Granger (987 Davidson-MacKinnon (993 Zivot-Wang (23 Phillips-Ouliaris (99 ε j y j = β x j + α C L + g (Lε j, Δx j =Φ (Lε j, {ε j } i.i.d.(,i q (27 β x j (q α ε j q q I( Δz j = C(Lε j = Cε j +Δ C(Lε j, C = C( (28 z j =(x j,y j (27 H :rank(c =q vs. H :rank(c =q H H Phillips-Ouliaris (99 4

15 i y j x j OLS ˆη j = y j ˆβ x j ii ˆη j Ẑ ρ = (ˆρ ˆσ 2 L ˆσ2 S 2 ˆη 2 j / 2 (29 ˆρ = ˆη j ˆη j / ˆη 2 j, ˆσ2 S = (ˆη j ˆρˆη j 2 ˆσ 2 L = σ2 S + 2 ( l k= k l + k (ˆη j ˆρˆη j (ˆη j+k ˆρˆη j+k l iii Ẑρ Phillips-Ouliaris (99 H Engle-Granger (987 H W (t = ( ( W (t A, C = W 2 (t A 2 ( ( K (A K = K 2 = A /2 K 3 A 2A (A A /2 (A 2A 2 A 2A (A A A A 2 /2 W (t q Bm W (t : (q W 2 (t : C K q q CC = KK (ˆρ = / ˆη j (ˆη j ˆη j ˆη 2 2 j = ˆα z j Δz j ˆα / ˆα 2 z j z j ˆα ˆα =( ˆβ, ˆα, z j Δz j, z 2 j z j (( X,,X 2,X 3 X = (K W (tw (t dt K (K 5 W (t(k 2 W (t+k 3 W 2 (t dt

16 X 2 = K W (t dw (t K + E ( C(Lε t (C(Lε t+j j= X 3 = K W (tw (t dt K ( ( X, X X 2 (ˆρ ( = ( X, X X 3 Q(t dq(t + R (3 Q2 (t dt Q(t =W 2 (t ( W 2 (tw (t dt W (tw (t dt W (t ( X, j= E ( C(Lε t (C(Lε t+j ( X R = ( ( X, X X 3 (3 R = (28 C(L =C {Q(t} {W 2 (t} {W (t} Bm (3 R (29 Phillips (988 R ( ˆσ L 2 ˆσ S 2 lk= k k l+ j= Δz j Δz j+k ˆα 2 2 ˆη 2 j = ˆα 2 ˆη 2 j + o p ( l H Ẑ ρ Q(t dq(t Q2 (t dt (3 H H (27 y j = β x j + g (Lε j (32 Ẑρ = O p ( ˆσ Ẑρ L 2 =ˆρ ˆσ2 S 2 ˆη j / 2 ˆη j = y j ˆβ x j = g (Lε j (ˆβ β x j = O p ( + O p ( /2 6

17 ˆη 2 j γ(, ˆη j ˆη j γ(, γ(h =E(g (Lε j g (Lε j+h ˆρ γ(/γ( = ρ ˆη j ˆρˆη j = g (Lε j ˆρg (Lε j (ˆβ β (x j ˆρx j ˆσ 2 S = (ˆη j ˆρˆη j 2 E [ (g (Lε j ρg (Lε j 2] = γ2 ( γ 2 ( γ( {g (Lε j ρg (Lε j } f(ω ˆσ 2 L 2πf( = (g ( ρg ((g( ρg( = (γ( γ(2 g (g( γ 2 ( Ẑρ γ( γ( [ (γ( γ( 2 g (g( γ2 ( γ 2 ] ( 2γ( γ 2 ( γ( (γ( γ(2 = 2γ 2 ( ( + g (g( γ( Ẑρ Phillips-Ouliaris (99 t Ẑ t = /2 2ˆσ ˆη 2 L 2 j Ẑ ρ (33 H ( ˆη 2 j, ˆσ 2 2 L K3 2 Q 2 (t dt, K3 2 S S ( S = ( W (tw 2(t dt W (tw (t dt, ˆσ L 2 ( l ˆα Δz j Δz j +2 k k Δz j Δz j+k ˆα k= l + ( ( ( X, KK X =( X K + K 2,K K X 3 + K 2 K 3 = K3 2 S S 7

18 H Ẑ t Q(t dq(t S S Q2 (t dt (34 H Ẑ t = /2 ˆη 2 ˆσ L 2 j Ẑρ γ 3 ( (γ( γ( 2 g (g( ( γ( γ( = 2 γ(g (g( ( ( (γ( γ(2 2γ 2 ( + g (g( γ( + g (g( γ( H t ˆη j Bm Bm Bm (. OPIX 8 5 OPIX OPIX (26 t (33 Ẑt - (A (B (C 3 Ẑt l l =4 l =8 2 Zivot-Wang (23 5% OPIX ( (. Ẑt l =5 l = -2 5% %

19 .6 q y j VAR(p y j = B y j + + B p y j p + ε j, {ε j } i.i.d.(, Σ (35 B(L B(L y j = ε j, B(L =I q B L B p L p (36 y j I( B(x = = q rank(b( = q r B( = B( B( r q B( r B( B(L L B(L =( L B(L B( B( r (35 VAR(p Δy j = C k ε j k = C(L ε j (37 k= (36 (37 B(LΔy j =Δε j = B(L C(L ε j B(L C(L =ΔI q =( L I q B( C( = (38 β C( = β ( (38 B( rank(b( Johansen (995 r VAR(p (36 B(L B(L =B( L + B(L B( L = B( L +ΔΓ(L Γ(L =I q Γ L Γ p L p, p Γ j = B i i=j+ VAR(p Δy j = γα y j +Γ Δ y j + +Γ p Δ y j p+ + ε j (39 9

20 γα = B( γ α q r r r Q γα = γqq α = γ α = B( γ α (39 ECM: Error Correction Model {α y t } I( r r ARIMA α α γ (.3 {y t } 2 VAR( I( ECM y j = B y j + ε j Δy j = (I 2 B y j + ε j = γα y j + ε j y j 2 I( (I 2 B α y j I( α =(α,α 2 ECM ( ( Δyj Δy j = = γα γ (α y Δy j + ε j = y,j + α 2 y 2,j +ε j 2j γ 2 (α y,j + α 2 y 2,j +ε 2j y j α y,j + α 2 y 2,j γ 2 α α =( α, y 2,j αy,j (39 θ ε j θ MLE Δy,, Δy L(θ = q 2 log(2π 2 log Σ (z j γα z j Γz 2j Σ (z j γα z j Γz 2j (4 2 j= z j =Δy j, z j = y j, z 2j =(Δy j,, Δy j p+, Γ=(Γ,, Γ p L(θ S ab = û aj û bj, z aj = ˆΦ a z 2j + û aj, (a, b =, j= û aj z aj z 2j 2

21 α = γ = L(θ L = q 2 log(2π 2 log S q 2 (4 r α L(θ ˆΣ(r = S S α(α S α α S = S α (S S S S α α S α Johansen (995, Hatanaka (996 ( S S α α S α = S S α α S α α S S S α = α S α S S α(α S α α S (42 α S α = I r S r j= ( ˆλj ˆλ ˆλ r S S S ˆV = S ˆV ˆΛ, ˆΛ =diag (ˆλ,, ˆλ r ˆV =(ˆv,, ˆv r α (42 ˆα = ˆV =(ˆv,, ˆv r, ˆα S ˆα = I r rank(α =r (4 L r = q 2 log(2π 2 log S 2 r j= log ( ˆλ j q 2 (43 (39 γα Anderson (95.7 VAR(p Δy j = γα y j +Γ Δ y j + +Γ p Δ y j p+ + ε j (44 y j q I( 2

22 H :rank(α =r<q vs. H :rank(α =q γα q y j r q = ε j L(θ (43 J = 2(L r L q = q i=r+ log ( ˆλ i H J Johansen (988 ( ( J tr dw (t W (t W (t W (t dt W (t dw (t (45 W (t q r Bm Johansen (995 able 5. Johansen (995 H :rank(α =r<q vs. H :rank(α =r + ( ˆλ r+ H (45 Osterwald-Lenum (992.8 (35 VAR(p y j = μ + μ j + B y j + + B p y j p + ε j, {ε j } i.i.d.(, Σ (46 Δy j = C(L (μ + μ j + ε j =C( μ + C(L(μ j + ε j = μ + μ j + γα y j +Γ Δ y j + +Γ p Δ y j p+ + ε j (47 (35 (46 μ μ 22

23 α γ α α =,γ γ = q r q (q r α γ Johansen (99 (47 C( C( = α ( γ B( α γ (48 B( B-N B(L =B( + ( L B(L (47 t j = μ + μ t 5 (a t j = Δy j = γα y j +Γ Δ y j + +Γ p Δ y j p+ + ε j (b t j = μ, γ μ = μ C(μ = (47 μ γ μ = γ μ α y j μ Δy j = γ(α y j + μ +Γ Δ y j + +Γ p Δ y j p+ + ε j (c t j = μ, γ μ μ Δy j = μ + γα y j +Γ Δ y j + +Γ p Δ y j p+ + ε j (d t j = μ + μ j, γ μ = μ 2 μ = γ μ α y j Δy j = μ + γ(α y j + μ j+γ Δ y j + +Γ p Δ y j p+ + ε j (e t j = μ + μ j, γ μ 2 (47 5 (a - (e (b - (e (q r (q r ( R = dw (t F (t F (t F (t dt F (t dw (t (49 23

24 W (t q r Bm {F (t} q r q r + tr(r R (b - (e F (t (b : F (t q r + F j (t =W j (t (j =,,q r, F q r+ (t = Johansen (995 able 5.2 (c : F (t q r F j (t =W j (t W j (s ds (j =,,q r, F q r (t =t 2 Johansen (995 able 5.3 (d : F (t q r + F j (t =W j (t W j (s ds (j =,,q r, F q r+ (t =t 2 Johansen (995 able 5.4 (e : F (t q r F j (t =W j (t a j b j t (j =,,q r, F q r (t =t 2 a bt a j b j W j (t dt = a j + b j tdt tw j (t dt = a j tdt+ b j t 2 dt a b t 2 dt = a + b t 3 dt = a tdt tdt+ b t 2 dt a = /6, b = Johansen (995 able

25 ( ( y j =(y j,y 2j,y 3j - 3 VAR AIC VAR (4 (b (c (b : -3 H(r H : rank(α =r Zivot-Wang (23 3 α γ ˆα =(, 3.27,.84, ˆγ =(.5,.75,.7-3 (c : -4 (b (b (b 3 α γ ˆα =(, 3.25,.82, ˆγ =(.53,.73,.5 (b -4 Johansen-Schaumburg (999 Jeganathan (999 I(d Hubrich et al. (2 25

26 . q y j y j = y j + C(Lε j, y =, {ε j } i.i.d.(,i q 2 y j y j C( j= W (t W (t dt C ( 2. ( ( xj σ 2 z j = = ξ y j, {ξ j } i.i.d.(, Σ, Σ= x j σy 2 > x y r xy r xy W (t W 2 (t dt W 2 (t dt W, Wi (t =W i (t 2 2 (t dt W i (s ds 3. R R 2 W (t W 2 (t Bm R = W (t W 2 (t dt W, R 2 2 = (t dt W (t W 2 (t dt, Wi (t =W W 2 i (t (t dt W i (s ds 4. β MLE y j = β x j + v j, Δx j = u j, ξ j = 5. z j = ( xj w j = z j + ( uj v j ( uj v j ( Σ Σ NID(, Σ, Σ= 2 Σ 2 Σ 22 = z j + ξ j, {ξ j } i.i.d.(,hh 2 2 j= z j z j = 2 ( xj x j x j w j w j= j x j wj 2 H W (t W (t dt H z j ξ j = j= ( xj u j x j v j w j= j u j w j v j H W (t dw (t H 26

27 6. 2 S S 2 W (t W 2 (t Bm W i (t Bm S = a 2 x W 2 (t dt ab W (t dw (t ac W (t dw 2 (t d S 2 = a 2 x W 2 (t dt ab W (t dw (t ac W (t dw 2 (t d 7. β MLE y j = α + β x j + v j, Δx j = u j, ξ j = 8. q z j ( Δx Δz j = j y j β = x j Ω=Ψ(Ψ ( = HH, Λ= ( uj v j ( Σ Σ NID(, Σ, Σ= 2 Σ 2 Σ 22 ( Φ (L g ε (L j =Ψ(L ε j, {ε j } i.i.d.(,i q k= E ( Ψ(Lε j (Ψ(Lε j+k z j Δz j = j= z j (Ψ(Lε j H j= W (t dw (t dt H +Λ x j y j ˆβ = x j y j / x 2 j, j= j= ˆη j = y j ˆβx j ˆδ = ˆη j Δˆη j / ˆη 2 j, ˆσ 2 = ( Δˆηj ˆδˆη 2 j tˆδ = ˆδ ˆσ2 / ˆη 2 j 27

28 - OPIX t Ẑt (l =4 Ẑ t (l = 8 % 5% % (A (B (C t Ẑt (l =5 Ẑ t (l = % 5% % (A (B (C

29 -3 : (b 5% % 5% % H( H( H( : (c 5% % 5% % H( H( H(

30

31

32 -3 OLS FM δ =.8, θ=

33 -4 OPIX (A

34 -5 OPIX (B

35 -6 OPIX (C

36 -7 (A

37 -8 (B

38 -9 (C

39

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

7

7 01111() 7.1 (ii) 7. (iii) 7.1 poit defect d hkl d * hkl ε Δd hkl d hkl ~ Δd * hkl * d hkl (7.1) f ( ε ) 1 πσ e ε σ (7.) σ relative strai root ea square d * siθ λ (7.) Δd * cosθ Δθ λ (7.4) ε Δθ ( Δθ ) Δd

More information