1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s,

Size: px
Start display at page:

Download "1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s,"

Transcription

1 1 (Naturau Deduction System, N-system) 11,,,,, n- R t 1,, t n Rt 1 t n atomic formula : x, y, z, u, v, w, : f, g, h, : c, d, : t, s, r, : P, Q, : R, : A, B, C, D, 12 A A A A N-system 1 1 N-system N-system Hilbert-style system Gentzen-system 1

2 (Introduction rules) A B ( I) A B (Elimination rules) A B A ( E r) A B B ( E l) [A] B A B ( I) A A B ( I r) ϕ(x) xϕ(x) ϕ(t) xϕ(x) ( I) ( I) B A B ( I l) A B B A B xϕ(x) ϕ[t/x] xϕ(x) ψ A [A] C C ( E) ( E) [A] C ( E) [ϕ(x)] ψ ( E) 10 A A ( E) [A] ( I) A (minimal logic) P (P Q) P Q, P Q A ( ) ( ) ex falso sequitur quodlibet 2 A A A A ( E) 10 ( ) 11 2 material implication 2

3 13 N-system N-system Ni 1 [A (B C)] 1 [A] 3 E [A B]2 [A] 3 E B C B E C A C I 3 (A B) (A C) I 2 (A (B C)) ((A B) (A C)) I 1 (A (B C)) ((A B) (A C)) deduction derivation I [A] B A B ( I) (A (B C)) ((A B) (A C)) (A (B C)) ((A B) (A C)) ((A B) (A C)) A B A C A C A C 1 (1) (A B) (B A) (2) (A (B C)) ((A B) C) (3) A A (4) (A B) C (A C) (B C) (5) (A C) (B C) (A B) C (4) (5) (A B) C (A C) (B C) 3

4 [(A C) (B C)] D (A B) C [(A B) C] D (A C) (B C) (A B) C (A C) (B C) 2( cancellation [A] 1 A A I 1 N-system N-system N-system (scheme) A, B A B A B A A B A, B active A, B Γ D A D B A B D -I 3 Γ A B Γ A B -I Γ B Γ {A} A B 3 Γ 4

5 A Γ Γ {A} Γ A 2 A A A A [A] A A Γ = {A} Γ A 4 3 [A] B A I 1 A (B A) I 1 -I A A A B A I A (B A) I A B A B vacuous discharge 2 4 (1) -E sequent calculus style (2) 3 B A [A (A B)] 2 [A] 1 E A B [A] 1 E B A B I 1 (A (A B)) (A B) I 2 -I 1 discharge -I sequent style 4 {A} A 5

6 A (A B)) A (A B) A A A (A B), A A B A A A (A B), A B (A (A B)) (A B) I (A (A B)) (A B) I E 14 1 constant 2 3 t 1,, t n n- f n f n (t 1 t n ) t free variable F V (t) 1 t = a F V (a) = φ, 2 t = x F V (x) = {x}, 3 t = f n (t 1,, t n ) F V (f n (t 1,, t n )) = F V (t 1 ) F V (t n ) A F V (A) 1 F V ( ) = φ, 2 F V (P (t 1 t n )) = F V (t 1 ) F V (t n ), 3 F V (A B) = F V (A B) = F V (A B) = F V (A) F V (B), 4 F V ( xa) = F V ( xa) = F V (A) {x} x t x t [t /x] t x t t[t /x] [t/x] 1 a[t/x] = a, 2 y x y[t/x] = y, y = x y[t/x] = t, 6

7 3 f n (t 1,, t n )[t/x] = f n (t 1 [t/x],, t n [t/x]) [t/x] 1 [t/x] =, 2 (P n (t 1,, t n ))[t/x] = P n (t 1 [t/x],, t n [t/x]), 3 =,, (A B)[t/x] = A[t/x] B[t/x], 4 y x ( ya)[t/x] = ya(t/x), y = x ( ya)[t/x] = ya 5 y x ( ya)[t/x] = ya(t/x), y = x ( ya)[t/x] = ya [ ] t A x A x t t A y x(y < x) y x y x x(x < x) 5 1z xp (y, x) y 2f(x 0, x 1 ) x 1 P (x 0, x 3 ) x 0 3z P (x, y) xq(x, w) x 1 xa y A[y/x] 2 xa a A[a/x] A(y/x) A(t/x) xa I xa I ( I t 6 ) I 5 x(y < x) y x rename z(y < z) 6 t A x 7

8 y A(y/x) xa [A(y/x)] xa I A(y/x) A(y/x) A(y/x) [ x ya(x, y)] 1 E ya(x, y) E A(x, y) xa(x, y) I y xa(x, y) I x ya(x, y) y xa(x, y) I 1 I A(x, y) [ x ya(x, y)] x E xa A(t/x) E t 7 E [A(y/x)] n xa C D C E n y C xa [A(y/x)] C [A(y/x)] 7 t xa x x y(x = y) y(y = y) 8

9 x F V (A) x(a B(x)) (A xb(x)) [ x(a B(x))] 1 E A B(x) [A] 2 E B(x) xb(x) I A xb(x) I 2 x(a B(x)) (A xb(x)) I 1 x F V (B) x(a(x) B) ( xa(x) B) [ x(a(x) B)] 3 E A(x) B [A(x)] 1 [ xa(x)] 2 B E B 1 xa(x) B I 2 x(a(x) B) ( xa(x) B) I 3 E 3 (1) x(a(x) B(x)) xa(x) xb(x), (2) x(a(x) B(x)) ( xa(x) xb(x)), (3) xa(x) A(x), (4) x(a(x) B) xa(x) B, x F V (B) x(x = x) x = x E y(x = y) I occurrences (RAA) 9

10 [ A] A (RAA) ( I) (RAA) ( I) P P (RAA) P P P P [A] 1 A A I [ (A A)] 2 E A I 1 A A I [ (A A)] 2 E A A RAA 2 (A B) (B A) [B] 1 A B I 1 (A B) (B A) I [ ((A B) (B A))] 2 E B A B I 1 (A B) (B A) I [ ((A B) (B A))] 2 E (A B) (B A) RAA 2 x A(x) xa(x) 4 [A(x)] 3 [ xa(x)] 2 xa(x) I E A(x) I 3 [ x A(x)] 1 x A(x) I E xa(x) RAA 2 x A(x) xa(x) I 1 10

11 (1) xa(x) x A(x), (2) A A, (3) A B ( A B), (4) A ( A B), (5) ((A B) (A B)) A 11

12 G-system, Sequent Calculus) G-system cancellation -I explicit Γ D A D B A B Γ A B Γ A B G-system Γ A B Γ A B G right rules 8 Γ A B Γ, A B R A, Γ B Γ A B R Γ A Γ A B R 1 Γ B Γ A B R 2 G N-system -E A, Γ C B, C A B, Γ, C 8 R Γ A B Γ, A B R L G1 R Γ, A Γ, B Γ, A B p17 (3) 12

13 [A] A B C C [B] C ( E) G A, B, Γ C A B, Γ C L Γ A B, C A B, Γ, C A B A E r A B B E l A B B A E A B C A B C C A B resouce A B D 1 D 2 A B A B A B C [A, B] C E C A B L A B A B A B I C [A, B] C E 13

14 A B A, B C C A B C convert ( A B) Inversion principle A B - A, B A, B C A B C - A B A B C C B C A B A A B A C [B] C E A B [A] B A B I C A [B] C E 14

15 Ạ Ḅ C L G1 G1 Ax A A (structural rule) LW Γ A, Γ RW Γ Γ, A LC A, A, Γ A, Γ RC Γ, A, A Γ, A LEx Γ, A, B, Λ Γ, B, A, Λ REx Γ, A A, Λ Θ Γ, Λ, Θ Γ, A, B, Λ Γ, B, A, Λ Γ, A Γ, B R Γ, A B L A, B, Γ A B, Γ R A, Γ, B Γ, A B L Γ, A B, Γ A B, Γ, R Γ, A Γ, A B Γ, B Γ, A B L A, Γ B, Γ A B, Γ 15

16 R A, Γ Γ, A L Γ, A A, Γ LK 9 (1) G- A A A A A A (2) G- (A (A B)) (A B) (A (A B)) (A B) sequent A A B, A B A A A B, A B A (A B), A B A (A B) A B R (A (A B)) (A B) R sequent A A B B B, A B LW LW weakning( Thinning vacuous discharge 5 A A A, B A LW A B A R A (B A) R 9 16

17 (3) G G1 G1 G1 G1 G1 G1 G1c G1i 10 R Γ A B Γ, A B R Γ Θ, A Ξ, B Γ, Θ, Ξ, A B Γ Delta shared context A Γ B Γ Γ, A Γ, B Γ, A B (4) G1i Γ Γ ϕ Γ Γ - Γ Γ ϕ weakening 10 LK,LJ 17

18 ϕ, Γ Γ ϕ R -I Γ ϕ ϕ, Γ L -E Γ sequent Γ sequent Γ sequent falsifiable A, Γ Γ, A sequent Γ A A G1c ϕ(t), Γ xϕ, Γ L Γ, xϕ(x) Γ, ϕ(a) R L t R a Γ, a eigenvaliable ϕ(a), Γ xϕ(x), Γ L Γ, ϕ(t) Γ, xϕ(x) R 18

19 L a Γ, a eigenvariable R t G1c A A A, A L A, A A R A A, A REx A A, A A R RC A A G1c F (a) F (a) F (a) xf (x) R xf (x), F (a) R xf (x), y G(y) R y F (y) xf (x) L y F (y) xf (x) R 1 F (a) F (a) F (a), G(a) F (a) LW G(a) G(a) F (a), G(a) G(a) LW R F (a), G(a) F (a) G(a) F (a), G(a) x(f (x) G(x)) R F (a), xg(x) x(f (x) G(x)) L xf (x), xg(x) x(f (x) G(x)) L xf (x) xg(x) x(f (x) G(x)) L xf (x) xg(x) x(f (x) G(x)) R 2 (1) A B ( A B) (2) ( A B) A B (3) (A B) A B (4) (A B) A B (5) ( A B) ( B A) (6) ( A B) (B A) (7) xf (x) y F (y) (8) yf (y) x F (x) (9) x(a B(x)) (A xb(x)) (10) (A xb(x)) x(a B(x)) (11) x(a(x) B(x)) ( xa(x) xb(x)) 19

20 G1i G1c sequent Γ G1i A A A A A L A, A A L A A, A A L LC A A (A A) R G1i (1) A B A B (2) A B A (3) A A B (4) A B (A B) (5) (A B) A B (6) A B (A B) (7) (A C) (B C) (A B) C (8) A B B A (9) xf (x) y F (y) (10) x F (x) xf (x) (11) x(f (x) G(x)) xf (x) xg(x) (12) (A B), A B (13) B B, (A B) A B (14) A A (15) A A G3ip( ) G3 P, Γ P ( P ) A, B, Γ C A B, Γ C L Γ A Γ B Γ A B R A, Γ C B, Γ C A B, Γ C L Γ A Γ A B R 1 Γ B Γ A B R 2 20

21 A B, Γ A B, Γ C A B, Γ C A, Γ B Γ A B R, Γ C L the root first proof search G1 (1) weakning A A P, Γ P P (2) Γ multiset Γ {A, B, C} {A, C, B} multiset {A, B, C} {A, A, B, C} Γ (3) R Γ A B Γ, A B Γ R Γ A Γ B Γ A B Shared context A, B A A, B B R A, B A B A B A B R A (B A B) R 5 (1) (A B) (B A) (2) (A (B C)) ((A B) C) 21

22 (3) A A (4) (A B) C (A C) (B C) (5) (A C) (B C) (A B) C 5 G3ip A A (3) A ((A ) ) A, A A, A L A, A A (A ) R A ((A ) ) R 6 (1) (A (B C)) ((A B) (A C)) (2) (A B C) ((A C) (B C)) (3) ( A B) (A B) (4) (P P ) (5) (A (A B)) (A B) admissibility G3ip Γ D D, C Γ, C -free system G3ip cut-free G3ip cut cut cut G3ip cut admissible G3ip+cut G3ip cut G3ip conservative extension 22

23 cut admissibility weight 1 A w(a) 1 w( ) = 0 2 P w(p ) = 1 3 w(a B) = w(a) + w(b) + 1,, w( A) = w(a ) = w(a) + w( ) + 1 = w(a) height L 0 1 C contextγ sequent C, Γ C [ ] C w(c) 1 C = P C = P C = 11 C, Γ C L C = P C =,, Γ L, Γ R w(c) n C C, Γ C w(d) n + 1 D D, Γ D D = A B w(a) n w(b) n A B, Γ A B A, B, Γ A A B, Γ A L A B, Γ A B A, B, Γ B A B, Γ B L R A, B, Γ A A, B, Γ B B, Γ = Γ A, Γ = Γ A, Γ A B, Γ B context 11 23

24 D = A B w(a) n w(b) n A, Γ A A, Γ A B R B, Γ B 1 B, Γ A B R 2 L A B, Γ A B D = A B A, A B, Γ A B, A, Γ B A, A B, Γ B A B, Γ A B R sequent QED n Γ C sequent Γ C G3ip n 4 Height-preserving weakening D n D, Γ C n Γ C [ ] Base case: n = 0 Γ C L C Γ Γ D, Γ C L Induction base: n height-preserving weakening n Induction step: L Γ = A B, Γ A, B, Γ C A B, Γ C L A, B, Γ C n D, A, B, Γ C n L n + 1 D, A B, Γ C QED 24

25 5: Inversion lemma (i) (ii) (iii) n A B, Γ C n A, B, Γ C, n A B, Γ C n A, Γ C n B, Γ C, n A B, Γ C n B, Γ C [ ] n (i) A B, Γ C L A B A B context A B, Γ C C C, A B, Γ C A B, Γ context A, B, Γ C L n (i) n+1 A B, Γ C A B A B L A, B, Γ C n A B A B, Γ C A B, Γ C n n A, B, Γ C n A, BΓ C A, B, Γ C n + 1 (ii) (i) A B, Γ C A, Γ C B, Γ C A B L A, Γ C B, Γ C n A B A B, Γ C A B, Γ C n (1) n A, Γ C (2) n B, Γ C (3) n A, Γ C (4) n B, Γ C (1) (3) A, Γ C (2) (4) B, Γ C n + 1 (iii) A B, Γ C A B B, Γ C n A B A B, Γ C A B, Γ C n 25

26 n B, Γ C n B, Γ C B, Γ C n + 1 QED A B, Γ A B, Γ C A B, Γ C inversion (*) n A B, Γ C n A B, Γ A Inversion lemma (i) n A B, Γ C n A, B, Γ C A B, Γ C ( A, B, Γ C n (*) A B, Γ C A B, Γ A (*) L R cut 12 G3ip inconsistent, L R Contraction contraction 6 Height-preserving contraction n D, Γ C n D, D, Γ C 12 cut 26

27 [ ] n = 0 D, D, Γ C L C D, Γ C L n contraction contraction formula (1) contraction formula D contraction D, D, Γ C D, D, Γ C n n D, Γ C n+1 D, Γ C (2) D D D = A B L n A, B, A B, Γ C 5 n A, B, A, B, A B, Γ C n A, B, Γ C L n+1 A B, Γ C D = A B D = A B n A B, A B, Γ A n B, A B, Γ C sequent n A B, Γ A 5 sequent n B, B, Γ C n B, Γ C n+1 A B, Γ C QED D = A B cut L cut cut cut L L cut L cut, Γ C P, Γ P P, C 27

28 P, C C = P C L cut P, Γ, C L cut formula 7: -Height cut cut-height cut 8 cut Γ D D, C Γ, C G3ip (1) cut L (2) cut cut formula (3) cut cut formula (4) cut cut formula cut L 1 Γ D L 11 cut formula D Γ cut Γ, C D, C weakening cut 12 Γ Γ, C L 2 D, C L 21 C Γ, C 22 C = D Γ C weakening cut Γ, C (cut ) 23 Γ, C L 24 D = cut Γ, C Γ, C 28

29 Γ 1 L Γ 13 cut-height cut 3 cut formula D D (R- sequent n, m, k, 31 L Γ = A B, Γ cut-height n m cut A, B, Γ D A B, Γ D L D, C A B, Γ, C L, L A, B, Γ D D, C A, B, Γ, C A B, Γ, C L cut-height n + m 32 L Γ = A B, Γ cut-height max(n, m) k A, Γ D B, Γ D A B, Γ L D D, C A B, Γ, C n + k m + k cut A, Γ D D, C B, Γ D D, C A, Γ, C B, Γ, C A B, Γ L, C 13 sequent 29

30 33 Γ = A B, Γ cut-height max(n, m)+1+k A B, Γ A B, Γ D A B, Γ D D, C A B, Γ, C m + k cut A B, Γ A A B, Γ, A W k B, Γ D D, C B, Γ, C A B, Γ, C cut-height 4 cut formula D cut-height cut 41 L = A B, D, A, B, C Γ D D, A B, C L Γ, A B, C cut-height n + m + 1 n + m Γ D D, A, B, C Γ, A, B, C Γ, A B, C L 42 L = A B, cut-height n + max(m, k) + 1 D, A, C D, B, C Γ D D, A B, C Γ, A B, C L n + m n + k cut Γ D D, A, C Γ D D, B, C Γ, A, C Γ, B, C Γ, A B, L C 43 cut-height n + max(m, k)

31 Γ D D, A B, A D, B, C D, A B, C Γ, A B, C n + m n + k cut Γ D D, A B, A Γ D D, B, C Γ, A B, A Γ, B, C Γ, A B, C 44 R C = A B cut-height n+max(m, k)+ 1 D, A D, B R Γ D D, A B Γ, A B n + m n + k cut Γ D D, A Γ D D, B Γ, A Γ, B R Γ, A B 45 R C = A B cut-height n + m + 1 n + k + 1 cut D, A Γ D D, A B R 1 Γ, A B D, B Γ D D, A B R 2 Γ, A B cut-height n + m n + k Γ D D, A Γ, A Γ, A B R 1 Γ D D, B Γ, B Γ, A B R 2 46 R C = A B cut-height n + m + 1 D, A, B Γ D D, A B R Γ, A B cut-height n + m cut 31

32 Γ D D, A, B Γ, A, B Γ, A B R cut-height 5 cut formula 51 D = A B cut-height max(n, m) k + 1 cut Γ A Γ B A, B, C R Γ A B A B, C L Γ, C height n + k m + max(n, k) + 1 cut Γ A A, B, C Γ B Γ, B, C Γ, Γ, C Γ, C Ctr contraction cut-height cut-height cut-formula cut cut-height 52 D = A B cut-height n max(m, k) + 1 Γ A Γ A B R A, C B, C 1 L A B, C Γ, C cut-height Γ B Γ A B R A, C B, C 2 L A B, C Γ, C cut-height n + m n + k 32

33 Γ A A, C Γ, C Γ B B, C Γ, C cut-height cut 53 D = A B n max(m, k) + 1 A, Γ B Γ A B R A B A B, C A B, C Γ, C A, Γ B Γ A B R A B, A Γ, A Γ, C A, Γ B B, C A, Γ, C cut n+1+m, n + k, max(n + 1, m) max(n, k) + 1 cut cut cut cut cut QED cut cut cut (a) (subformula property) 9 Γ C G3ip Γ, C G3ip cut 9 G3ip consistency 33

34 10 G3ip A B A B [ ] sequent R QED (b) 10 disjunction property Underivability results:g3ip sequent A A P P sequent sequent A A A P 11 sequent G3ip (i) P P (ii) (iii) (iv) P P ((P Q) P ) P (P Q R) ((P Q) (P R)) [ ] (i) P P disjunction property P P P P P R inversion P (ii): P P P P (i) root P P P L P P P (P ) R root P P 34

35 (iii): ((P Q) P ) P (Peirce s Law) 2 (P Q) P P Q P P (P Q) P P ((P Q) P ) P R sequent R P, (P Q) P P Q P, P Q P, (P Q) P Q (P Q) P P Q R P, P Q (P Q) P P Q P P Q R (P Q) P P Q ((P Q) P ) P (iv): (P Q R) ((P Q) (P R)) sequent R (P Q R) ((P Q) (P R)) sequent R 1 (P Q R) (P Q) (P Q R) ((P Q) (P R)) R 1 R R P, Q Q P, R Q L P, P Q R P P, Q R Q P, P Q R Q P Q R P Q R P Q R (P Q) (P R) R 1 P, R Q R P Q R P Q R P P Q R P Q R P Q P Q R P Q P Q R (P Q) (P R) R 1 35

36 R 2 sequent QED (c) A B ( A B) sequent (i) (ii) (iii) ( A B) A B A B A B (A B) A B (d) G3ip cut contraction 12 G3ip sequent Γ C [ ] sequent sequent sequent sequent L sequent sequent L endsequent G3cp: (1) A A (3) A A (4)RAA 36

37 Ạ A G-system sequent (multi succedent ) sequent A, Γ, B Γ, A B A, Γ B Γ A B A A, A, A multisuccedent R A (A G3cp Logical axioms: P, Γ, P Logical rules: G3cp A, B, Γ A B, Γ L Γ, A Γ, B Γ, A B R 37

38 A, Γ B, Γ A B, Γ L Γ, A, B Γ, A B R Γ, A B, Γ A B, Γ A, Γ, B Γ, A B R, Γ L G3cp G3cp invertible inversion 13 G3cp invertible invertible sequent R Γ, A Γ, B R Γ, A B n Γ, A B n Γ, A n Γ, B R invertible G3cp L, L invertible G3ip sequent C R R Γ, A B L A B Γ, A Γ, B L n inversion n+1 Γ, A B A B Γ, A B Γ, A B n n Γ, A n Γ, B n Γ, A n Γ, B 38

39 Γ, A Γ, B n + 1 A B R Γ, A Γ, B n QED G3cp weakning contraction Γ A, Γ LW Γ Γ, A RW A, A, Γ A, Γ LC Γ, A, A Γ, A RC G3cp cut rule, Γ, D D, Γ Γ, Γ, admissible G3ip 14 Height-preserving contraction: n C, C, Γ n C, Γ n Γ, C, C n Γ, C [ ] n = 0 L contraction L n contraction (1)contract contraction rule (2)contract 6 L L 6 R n Γ, A B, A n Γ, A B, B 13 invertibility Γ, A, A n Γ, B, B n contraction n Γ, A n Γ, B R n+1 Γ, A B n R R R vdash n A, Γ, A B, B height-preserving invertibility n A, A, Γ, B, B 39

40 n A, Γ, B R contraction A B, Γ, A B, A B, Γ A B, A B, Γ inversion n Γ, A, A n B, B, Γ n Γ, A n B, Γ A B, Γ n + 1 QED G3cp cut G3ip 15 cut Γ, D D, Γ Γ, Γ, G3cp cut G3cp 16 G3cp sequent Γ Γ, G3i G3c G3i A(t/x), xa, Γ C xa, Γ C L Γ A(y/x) Γ xa R A(y/x), Γ C Γ A(t/x) xa, Γ C L Γ A R R y Γ xa L y xa, Γ, C G3c 40

41 A(t/x), xa, Γ xa, Γ L Γ, A(y/x) Γ, xa R A(y/x), Γ Γ, A, A(t/x) xa, Γ L Γ, A R y Γ, xa L y xa, Γ, G3i G3c 16 t A(t/x) xa xa G3i G3c 17 G3i Γ C G3c Γ Γ, C (Γ, sequent G3i G3c G3i G3i xa cut R 18 G3i xa t A(t/x) existence property G3i x A xa 19 sequent x A xa G3i [ ] root R x A x A xa x A xa x A xa R x A x A A(t/x) x A A(t/x) x A xa R x A xa R R 41

42 R x A, A(y/x), A(z/x) x A, A(y/x) A(z/x) R x A, A(y/x) x A R, A(y/x) x A, A(y/x) x A A(y/x) R x A x A R xa x A xa x A xa R R x A, A(y/x), A(z/x), sequents G3ip sequent Γ sequent G3ip topsequent,, P 1,, P m Q 1,, Q n,,, G3ip Γ sequent 0 m, n 0 20 G3ip sequent Γ topsequent G3ip root-first C C (1)sequent C G3ip (2) tree topsequents L (3) sequent C sequent 42

43 21 regular sequence P 1,, P m Q 1,, Q n,,, sequent P i Q j sequent regular sequent trace formula 1 P 1 P m Q 1 Q n, m, n > 0 2 Q 1 Q n, m = 0, n > 0 3 (P 1 P m ), m > 0, n = 0 4, m, n = 0 regular sequence P i, Q j C L topsequent regular sequent tree trace formula trace formula C 1,, C n C (C 1 C n ) C 1 C n C C 1 C n C i P 1 P m Q 1 Q n trace formula P 1 P m Q 1 Q n C 1 C n 22 C regular sequence trace formulas C (C 1 C n ) sequent 23 valuation 0, 1 v(p ) = 0 v(p ) = 1 43

44 v( ) = 0 v(a B) = min(v(a), v(b)) v(a B) = max(v(a), v(b)) v(a B) = max(1 v(a), v(b)) v(a B) = 1 iff v(a) v(b) multiset Γ (Γ), (Γ) C Γ v (Γ) = min(v(c)), v (Γ) = max(v(c)) 24 sequent Γ v (Γ) > v ( ) v sequent Γ Γ v v (Γ) v ( ) 25 v min(v(a), v(b)) v(c) iff v(a) v(b C) 26 min(v(a B), v(a)) v(b) G3cp 27 Soundness sequent Γ G3cp Γ sequent L v (P, Γ) v (, P ) v (, Γ) v ( ) A, B, Γ A B, Γ L v (A, B, Γ) v( ) v (A B, Γ) = v (A, B, Γ) v (A B, Γ) v( ) 25,26 R QED 44

45 28 Completeness Γ G3cp Γ G3cp root first L regular sequent Γ regular sequents regular sequents Γ 1 1, Γ n n n > 0) regular sequent trace formula C i 22 C C 1 C n C (Γ) ( ) Γ v(c) = 1 C C 1 C n v(c) v(c 1 C n ) C i v v(c i ) = 1 C i 1 C i (P 1 P m ) P j 1 C i P 1 P m Q i Q r Q i Q r P j 1 Q k 0 C i 0 regular sequent QED 45

論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [

More information

Substructural Logics Substructural Logics p.1/46

Substructural Logics Substructural Logics p.1/46 Substructural Logics Substructural Logics p.1/46 (ordered algebraic structures, universal algebra, algebraic logic ) provability deducibility cut Dedekind-MacNeille Substructural Logics p.2/46 (abstract

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z)))) 4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):

More information

lecture

lecture 5 3 3. 9. 4. x, x. 4, f(x, ) :=x x + =4,x,.. 4 (, 3) (, 5) (3, 5), (4, 9) 95 9 (g) 4 6 8 (cm).9 3.8 6. 8. 9.9 Phsics 85 8 75 7 65 7 75 8 85 9 95 Mathematics = ax + b 6 3 (, 3) 3 ( a + b). f(a, b) ={3 (a

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P Advent Calendar 2018 @Fukuso Sutaro,,, ( ) Davidson, 5, 1 (quantification) (open sentence) 1,,,,,, 1 1 (propositional logic) (truth value) (proposition) (sentence) 2 (2-valued logic) 2, true false (truth

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n ) Kazuki Nakamura Department of Mathematical and Computing Science, Tokyo Institute of Technology * 1 Kashima Ryo Department of Mathematical and Computing Science, Tokyo Institute of Technology 1,,., Σ,..,.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

CVS Symposium, October 2005 p.1/22

CVS Symposium, October 2005 p.1/22 CVS Symposium, October 2005 p.1/22 Characteristica universalis CVS Symposium, October 2005 p.2/22 G. Boole, The Mathematical Analysis of Logic being an essay towards a calculus of deductive reasoning,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

Microsoft PowerPoint - logic ppt [互換モード]

Microsoft PowerPoint - logic ppt [互換モード] 寄せられた質問 : 演習問題について この講義の範囲に含まれる適切な演習問題が載っている参考書がありますか? できれば解答や解説が付いているものがあると良いのですが 第 回の授業の中で 演習問題に取り組む方法を説明しますこの授業は 回だけ行うもので 書籍の1 冊分に比べると少ない分量しかカバーしていません 回の講義の概観 : 1 完全性と不完全性 命題論理 命題論理 ( 真理値 ) ( 公理と推論規則

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2 Morality mod Science 4 2017 10 19 1 1.1 (1.1) 1 2 A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B (1.2) 1 A B 2 B A 1.2 A B minao.kukita@gmail.com 1 A A A B A B A B A B

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 + III 2005 1 6 1 1 ( 11 0 0, 0 deg (f(xg(x deg f(x + deg g(x 12 f(x, g(x ( g(x 0 f(x q(xg(x + r(x, r(x 0 deg r(x < deg g(x q(x, r(x q(x, r(x f(x g(x r(x 0 f(x g(x g(x f(x g(x f(x g(x f(x 13 f(x x a q(x,

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0) 0407).. I ) f ) a I 3).) lim x a fx) = fa) a.) 4)5) lim fx) = fa) x a+0 lim x a 0 fx) = fa)). I f I I I I f I a 6) fx) fa) lim x a x a f a f a) I I 7) *) 03 0 8 ) an interval; ) an open a closed) interval.

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2 3 90 2006 1. V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2 = xz y 2 = 0} V (x,y) n = 1 n = 2 (x,y) V n = 1 n = 2 (3/5,4/5),(5/13,12/13)... n 3 V (0,±1),(±1,0) ( ) n 3 x n + y n = z n,

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

案内最終.indd

案内最終.indd 1 2 3 4 5 6 IC IC R22 IC IC http://www.gifu-u.ac.jp/view.rbz?cd=393 JR JR JR JR JR 7 / JR IC km IC km IC IC km 8 F HPhttp://www.made.gifu-u.ac.jp/~vlbi/index.html 9 Q01a N01a X01a K01a S01a T01a Q02a N02a

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

数学ノート 2018-

数学ノート 2018- (Sakaé Fuchino) 2019 05 21 2011 2012 3 I 2 II http://fuchino.ddo.jp/kobe/predicate-logic-ss11.pdf I 2005 6 I II 2012 update : 2019 05 21 (02:14JST) http://fuchino.ddo.jp/kobe/index.html 2005 http://fuchino.ddo.jp/nagoya/logic05.html

More information

i 2013 0.1. 0.2. JR 0.1 0.2 ii A B B A 0.2 0.1 0.1 0.2 iii 1 1 1.1............................. 1 1.2........................... 10 1.3............................... 17 2 21 2.1...........................

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

A_chapter3.dvi

A_chapter3.dvi : a b c d 2: x x y y 3: x y w 3.. 3.2 2. 3.3 3. 3.4 (x, y,, w) = (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, ) xȳw (,,, )xȳw (,,, ) xyw, F F = xy w x w xy w xy w

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information