Morse ( ) 2014

Size: px
Start display at page:

Download "Morse ( ) 2014"

Transcription

1 Morse ( ) 2014

2 1 1 Morse Morse Morse Smale Morse Morse Morse Morse Künneth Poincaré Euler Poincaré

3 1 1 Morse C 1.1 Morse M p T p M C F : M N p df p : T p M T F (p) N f : M R M C f p M df p : T p M T f(p) R = R 0 p f f(p) f a f f p a = f(p) M C f : M R p M (x 1,..., x n ) df p = i=1 f x i (p)dxi p dx 1 p,..., dx n p T p M (T p M ) p f f f (p) = = x1 x (p) = 0 n M f : M R p M X, Y T p M p X, Ỹ ( 2 f) p (X, Y ) = ( XỸ f)(p) ( 2 f) p (X, Y ) X, Y ( 2 f) p : T p M T p M R

4 p M M f : M R ( 2 f) p f p Hessian ( 2 f) p p f Morse

5 M C f : M R p M p (x 1,..., x n ) f f (p) = = x1 x (p) = 0 n X, Y T p M X = i=1 X i x i, Y = p i=1 Y i x i p Y p Ỹ = i=1 Ỹ i x i ( 2 f) p (X, Y ) = X(Ỹ f) = X i x i Ỹ j f i=1 p x j j=1 ( ) = X i Ỹ j f (p) xi x (p) + Y j 2 f j x i x (p) j i=1 = X i Y j 2 f x i x (p). j i,j=1 [ ] 2 f x i x (p) j x 1,..., p x n ( 2 f) p p p [ ] f 2 f x i x (p) j S 2 S 2 = {(x, y, z) R 3 x 2 + y 2 + z 2 = 1} f(x, y, z) = z S 2 f (0, 0, ±1) ε = ±1 f (0, 0, ε) (0, 0, ε) (x, y) (x, y) f f(x, y) = z = ε 1 x 2 y 2

6 f (0, 0) (0, 0, ε) f (x, y) f [ ] ε 0 0 ε ( 2 f) x ((x, y), (x, y)) = ε(x 2 + y 2 ) f S 2 Morse x x V n M V x x M (U, ϕ) ϕ(u V ) = ϕ(u) R d (R d = {(u 1,..., u d, 0,..., 0) R n u i R}) V M d ϕ ϕ(u) R d V d d V R n p R n Morse f p : V R ; x x p 2 V N(V ) E N(V ) = {(x, v) R n R n x V, v T x V } E : N(V ) R n ; (x, v) x + v f : M N x M df x : T x M T f(x) N x f f f f V N(V ) R n R n n (x, v) N(V ) E p = E(x, v) = x + v 2 f p x = 2, x 2 v, u i u j u i u j (i, j) 2 x u i u j.

7 x 0 V x 0 R n U C ϕ : U R n ϕ : U ϕ(u) ψ ψ (u 1,..., u n ) ψ ψ,..., ψ (1.1) u 1 u n ϕ(u) ϕ(u V ) ψ,..., ψ (1.2) u 1 u d U V U x (1.1) Gram- Schmidt (e 1 ) x,..., (e n ) x a 1 1(x) a 1 n(x) [ ψ [(e 1 ) x (e n ) x ] = (x) ψ ]. (x) 0... u 1 u n a n n(x) R n (e 1 ) x,..., (e n ) x (f 1 ) x,..., (f n ) x (x 0, v 0 ) N(V ) U R n (x 0, v 0 ) Φ : U R n R n R n ; (x, v) (ϕ(x), (f 1 ) x (v),..., (f n ) x (v)) Φ Φ((U R n ) N(V )) = Φ(U R n ) (R d R n d ) = Φ(U R n ) R n N(V ) R n R n n Φ (u 1,..., u d, t d+1,..., t n ) ( ψ(u 1,..., u d, 0,..., 0), k=d+1 t k (e k ) ψ(u1,...,u d,0,...,0) N(V ) (e 1 ) ψ,..., (e d ) ψ T ψ V (u 1,..., u d, t d+1,..., t n ) N(V ) E E(u 1,..., u d, t d+1,..., t n ) = ψ(u 1,..., u d, 0,..., 0) + k=d+1 ) t k (e k ) ψ(u1,...,u d,0,...,0)

8 (u 1,..., u d, t d+1,..., t n ) E = ψ e k + t k u i u i u i E t j = e j k=d Y 1,..., Y n R n R n X 1,..., X n [ X i, Y j ] de E u i, E t k R n ψ,..., ψ, e d+1,..., e n u 1 u d E u i, ψ E u j u i, e l = E t k, ψ E u j t k, e l [ E u i, ψ ] E u j u i, e l 0 1 n d d [ E, ψ ] u i u j E, ψ ψ = + u i u j u i k=d+1 ψ =, ψ + u i u j d + 1 k n ek, ψ + e k, u i u j v = k=d+1 x p = v 2 f p x = 2, x u i u j u i u j t k e k, 2 v, e k t k, ψ u i u j k=d+1 t k ek u i, ψ u j 2 ψ = 0 u i u j p = x + v 2 x u i u j. E = 2, ψ. u i u j (x, v) E

9 x V f p : V R p = x + v, v Tx V (x, v) N(V ) E p E f p Morse E : N(V ) R n R n p E f p Morse (Sard) f : M N N f 1.2 Morse Morse R 0 C f C g f(x) = f(0) + f (0)x + g(x)x 2, f (0) = 2g(0) p V f : V R p (U, ϕ) i ϕ(p) = 0, i f ϕ 1 (x 1,..., x n ) = f(p) x 2 j + x 2 j. j=1 j=i+1 V = R n p = 0 ( 2 f) 0 R n ( 2 f) 0 ( 2 f) 0 R n n n = R n = R R n 1 R n x R, y R n 1 (x, y) F (x, y) = f (x, y) x F (0, 0) = f (0, 0) = 0 x F x (0, 0) = 2 f (0, 0) 0 x2

10 R n 1 0 ϕ F (ϕ(y), y) = 0, ϕ(0) = 0

11 ϕ dϕ 0 = 0 R n (0, 0) Φ(x, y) = (x + ϕ(y), y) dφ (0,0) Φ (0, 0) f (f Φ)(0, y) = (ϕ(y), y) = F (ϕ(y), y) = 0 x x 2 (f Φ) (0,0) = 2 f (0,0) f f (0, y) = 0 x f f(x, y) = f y (x) f y y R n 1 f y C g y f y (x) = f y (0) + f y(0)x 2 + g y (x)x 2 f y(0) = f (0, y) = 0 x f y (x) = f y (0) + g y (x)x 2 0 f y (0) 0 f 0 (0) = 0 ( 2 f) 0 0 f f 0 (0) 0 0 f y (0) 0 n = 1 x 1 = ϵg y (x)x f = ϵx f y (0) = ϵx f(0, y) y f(0, y) R n n Morse i 1.2.4

12 n f i f n i 0 n f : M R g : N R f + g : M N R ; (x, y) f(x) + g(y) M N f + g (x, y) M N f + g x f y g f + g f g (x, y) M N f + g x f y g f + g Morse f Morse g Morse

13 (x, y) f +g f +g (x, y) f x g y R f : R R ; x cos(2πx) T 1 = R/Z f f df = 2π sin(2πx)dx R Z T 1 0, 1 2 cos Taylor f f Morse T 1 n T n = T 1 T f + + f : T n R Morse { (ϵ 1,..., ϵ n ) ϵ i = 0, 1 } 2 (ϵ 1,..., ϵ n ) #{i ϵ i = 0}

14 M X M I M c : I M dc dt (t) = X c(t) (t I) c X M X M X R X M X p M X c p : R M c p (0) = p ϕ t (p) = c p (t) ϕ t : M M t R ϕ t : M M (1) (3) (1) ϕ 0 = 1 M (2) s, t R ϕ t+s = ϕ t ϕ s (3) t R ϕ 1 t = ϕ t M t R ϕ t : M M {ϕ t } t R (1) (3) {ϕ t } t R M M {ϕ t } t R d dt ϕ t(p) = X p T p M t=0 M X X X {ϕ t } t R X {A λ } λ Λ X X = λ Λ A λ {A λ } λ Λ X Λ {A λ } λ Λ X X f supp(f) = {x X f(x) 0} f

15 M {U α } α A (1) (3) M {ϕ i } 1 i N (1) 0 ϕ i 1 (1 i N). (2) 1 i N α A supp(ϕ i ) U α (3) M N ϕ i = 1 i= {ϕ i } 1 i N {U α } α A (3) {supp(ϕ i )} 1 i N M 2.2 f R n f gradf ( f grad x f =,..., f ) x 1 x n R n, f df grad x f, Y = (df) x (Y ) (Y R n ) R n R n Riemann M p M T p M, p M C X, Y X, Y M C, M Riemann (M,, ) Riemann Riemann Riemann Euclid Riemann (M,, ) f gradf grad x f, Y x = (df) x (Y x ) (x M, Y T x M)

16 Riemann (1) (2) Riemann f gradf ϕ t d dt f(ϕ t(x)) = grad ϕt (x)f 2 < 0 f ϕ t (x) f : M R M Morse M X f (1) (df) x (X x ) 0 x f (2) f Morse X R n f 1

17 Morse i f(x 1,..., x n ) = f(p) x 2 j + j=1 j=i+1 gradf = ( 2x 1,..., 2x i, 2x i+1,..., 2x n ) x 2 j gradf = (2x 1,..., 2x i, 2x i+1,..., 2x n ) gradf dx(t) dt = grad x(t) f = (2x 1 (t),..., 2x i (t), 2x i+1 (t),..., 2x n (t)) x(t) = (x 1 (0)e 2t,..., x i (0)e 2t, x i+1 (0)e 2t,..., x n (0)e 2t ) gradf ϕ t ϕ t = diag(e 2t,..., e 2t, e 2t,..., e 2t ) ϕ t (x) = (e 2t x 1,..., e 2t x i, e 2t x i+1,..., e 2t x n ) Morse M f : M R Morse f M f f c 1,..., c r Morse (U 1, ϕ 1 ),..., (U r, ϕ r ) U 1,..., U r (U j, ϕ j ) (r + 1 j N) (U j ) 1 j N M c i (1 i r) U i 1 j N U j X j f ϕ 1 j R n ϕ j (U j ) R n f ϕ 1 j grad(f ϕ 1 j ) grad(f ϕ 1 j ) ϕ 1 j 1 X j (X j ) x = d(ϕ 1 j ) ϕj (x)(grad ϕj (x)(f ϕ 1 j )) (x U j )

18 df x ((X j ) x ) = df x (d(ϕ 1 j ) ϕj (x)(grad ϕj (x)(f ϕ 1 j ))) = d(f ϕ 1 j ) ϕj (x)(grad ϕj (x)(f ϕ 1 j )) = grad ϕj (x)(f ϕ 1 j ) 2 0. X j f U j (U j ) 1 j N (ψ j ) 1 j N { ψ j (x)x j (x) (x U j ) X j (x) = 0 (x / U j ) M X j X = N j=1 X j M X X f x M df x (X x ) = N df x (( X j ) x ) 0. j=1 j df x (( X j ) x ) = 0 j ψ j (x)x j (x) = 0 x f j ψ j (x) = 0 {ψ j } j x f X c i X X i f Morse R n f X f a M f ϕ t f a { } W s (a) = x M lim ϕ t(x) = a t + W u (a) = { x M } lim ϕ t(x) = a t

19 M Morse a W s (a) W u (a) V a Ind(a) dim W u (a) = codimw s (a) = Ind(a). M Morse f a Morse (U; x 1,..., x n ) M U R n i = Ind(a) f f(a) f f(a) = 0 f U R n x f(x 1,..., x n ) = i x 2 j + j=1 j=i+1 V = {(x 1,..., x i, 0,..., 0) x j R (1 j i)}, V + = {(0,..., 0, x i+1,..., x n ) x j R (i + 1 j n)} x 2 j x = x + x + (x V, x + V + ) f(x) = x 2 + x + 2 U(ϵ, η) U ϵ, η > 0 U(ϵ, η) = {x R n ϵ < f(x) < ϵ, x 2 x + 2 η(ϵ + η)} ± U = {x U f(x) = ±ϵ, x 2 η} ± U U(ϵ, η) 0 U = {x U x 2 x + 2 = η(ϵ + η)} 0 U U(ϵ, η) U(ϵ, η) = + U U 0 U V +, V W s (a) U = V + U, W u (a) U = V U f ϕ t Φ + : ( + U V + ) R M ; (x, t) ϕ t (x)

20 Φ + + U V + V + n i 1 W s (a) Φ + {a} n i W u (a) i M f M Morse f γ f c, d lim γ(t) = c, lim t γ(t) = d. t γ f γ γ f f Crit(f) Crit(f) x Crit(f) f Morse U(x) f(γ(t)) γ x Crit(f) U(x) lim f(γ(t)) = x t U(x) γ(r) = γ(i) I γ(t) I U(x) f(γ(t)) γ(t) U(x) γ(t) x Crit(f) γ U(x) t 0 t t 0 γ(t) U = U(x) x Crit(f) γ f X M U δ > 0 t t 0 f(γ(t)) f(γ(t 0 )) = t t 0 df x (X x ) δ (x M U) d dt f(γ(t))dt = δ(t t 0 ) t t 0 df γ(t) (γ (t))dt = t t 0 df γ(t) (X γ(t) )dt lim f(γ(t)) =. t f M d Crit(f) lim γ(t) = d t c lim γ(t) = c t

21 M f a M a = f 1 ((, a]) f M a, b [a, b] f M a M b (Reeb) M M Morse M Morse f f f f(m) = [0, 1] f Morse ϵ > 0 f 1 ([0, ϵ]) = M ϵ f 1 ([1 ϵ, 1]) n D n M 1 ϵ M ϵ M ϵ D n M 1 ϵ D n M = M 1 ϵ f 1 ([1 ϵ, 1]), M 1 ϵ f 1 ([1 ϵ, 1]) = M 1 ϵ = f 1 ([1 ϵ, 1]). M 1 ϵ f 1 ([1 ϵ, 1]) S n 1 S n 1 M 1 ϵ f 1 ([1 ϵ, 1]) S n 1 ϕ ϕ : S n 1 S n 1 M D n S n 1 ϕ M S n X, Y f, g : X Y (1) (2) F : X [0, 1] Y f g f, g (1) F (x, 0) = f(x) (x X), (2) F (x, 1) = g(x) (x X) f : X Y f : Y X f f 1 X, f f 1 Y f X Y

22 n D n {0} f : D n {0} ; x 0 f : {0} D n ; 0 0 f, f f f = 1 {0} F (x, t) = tx ((x, t) D n [0, 1]) F : D n [0, 1] {0} F (x, 0) = 0 = f f(x), F (x, 1) = x = 1 D n(x) f f 1 D n D n {0} M M ϕ : S k 1 M x S k 1 ϕ(x) M M B k M ϕ B k M B k

23 f M p f λ f(p) = c ϵ > 0 f 1 ([c ϵ, c + ϵ]) p f ϵ > 0 M c+ϵ M c ϵ B λ M c ϵ B λ 2.3 Smale M X Y x X Y T x X + T x Y = T x M X Y X Y M X Y X Y M T x (X Y ) = T x X T x Y (x X Y ), dim(x Y ) = dim X + dim Y dim M Morse f Smale M Morse f (1) a W u (a) W s (a) (2) a b f(a) f(b) W u (a) W s (b) = W u (a) W s (b) M Morse f a f(w s (a)) [f(a), ), f(w u (a)) (, f(a)] f(w s (a) {a}) (f(a), ), f(w u (a) {a}) (, f(a))

24 (W s (a) {a}) (W u (a) {a}) = W s (a) W u (a) = {a} a T a (W s (a)) + T a (W u (a)) = V + + V = T a M W s (a) W u (a) f(w u (a) {a}) (, f(a)), f(w s (b) {b}) (f(b), ) (W u (a) {a}) (W s (b) {b}) = a b W u (a) W s (b) = W u (a) W s (b)

25 f M Morse f X Smale f a, b W u (a) W s (b) M(a, b) = W u (a) W s (b) (1) f(a) > f(b). (2) M(a, b) M { } M(a, b) = x M lim ϕ t(x) = a, lim ϕ t (x) = b, t t dim(m(a, b)) = Ind(a) Ind(b) Ind(a) > Ind(b) (3) X M ϕ t M(a, b) (4) ϕ t M(a, b) L(a, b) L(a, b) a b X dim L(a, b) = Ind(a) Ind(b) 1. (5) f(a) > α > f(b) f α M(a, b) f 1 (α) M L(a, b) (1) (2) (2) W u (a) W s (b) { } M(a, b) = x M lim ϕ t(x) = a, lim ϕ t (x) = b t t Smale W u (a) W s (b) M(a, b) = W u (a) W s (b) M dim W u (a) + dim W s (b) = n + dim(w u (a) W s (b)) dim W u (a) = Ind(a) dim W s (b) = n Ind(b) Ind(a) Ind(b) = dim(w u (a) W s (b)) = dim(m(a, b)) dim(m(a, b)) 1 Ind(a) > Ind(b) Morse f Morse

26 f Morse U M U M U df(x) < 0 ϵ 0 > 0 M U df(x) < ϵ 0 M h (1) f Morse (2) M U dh(x) < 1 2 ϵ 0 (3) f c c f(c) + h(c) f(c ) + h(c ). f + h Morse (1) f + h f (2) X f + h (3) f + h

27 (Smale) M f M Morse X f X X Smale

28 26 3 Morse M f M Morse X f Smale 3.1 Morse Morse f a b L(a, b) = L(a, c 1 ) L(c 1, c 2 ) L(c q 1, b) c i Crit(f) f(c i ) f(c i+1 ) L(c i, c i+1 ) = f(c i ) > f(c i+1 ) Ind(c i ) > Ind(c i+1 ) L(a, b) Ind(a) = Ind(b) + 1 L(a, b) Ind(a) = Ind(b) + 2 L(a, b) S 1 [0, 1] Z 2Z Z 2 = Z/2Z f k Crit k (f) Crit k (f) Z 2 C k (F ) f X X : C k (f) C k 1 (f) a Crit k (f) X (a) b Crit k 1 (f) L(a, b) #L(a, b) = #L(a, b) Z 2 n X (a, b) X (a) = n X (a, b)b X (a) X X = 0 b Crit k 1 (f) (C k (f), X ) M Morse X Morse C k+1 (f) X X = 0 C k (f) im X ker X H k (f, X) = ker X /im X H k (f, X) (C k (f), X )

29 Morse n S n = {x R n+1 x = 1} f(x 1,..., x n+1 ) = x n+1 ((x 1,..., x n+1 ) S n ) f n = (0,..., 0, 1), s = (0,..., 0, 1) f S n Morse Ind(n) = n, Ind(s) = 0 C n (f) = Z 2 n, C 0 (f) = Z 2 s, C k (f) = {0} (1 k n 1) f n 2 0 H n = Z 2 n = Z 2, H 0 = Z 2 s = Z 2, H k = {0} (1 k n 1). n = 1 L(n, s) : C 1 (f) C 0 (f) 0 0 H 1 = Z 2 n = Z 2, H 0 = Z 2 s = Z RP n n S n π : S n RP n S n S n ; x x R n+1 (x 0, x 1,..., x n ) R n+1 f f(x) = kx 2 k (x R n+1 ) k=0 f x x RP n f S n = {x R n+1 x = 1} U + i = {x S n x i > 0}, U i = {x S n x i < 0} (x 0,..., ˆx i,..., x n )

30 U ± i U ± i S n U ± i f f(x) = kx 2 k = ( kx 2 k + i 1 ) x 2 k = i + (k i)x 2 k k=0 k i k i k i f U ± i i p ± i = (0,..., 0, ±1, 0,..., 0) f p ± i Ind(p ± i ) = #{k 0 k n, k i < 0} = i f S n Morse U ± i ( i ) 2 ( k ) 2 kxk + ixk f(x) = i k<i k>i y k = i kx k (k < i), y k = k ix k (k > i) f Morse Morse f 1 gradf = 2y y i 1 2y i y n. y 0 y i 1 y i+1 y n ϕ t x k ϕ t (y) = (e 2t y 0,..., e 2t y i 1, e 2t y i+1,,e 2t y n ) ϕ t (x) = (e 2t x 0,..., e 2t x i 1, e 2t x i+1,,e 2t x n ) f X p ± i V ± i U ± i f Morse 1 W s (p ± i ) V ± i = {(0,..., 0, x i+1,..., x n ) V ± i } = {(0,..., 0, x i, x i+1,..., x n ) S n } V ± i, W u (p ± i ) V ± i = {(x 0,..., x i 1, 0,..., 0) V ± i } = {(x 0,..., x i 1, x i, 0,..., 0) S n } V ± i. W u (p ± 0 ) = {p ± 0 }, W s (p ± n ) = {p ± n } ( )

31 i n C i ( f) = Z 2 π(p + i ) (π(p + i )) = π(p+ i 1 ) + π(p i 1 ) = 2π(p+ i 1 ) = 0. H i = C i ( f) = Z 2 π(p + i ) = Z C n+1 1 n CP n C n+1 {0} z z 1 Cz CP n π : C n+1 {0} CP n ; z Cz π C n+1 {0} CP n C n+1 C n+1 = {(z 0,..., z n ) z i C} 0 i n U i CP n U i U i = {π(z) z C n+1, z i 0} CP n = n i=0 U i w k (π(z)) = z k z i (0 k n) w k (w 0,..., ŵ i,..., w n ) U i n CP n w i = 1 C n+1 {0} f f(z) = n k=0 k z k 2 n k=0 z k 2 (z C n+1 {0}) α C {0} f(αz) = f(z) C n+1 {0} f CP n f f(π(z)) = f(z)

32 f U i f ( ) f(π(z)) = f(π(w)) = n k=0 k w k 2 n k=0 w k 2 = i + k i k w k k i w k 2 U i f w = 0 CP n p i = π(0,..., 0, i 1, 0,..., 0) p i f ( ( ) = i + ) k w k 2 1 ( ) 2 w k 2 + w k 2 k i k i k i = i + k i k w k 2 i k i w k 2 + (4 ) = i + k i (k i) w k 2 + (4 ) = i k<i (i k) w k 2 + k>i (k i) w k 2 + (4 ). p i f Ind(p i ) = 2#{k 0 k n, k < i} = 2i f(p i ) = i C 2i (f) = Z 2 p i, C j (f) = {0} (j ). f 0 Morse (C i (f), ) H 2i = C 2i (f) = Z 2 p i = Z2, H j = {0} (j ). S 2 S 2 Morse Morse 8 6 B720

33 31 4 Morse 4.1 M Morse H (f, X) M HM (M; Z 2 ) M 2 Morse Künneth Künneth Morse U, V Z 2 u i v j U V U V = Z 2 u i v j i,j U V u i v j U V Z 2 dim U V = dim U dim V (u i, v j ) u i v j Z 2 U V U V (u, v) U V u v Z 2 Z 2 ϕ : U U, ψ : V V Z 2 ϕ ψ : U V U V (ϕ ψ)(u v) = ϕ(u) ψ(v) (u U, v V )

34 C = (C, C ) C i Z 2 Z 2 i C C i C i 1 i C i+1 C = 0 ker i C im i+1 C H i (C) = ker C i /im C i+1 H (C) = (H i (C)) C C = (C, C ) D = (D, D ) Z 2 (C D) k = C i D j i+j=k = ( C i j D C D k i+j=k ) : (C D)k (C D) k 1 Z 2 ( C i D j ) (Ci D j ) C i 1 D j + C i D j 1 (C D) k 1 (C D, d C D ) c C i d D j (d C D ) 2 (c d) = d C D ( C i (c) d + c D j (d)) = C i 1 C i (c) d + 2 C i (c) D j (d) + c D j 1 D j (d) = Z 2 C, D H k (C D) = H i (C) H j (D) i+j=k

35 l(d) = max{j D j {0}} min{j D j {0}} + 1 l(d) = 1 j 0 D j0 {0} D j {0} H k (C D) = H k j0 (C) D j0 = H k j0 (C) H j0 (D) l(d) = 1 l(d) = 2 j 0 D j0 {0} D j0 1 {0} D j {0} D = 0 D = 0 D = 0 C D = C 1 H k (C D) = H k j0 (C) D j0 H k j0 +1(C) D j0 1 = H k j0 (C) H j0 (D) H k j0 +1(C) H j0 1(D) D j 0 : D j0 D j0 1 H (D) = 0 H (C D) = 0 C D i+j 0 : C i D j0 C i+1 D j0 1 C i 1 D j0 C i D j0 1 ker C D i+j 0 C D i+j 0 +1 : C i+1 D j0 C i+2 D j0 1 C i D j0 C i+1 D j0 1 im C D i+j 0 +1 ker C D i+j 0 im C D ker C D i+j 0 i+j 0 +1 C i D j0 C i+1 D j0 1 ( C D i+j 0 x i a y j 0 a, ) u i+1 b v j 0 1 b = 0 a b a x i a D j 0 (y j 0 a ) + b a C i (x i a) y j 0 a = 0 i+1(u C i+1 b ) v j 0 1 b = 0 1 ( D j 0 ) 1 a x i a y j 0 a + b i+1(u C i+1 b ) ( j D 0 ) 1 (v j 0 1 b ) = 0

36 a x i a y j 0 a = b i+1(u C i+1 b ) ( j D 0 ) 1 (v j 0 1 b ). C D i+j 0 +1 ( b u i+1 b ( D j 0 ) 1 (v j 0 1 b ), 0 ) = ( a x i a y j 0 a, b u i+1 b v j 0 1 b ). ker C D i+j 0 im C D i+j 0 +1 H (C D) = 0 l(d) = 2 D D j0 D j0 1 D j0 = ker D j 0 D j 0, D j0 1 = im D j 0 D j D j0 D j0 1 0 E : 0 ker D j 0 0 D j 0 1 0, F : 0 D j 0 = im D j 0 0 D = E F C D = C (E F ) = C E C F C D C E, C F C D D k D k + 1 D 0 D k+1 D k D 1 0 D k+1 D k D k+1 = ker D k+1, D k = im D k D 0 ker 0 0 D k+1 = im 0 0 D k D k 1 D 1 0 k D 4.1.1

37 M N Morse f g X Y Smale f + g M N Morse (X, Y ) Smale f + g Crit(f + g) = Crit(f) Crit(g) (a, a ) Crit(f + g) = Crit(f) Crit(g) Ind(a, a ) = Ind(a) + Ind(a ) Crit k (f + g) = i+j=k Crit i (f) Crit j (g) (b, b ) Crit k 1 (f + g) (a, a ) (b, b ) (X, Y ) (X, Y ) X Y L (X,Y ) ((a, a ), (b, b )) = L X (a, b) L Y (a, b ) a b a b L (X,Y ) ((a, a ), (b, b )) L (X,Y ) ((a, a ), (b, b )) L X (a, b) L Y (a, b ) Ind(a) Ind(b) + 1, Ind(a ) Ind(b ) + 1 Ind(a, a ) = Ind(a) + Ind(a ) Ind(b) + Ind(b ) + 2 = Ind(b, b ) + 2 Ind(a, a ) = k, Ind(b, b ) = k 1 a b a b L (X,Y ) ((a, a ), (b, b )) = (a, a ) (b, b ) (X, Y ) a = b a = b L (X,Y ) ((a, a ), (b, b )) = { {a} L Y (a, b ) (a = b) L Y (a, b) {a } (a = b ) n Y (a, b ) (a = b) n (X,Y ) ((a, a ), (b, b )) = n X (a, b) (a = b ) 0 ( ) Φ : C i (f) C j (g) C k (f + g) i+j=k

38 Φ(a a ) = (a, a ) Φ Z Φ (C (f) C (g), X Y ) (C (f + g), (X,Y ) ) a Crit i (f) a Crit j (g) Φ ( X Y )(a a ) = Φ( X (a) a + a Y (a )) = Φ n X (a, b)b a + a n Y (a, b )b = b Crit i 1 (f) b Crit i 1 (f) n X (a, b)(b, a ) + b Crit j 1 (g) b Crit j 1 (g) n Y (a, b )(a, b ). L (X,Y ) ((a, a ), (b, b )) n (X,Y ) ((a, a ), (b, b )) (X,Y ) Φ(a a ) = n (X,Y ) ((a, a ), (b, b ))(b, b ) = (b,b ) Crit i+j 1 (f+g) b Crit i 1 (f) n X (a, b)(b, a ) + b Crit j 1 (g) Φ ( X Y )(a a ) = (X,Y ) Φ(a a ) Φ n Y (a, b )(a, b ) (Künneth ) M N HM k (M N; Z 2 ) HM i (M; Z 2 ) HM j (M; Z 2 ). i+j=k

39 Poincaré n Morse f k f n k X f X f a Crit k (f) f a a Crit n k ( f) Z 2 V V C k (f) C n k ( f) X : C k (f) C k 1 (f) t X : C k 1 (f) C k (f) t X (α)(c) = α( X (c)) (α C k 1 (f), c C k (f)) t X : C n k+1 ( f) C n k ( f) (Poincaré ) n M HM n k (M; Z 2 ) HM k (M; Z 2 ) 4.2 Euler Poincaré Morse n M Euler χ(m) χ(m) = ( 1) k dim HM k (M; Z 2 ). k=0 χ(m) = ( 1) k dim HM k (M; Z 2 ) = = k=0 ( 1) k (dim ker k dim im k+1 ) k=0 ( 1) k (dim ker k + dim im k ) = k=0 ( 1) k dim HM k (M; Z 2 ) (Morse ) M Morse f c k (f) = #Crit k (f), β k = dim HM k (M; Z 2 ) k 0 c k (f) β k n = dim M #Crit(f) β k. k=0 k=0

40 n M Poincaré P M (t) = β k t k k=0 P M (1) = β k, k=0 P M ( 1) = χ(m) (1) Poincaré (2) M, N P M N (t) = P M (t)p N (t) B720

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

I II Morse 1998

I II Morse 1998 I II Morse 1998 1 Morse 1 1.1.............................. 1 1.2......................... 8 1.3......................... 16 1.4 Morse................................. 20 1.5........................................

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

difgeo1.dvi

difgeo1.dvi 1 http://matlab0.hwe.oita-u.ac.jp/ matsuo/difgeo.pdf ver.1 8//001 1 1.1 a A. O 1 e 1 ; e ; e e 1 ; e ; e x 1 ;x ;x e 1 ; e ; e X x x x 1 ;x ;x X (x 1 ;x ;x ) 1 1 x x X e e 1 O e x x 1 x x = x 1 e 1 + x

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg)

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information