物性物理学I_2.pptx

Size: px
Start display at page:

Download "物性物理学I_2.pptx"

Transcription

1 2 物質の構造 単結晶 秩序 から 非晶質 乱れ まで 0) 凝縮系物質の形態 morphology polycrystal monocrystal single crystal 準結晶 quasicrystal 1) 結晶の構造 amorphous ー周期性と並進対称性ー 単結晶 でも 非晶質 でもない固体内秩序 Daniel Shechtman h"ps://ja.wikipedia.org/wiki/%e6%ba h"ps://news.engineering.iastate.edu/i chemistry/ 強靭 高抵抗

2 TranslaLon(al)Ivector T = n 1 a + n2 b ( n i = 0, ±1, ± 2,... ) primilveicell basisivector b θ a primilveivector { x 1a + x2b; 0 xi 1} (oblique)

3 単純(基本単位 胞の選び方 正方格子 (square) b 90 長方格子 (rectangular) b a 面心格子 (centered rectangular) b 基本格子ベクトルの選び方 90 a 90 a 六方格子 (hexagonal) 60

4 n C n θ = 2π n n = 1, 2, 3, 4, 6 IcrystalIla\ce IcrystalIfamily I Monoclinic I Oblique a b, θ 90 I Orthorhombic I Rectangular I CenteredI rectangular a b, θ = 90 I Hexagonal I Hexagonal a = b, θ = 120 (60 ) I ITetragonal I Square a = b, θ = 90

5 t n = n 1a + n2b + n3c ( n i = 0, ±1, ± 2,... )

6 π π π π 0.74

7 基本格子ベクトルの取り方 a2 a3 a1 y z a a1 = ( x + y ) 2 a a2 = ( y + z ) 2 a a3 = ( z + x ) 2 a a1 = ( x + y z ) 2 a a2 = ( x + y + z ) 2 a a3 = ( x y + z ) 2 a1 = ax a2 = ay a3 = az a3 x a2 a1 h"p:// 積層のちがいと積層欠陥 stacking fault 面心立方格子 (fcc) ABCABCABC A B C 六方細密充填 (hcp) ABABAB 1) 結晶の構造 ー周期性と並進対称性ー

8 R hkl R hkl = h a 1 + k a 2 + l a 3 [ hkl] [ 100] 100 R m R 0m2 0 a 1, a 2, a 3 ( h, k,l Z) [ ] [ 001] 001 R 00m3 h : k : l = 1 m 1 : 1 m 2 : 1 m 3 ( hkl) [ hkl] ( hkl) ( hkl) { hkl} h"ps://commons.wikimedia.org/wiki/file%3amiller_indices_felix_kling.svg

9 典型的な結晶構造 (1) ダイアモンド構造 せん亜鉛鉱構造 diamond structure zinc-blende structure 1 R = ( a1 + a2 + a3 ) 4 1 R = ( a1 + a2 + a3 ) 4 C, Si, Ge GaN, GaAs, ZnSe, CdTe 1) 結晶の構造 ー周期性と並進対称性ー 典型的な結晶構造 (2) CsCl構造 cesium chloride structure NaCl 構造 sodium chloride structure scc fcc

10 h"p://britneyspears.ac/physics/crystals/wcrystals.htm n( r ) n( r + t ) = n( r ) ( ) = n G G n r e i G r n( r + t ) = n( r ) e i G t t n = n 1 a + n2 b + n3 c G = 1

11 基本逆格子ベクトル b c A = 2π, B = 2π a b c c a, C = 2π a b c A a = 2π, A b = 0, B a = 0, B b = 2π, C a = 0 C b = 0 A c = 0 B c = 0 C c = 2π G = ha + kb + lc 逆格子ベクトル a b a b c ( h, k, l Z ) 2) 結晶構造の判定法 逆格子点の幾何学的意味 面ABC にOからおろした垂線の足 c C c ON = d b d R a N B ON OR = 2π となる ON 上の点 R! b 逆格子ベクトルの定義再考 O V = a b c = d ( a b sin θ ) C の大きさ 2π A a OR = 2π 2π a b 2π a b d C = = = d V d ( a b sin θ ) 2π a b a b C の向きまで考慮して C= = 2π V c a b 2) 結晶構造の判定法

12 k k exp i( k k ) r 2πrsinθ λ 2πrsin θ λ r O k k λ 0.1 nm = k r k r = ( k k ) r k r = kr cosϕ = krsinθ k r = k r cos ϕ = k rsin V = 10kV k = k = k = 2π λ CharacterisLcIradiaLonI X BremsstrahlungI X h"ps://miac.unibas.ch/pmi/01@ BasicsOfXray.html h"ps://physics.stackexchange.com/queslons/ 20385/peaks@on@top@of@bremsstrahlung Cu K α 1.54 Å! Mo K α 0.71 Å

13 回折条件 Bragg条件 強め合いの条件 k k R = 2π n ( n N ) R = n a + n b + n c は格子ベクトルで R a b c k k = nghkl Laue 条件 逆格子ベクトルによれば k k 4π sin θ k k = λ (hkl) 2π θ Ghkl k k = n d θ k d 2d sin θ = nλ (hkl) Bragg 条件 ( ) ( Ewald 球の考え方 [0 結晶方位を決定] k O Ghkl ) 1) 入射ベクトルを描く 2) 半径 k の球を描く k 3) 球上の逆格子点が散乱方向 C k P

14 X線スペクトルの影響 特性X線 Ewald球ひとつ 反射点が少ない k O Ghkl 連続X線 Ewald球が沢山 反射点が沢山 C k P X線回折の種類 1) 単結晶X線回折 背面Laue法など SiIcrystalI(111)IbackwardIreflecLon h"p://mullwire.com/index.shtml h"p://minerva.union.edu/jonesc/photos %20ScienLfic.html

15 Photo51 超有名な単結晶回折の例 IAderIRaymondIGoslingI(RosalindIFranklin) h"ps://en.wikipedia.org/wiki/photo_51 ら線 単一ヘリックス 構造の回折パターン h"ps://

16 2) 粉末X線回折 θ-2θ法 (004)I ϕiscans (404)I (404)I h"ps:// 3)Debye-Scherrer法 AI240 nmithickinico2o4ifilmigrowniati350 CI onimgal2o4i(001)isubstrate.i h"ps:// 粉末X線回折法 h"p://pd.chem.ucl.ac.uk/pdnn/inst2/linearea.htm h"p:// kap_5/vlu/kristallstrukturanalyse.vlu/page/vsc/de/ch/11/aac/vorlesung/ kap_5/kap5_7/kap57_2.vscml.html

17 散乱条件 全散乱波の振幅 n( r ) の空間積分 原子内の電子密度 A (t ) = dr n(r ) exp( iδk r ) e iω t 散乱波の強度 ここに Δk k k 2 2 I Δk A dr n(r ) exp( iδk r ) ( ) ig r n ( r ) = ng e を入れれば 2 I Δk A ( ) G 位相整合条件 構造因子 k Ghkl 2θ 2 i G Δk r ( n d r G e ) G V (G = Δk ) ) = 0 (G Δk ) i G Δk r ( d r e (structure factor) nhkl k 原子散乱因子 結晶構造因子 1 = dr n(r ) exp( ig r ) Vc 1 ig r ig r = e dr n(r )e Vc i i 結晶構造因子 原子散乱因子 fi = dr n(r ) exp( ig r ) sin ( 2kr sin θ ) = 4π dr n(r ) r 2 2kr sin θ Shkl = fi e i ighkl ri

18 S = f i e 2πi hn 1+kn 2 +ln 3 i πi ( h+k+l ) { = e = f i i r 1 = ( 0, 0, 0), r 2 = 1 2, 1 2, 1 2 ( ) 0 (h + k + l : odd) 2 f (h + k + l : even) (100) Cs +, I (200) S KCl = f (1+ e πih + e πik + e πil ) 0 (h, k,l : odd) = 4 f (otherwise) KCl (220) (420) (400) (222) S KBr = f i e 2πi ( hn 1+kn 2 +ln 3 ) i 0 (h, k, l : odd, even mixed) = 4 f (otherwise) KBr (200) Figure 17 Comparison of x-ray reflections from KCl and KBr powders. In KCl the numbers of electrons of K and Cl ions are equal. The scattering amplitudes f(k ) and f(cl ) are almost exactly equal, so that the crystal looks to x-rays as if it were a monatomic simple cubic lattice of lattice constant a/2. Only even integers occur in the reflection indices when these are based on a cubic lattice of lattice constant a. In KBr the form factor of Br is quite different to that of K, and all reflections of the fcc lattice are present. (Courtesy of R. van Nordstrand.) (420) (400) (331) (222) (311) (220) (111) u C.IKi"el,IIntroducLonItoISolidIStateIPhysicsI(Wiley)

19 点群 有限サイズ と空間群 無限サイズ 回転対称性 360 o 回転軸の周りに 回して重なる n C180 (2) C90 (4) ( x, y, z ) ( x, y, z ) ( x, y, z ) ( y, x, z ) C120 (3) C60 (6) ( x, y, z ) ( R120 (x, y), z ) 回反対称性 ( x, y, z ) ( R60 (x, y), z ) 回転操作の後 対称点に関して反転 1回回反対称 反転) 2回回反対称 =鏡映) (1) ( x, y, z ) ( x, y, z ) (2) ( x, y, z ) ( x, y, z ) 4回回反対称 (4) ( x, y, z ) ( y, x, z )

20 n m 360 o n 1 n x 4 1 ( x, y, z) ( x +1 2, y, z) z ( x, y, z) ( y, x, z +1 4) ( x, y, z) ( x + a, y, z) ( ) = ( a b) c a b c e a e = e a = a a a 1 = a 1 a = e a 1

21 C n (n = 2, 3, 4, 6) xy ( x, y, z) x, y, z ( ) ( x, y, z) x, y, z ( ) n

<4D F736F F F696E74202D208DDE97BF955D89BF8A778AEE F8BF38AD48C512E B93C782DD8EE682E890EA97705D>

<4D F736F F F696E74202D208DDE97BF955D89BF8A778AEE F8BF38AD48C512E B93C782DD8EE682E890EA97705D> 材料科学の枠組み 基礎編 材料評価学基礎 格子 晶系 空間群 ( 対称性 ) いろいろな結晶の構造 結晶と逆格子 ( 回折結晶学 ) X 線と結晶 応用編 電子顕微鏡 放射光 中性子線 1 格子 (Lattice) 3 次元の周期的な点の配列 点のまわりの環境が同一である, 空間の 点の無限の配列 c R n1a n2b n3c 格子定数 (Lattice parameters a or Lattice

More information

PowerPoint Presentation

PowerPoint Presentation 材料科学基礎 Ⅰ 材料科学の枠組み 元素の結晶構造 いろいろな金属間化合物, 合金の結晶 いろいろなセラミックスの結晶とイオン結晶 格子, 晶系, 点群 X 線と結晶 物質の性質と対称性 結晶の欠陥と組織 1 hcp (hexagonal close packed structure) 2 fcc (face centered cubic structure) 3 hcp の軸比 (c/a) について

More information

<4D F736F F F696E74202D2095A890AB95A8979D91E682528FCD B8CDD8AB B83685D>

<4D F736F F F696E74202D2095A890AB95A8979D91E682528FCD B8CDD8AB B83685D> 3. 回折現象と逆格子 3.1 逆格子とは 簡単な例で 逆格子が何かを示そう 逆格子は物性工学を理解する上で 非常に重要である 逆格子は ブラべー格子をフーリエ空間に移したものであり 次のよう に定義される まず 平面波が e ik r で与えられることを思い出して欲 しい この平面波がブラべー格子の周期性を持つとすると R をブラべ ー格子ベクトルとして ik r+r e = e ik r (3-1)

More information

7

7 01111() 7.1 (ii) 7. (iii) 7.1 poit defect d hkl d * hkl ε Δd hkl d hkl ~ Δd * hkl * d hkl (7.1) f ( ε ) 1 πσ e ε σ (7.) σ relative strai root ea square d * siθ λ (7.) Δd * cosθ Δθ λ (7.4) ε Δθ ( Δθ ) Δd

More information

構造化学

構造化学 構造化学 消滅則と空間群の判定 第 回 7 月 日 河野淳也 本日の目標 消滅則と空間群の判定について理解しよう 内容 復習 X 線結晶構造解析の手順 消滅則 空間群の判定 これまでの話 結晶 回折像 ( 前半 ) 結晶の対称性 ( 後半 ) - 電子 - + 原子 単位胞 X 線回折像からの結晶構造解析 結晶 X 線結晶構造解析の手順 結晶作成回折データ測定格子定数の決定空間群の判定位相決定 (

More information

Microsoft PowerPoint - 10JUL13.ppt

Microsoft PowerPoint - 10JUL13.ppt 無機化学 03 年 4 月 ~03 年 8 月 水曜日 時間目 4M 講義室第 3 回 7 月 0 日ミラー指数面の間隔 X 線回折ブラッグの法則 (0 章材料 : 固体 ) 結晶構造 担当教員 : 福井大学大学院工学研究科生物応用化学専攻教授前田史郎 E-mil:sme@u-fukui.c.jp URL:http://cbio.cbio.u-fukui.c.jp/phychem/me/kougi

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

<4D F736F F F696E74202D20907D8DDE97BF89C88A778AEE F89F190DC8B748A698E712E B8CDD8AB B83685D>

<4D F736F F F696E74202D20907D8DDE97BF89C88A778AEE F89F190DC8B748A698E712E B8CDD8AB B83685D> 材料科学基礎 Ⅰ 材料科学の枠組み 基礎編 元素の結晶構造 いろいろな金属間化合物, 合金の結晶 いろいろなセラミックスの結晶とイオン結晶 格子, 晶系, 点群 X 線と結晶 応用編 電子顕微鏡 放射光 中性子線 結晶の格子定数 結晶の欠陥と組織 1 X 線の散乱 z E x s R s 0 a y Scattering Intensity 350 340 1 330 30 0.8 310 300

More information

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b) 8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b) X hkl 2θ ω 000 2: ω X 2θ X 3: X 2 X ω X 2θ X θ-2θ X X 2-1. ( ) ( 3) X 2θ ω 4 Si GaAs Si/Si GaAs/GaAs X 2θ : 2 2θ 000 ω 000 ω ω = θ 4: 2θ ω

More information

29 1 6 1 1 1.1 1.1 1.1( ) 1.1( ) 1.1: 2 1.2 1.2( ) 4 4 1 2,3,4 1 2 1 2 1.2: 1,2,3,4 a 1 2a 6 2 2,3,4 1,2,3,4 1.2( ) 4 1.2( ) 3 1.2( ) 1.3 1.3 1.3: 4 1.4 1.4 1.4: 1.5 1.5 1 2 1 a a R = l a l 5 R = l a +

More information

Microsoft PowerPoint - 基礎IV演習1-8.pptx

Microsoft PowerPoint - 基礎IV演習1-8.pptx 地球惑星科学基礎 V 演習 群の概念 結晶系とブラベー格 の関係 第 3 回 瀬 雄介 http://pmsl.planet.sci.kobe-u.ac.jp/~seto 並進を伴わないもの 対称 ( 点対称 ) Center of symmetry, Inversion center 鏡映 ( 鏡 ) mirror 対称 鏡映 表記 : 1 (one bar) 表記 : m (mirror) 並進を伴わないもの

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

~5 セメナノサイエンス基礎 A 1~ 結晶 結晶と非晶質結晶 : 原子配列が規則的非晶質 : 原子配列が不規則的 単結晶と多結晶単結晶 : 巨視的に見て原子配列が規則的な結晶多結晶 : 単結晶が集まったもの いろいろな操作によって 結晶格子を自分自身に重ね合わすことができる操作をまとめて点群操作と

~5 セメナノサイエンス基礎 A 1~ 結晶 結晶と非晶質結晶 : 原子配列が規則的非晶質 : 原子配列が不規則的 単結晶と多結晶単結晶 : 巨視的に見て原子配列が規則的な結晶多結晶 : 単結晶が集まったもの いろいろな操作によって 結晶格子を自分自身に重ね合わすことができる操作をまとめて点群操作と A ~ 結晶 結晶と非晶質結晶 : 原子配列が規則的非晶質 : 原子配列が不規則的 単結晶と多結晶単結晶 : 巨視的に見て原子配列が規則的な結晶多結晶 : 単結晶が集まったもの いろいろな操作によって 結晶格子を自分自身に重ね合わすことができる操作をまとめて点群操作という 点群操作には 回転操作 鏡映操作および反転操作がある 結晶系 次元格子を 5 種類示す つの明確な格子型を示すときに その基となる格子をブラベブラベ格子

More information

Xray.dvi

Xray.dvi 1 X 1 X 1 1.1.............................. 1 1.2.................................. 3 1.3........................ 3 2 4 2.1.................................. 6 2.2 n ( )............. 6 3 7 3.1 ( ).....................

More information

15

15 15 1...1 1-1...1 1-1-1...1 1-1-2...3 1-1-3...4 1-1-4...5 1-2...5 1-2-1...5 1-2-2...6 1-3...6 1-3-1...6 1-3-2...7 1-3-3...8 1-3-4...8 1.4 Co-Pt...9 1.5...9 2...10 2-1...10 2-1-1...10 2-1-2...10 2-2...11

More information

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C 3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

Microsoft PowerPoint - 図材料科学基礎Ⅰ14_基礎編1.pptx

Microsoft PowerPoint - 図材料科学基礎Ⅰ14_基礎編1.pptx 材料科学基礎 Ⅰ 材料科学の枠組み 基礎編 元素の結晶構造 いろいろな金属間化合物, 合金の結晶 いろいろなセラミックスの結晶とイオン結晶 格子, 晶系, 点群 X 線と結晶 応用編 電子顕微鏡 放射光 中性子線 結晶の格子定数 結晶の欠陥と組織 1 hcp (hexagonal close packed structure) ABAB.. : hcp 2 hcp (hexagonal close

More information

PowerPoint Presentation

PowerPoint Presentation 信州大理数学生応援プロジェクト講演 2011 年 12 月 13 日 準結晶 その特異な原子配列秩序について 東京大学生産技術研究所枝川圭一 準結晶の発見 概要 1. 序物質科学 材料科学とは? 2. 結晶 アモルファス 準結晶 結晶とは? アモルファスとは? 準結晶とは? 構造秩序 種類 何が画期的か? 長距離秩序あり 長距離秩序なし 結晶準結晶アモルファス ( ガラス ) 物質科学 材料科学 Materials

More information

Microsoft Word - XRD_2010.doc

Microsoft Word - XRD_2010.doc 5.X 線回折. はじめに以下の条件条件を満たさないたさない場合場合 学生実験学生実験を始めない! 予習をしてこない 学生実験ノートを持ってこない ( テキストにデータを書く学生が多い ) レポート 実験実験ノートノートの作り方 実験ノート レポートは ボールペン ( 手書き ) で書くこと! ワープロで書かれたレポートは受け取らない 誰が読んでも分かりやすいレポートを書くこと 3 客観的な記述 考察が要求される

More information

物性物理学I_2.pptx

物性物理学I_2.pptx phonon U r U = nαi U ( r nαi + u nαi ) = U ( r nαi ) + () nαi,β j := nαi β j U r nαi r β j > U r nαi r u nαiuβ j + β j β j u β j n α i () nαi,β juβj 調和振動子近似の復習 極 小 値近傍で Tylor展開すると U ( x) = U ( x ) + (

More information

A. Guinier and G. Fournet, "Small-Angle Scattering of X-rays" John Wiley & Sons, New York (1955). "Small Angle X-ray Scattering" eds. O. Glatter and O. Kratky Academic Press, London (198). R.-J. Roe, "Method

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

SPring-8ワークショップ_リガク伊藤

SPring-8ワークショップ_リガク伊藤 GI SAXS. X X X X GI-SAXS : Grazing-incidence smallangle X-ray scattering. GI-SAXS GI-SAXS GI-SAXS X X X X X GI-SAXS Q Y : Q Z : Q Y - Q Z CCD Charge-coupled device X X APD Avalanche photo diode - cps 8

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

X線-m.dvi

X線-m.dvi X Λ 1 X 1 O Y Z X Z ν X O r Y ' P I('; r) =I e 4 m c 4 1 r sin ' (1.1) I X 1sec 1cm e = 4:8 1 1 e.s.u. m = :1 1 8 g c =3: 1 1 cm/sec X sin '! 1 ß Z ß Z sin 'd! = 1 ß ß 1 sin χ cos! d! = 1+cos χ (1.) e

More information

Microsoft PowerPoint - 図材料科学基礎Ⅰ14_応用編1.pptx

Microsoft PowerPoint - 図材料科学基礎Ⅰ14_応用編1.pptx 材 料 科 学 基 礎 Ⅰ 材 料 科 学 の 枠 組 み 基 礎 編 元 素 の 結 晶 構 造 いろいろな 金 属 間 化 合 物, 合 金 の 結 晶 いろいろなセラミックスの 結 晶 とイオン 結 晶 格 子, 晶 系, 点 群 X 線 と 結 晶 応 用 編 電 子 顕 微 鏡 放 射 光 中 性 子 線 結 晶 の 格 子 定 数 結 晶 の 欠 陥 と 組 織 1 電 子 顕 微 鏡

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity atom interstitial impurity atom line defect dislocation planar defect surface grain boundary interface

More information

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons Onsager 2 9 207.2.7 3 SOLUTION OF THE EIGENWERT PROBLEM O-29 V = e H A e H B λ max Z 2 OnsagerO-77O-82 O-83 2 Kramers-Wannier Onsager * * * * * V self-adjoint V = V /2 V V /2 = V /2 V 2 V /2 = 2 sinh 2H

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

(Jackson model) Ziman) (fluidity) (viscosity) (Free v 1) 16 6 10 1) e-mail: nishitani@ksc.kwansei.ac.jp 0. 1 2 0. 1. 1 2 0. 1. 2 3 0. 1. 3 4 0. 1. 4 5 0. 1. 5 6 0. 1. 6 (Jackson model) 8 0. 1. 7 10. 1 10 0. 1 0. 1. 1 Ziman) (fluidity) (viscosity) (Free volume)(

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

6

6 000 (N =000) 50 ( N(N ) / = 499500) μm.5 g cm -3.5g cm 3 ( 0 6 µm) 3 / ( g mo ) ( 6.0 0 3 mo ) =.3 0 0 0 5 (0 6 ) 0 6 0 6 ~ 0 000 000 ( 0 6 ) ~ 0 9 q R q, R q q E = 4πε 0 R R (6.) -6 (a) (b) (c) (a) (b)

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

CoPt 17

CoPt 17 CoPt 17 1...1 1.1...1 1.2...1 1.2.1...1 1.2.2...1 1.2.3...2 1.3...3 1.4 CoPt...3 1.5...4 2...6 2.1...6 2.1.1...6 2.1.2...6 2.2...7 2.2.1 X...7 2.2.2...7 2.3...8 2.3.1...8 2.3.2...9 3 CoPt...10 3.1...10

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

ラウエ法方位解析説明書

ラウエ法方位解析説明書 単結晶による X 線回折 ラウエ カメラ 単結晶の方位解析 ラウエ カメラの測定に先だって : 試料結晶のステレオ投影図を作成して結晶の方位を決定 ラウエ図形を解析して 回折斑点の指数づけをするなどを行うラウエ パターンの取得には 次の点を念頭におくと良い 1 試料外形に対する入射 X 線の方向を正確に決める 2 ラウエ図形の解析は入射 X 線に対する回折角を求めることが基本となるので 結晶 フィルム間の距離を正確に知る

More information

untitled

untitled D nucleation 3 3D nucleation Glucose isomerase 10 V / nm s -1 5 0 0 5 10 C - C e / mg ml -1 kinetics µ R K kt kinetics kinetics kinetics r β π µ π r a r s + a s : β: µ πβ µ β s c s c a a r, & exp exp

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

第3章

第3章 5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 = ( = grad

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

Microsoft Word - 固体の電子論第2講.doc

Microsoft Word - 固体の電子論第2講.doc 第 講 - エネルギーバンドとブリルアンゾーン - はじめに前回は一様なポテンシャル中を運動する電子の振る舞いをポテンシャル 0(V(r)=0) の下でシュレーディンガー波動方程式を解くことによって明らかにした その結果 電子の波動関数は平面波 ( r) A exp( ir) で記述され そのエネルギーは 3 V m 状態密度は D m で与えられ 体積 V の中に N 個の電子があるとき フェルミ

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

飽和分光

飽和分光 3 Rb 1 1 4 1.1 4 1. 4 5.1 LS 5. Hyperfine Structure 6 3 8 3.1 8 3. 8 4 11 4.1 11 5 14 5.1 External Cavity Laser Diode: ECLD 14 5. 16 5.3 Polarization Beam Splitter: PBS 17 5.4 Photo Diode: PD 17 5.5 :

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

三木研授業2009.key

三木研授業2009.key ( ) 1980 1.54A 1.54A ( ) 1A 0.98A 2.29A ( ) 2dsinθ = λ (2d hkl sinθ hkl = λ) ()? Bragg 2dsinθ = λ 2θ 1 d sinθ = λ 2d Bragg 2dsinθ = λ? Bragg? 2dsinθ = λ? λ 2 I t 3 λ 2 exp( µt) UW Arndt, J. Appl. Cryst.

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58

More information

main.dvi

main.dvi 6 FIR FIR FIR FIR 6.1 FIR 6.1.1 H(e jω ) H(e jω )= H(e jω ) e jθ(ω) = H(e jω ) (cos θ(ω)+jsin θ(ω)) (6.1) H(e jω ) θ(ω) θ(ω) = KωT, K > 0 (6.2) 6.1.2 6.1 6.1 FIR 123 6.1 H(e jω 1, ω

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

power.tex

power.tex Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i 1987 SN1987A 0.5 X SN1987A

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

chno01.dvi

chno01.dvi 040813F 14 2 27 3 I 5 I.1... 5 I.2... 5 I.3... 5 I.3.1... 5 I.3.2... 5 I.3.3... 7 I.4... 7 I.4.1... 7 I.4.2 (Electron Affinity)... 8 I.5 (electronegativity)... 9 I.5.1... 9 I.5.2... 9 I.5.3... 10 II 13

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title 固体物性学講義ノート Author(s) 黒田, 規敬 Citation Issue date 2008 Type URL Learning Material

熊本大学学術リポジトリ Kumamoto University Repositor Title 固体物性学講義ノート Author(s) 黒田, 規敬 Citation Issue date 2008 Type URL Learning Material 熊本大学学術リポジトリ Kumamoto Univrsity Rpositor Titl 固体物性学講義ノート Author(s 黒田, 規敬 Citation Issu dat 8 Typ URL Larning Matrial http://hdl.handl.nt/98/846 Right . ( c (unit cll a β γ α b a, b, c : (lattic constants.

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information