Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Size: px
Start display at page:

Download "Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona"

Transcription

1 Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1

2 ,,. Macdonald, q, (+ ) Weyl q Laurent., A GL, P λ (x; q, t) P λ (x q, t)., x = (x 1,..., x n ) n, x i C, n (C ) n. λ = (λ 1,..., λ n ) λ i,, λ 1 λ 2... λ n 0, 0.,, (λ 1, λ 2,...), 0. Young. λ 1, λ 2,,, 0, λ. P λ (x; q, t), n λ = (λ 1,..., λ n ), K,., λ K[x] S n, Macdonald.,. q t, Q(q, t). q t,,.,, Macdonald (A GL )..,,,. Macdonald,., Macdonald, Heckman- Opdam 1987,8,. Macdonald p-adic, Heckman- Opdam, Laurent, Heckman-Opdama Laurent 2

3 , variation, q-analogue, 1987,8 Macdonald., 90 Macdonald,.,. ( ). q, Laurent (Fourier ),, ( q ),..,.?,, 1987,8 Macdonald,, q, Macdonald.,., 90, Cherednik, Macdonald q, Hecke ( (double) Hecke ). Hecke, q., Macdonald Cherednik ( Cherednik )., Cherednik Macdonald q, KZ 1, q Cherednik,, Macdonald. Macdonald, Hecke., Macdonald,, A GL, Hecke..,. (reduced), (BC ), Macdonald Koornwinder., Gauss Jacobi., Jacobi n α, β., A 1 Knizhnik-Zamolodchikov. 3

4 GL Macdonald, A 1, Jacobi., Jacobi?,, [0, 1] x α (1 x) β, [ 1, 1], α = β Gegenbauer, (ultra spherical). A 1 Macdonald, Gegenbauer q-analogue. Gauss Jacobi, BC. q Askey Wilson, Koornwinder,,.,, q. A GL, 1. Macdonald.. 2. Hecke (Macdonald-Cherednik ). Hecke Macdonald., Macdonald q., Ruijsenaars. BC, 1., 2..,.?? A Jacobi? x α (1 x) β, (f, g) := 1 0 f(x)g(x)x α (1 x) β dx, Jacobi.? 4

5 A., [ 1, 1] ( ) P n (α,β) (t) := (α + 1) n n, n + α + β + 1 2F 1 ; 1 t n! α [0, 1] t = 1 2x. Gauss, Jacobi., α, β > 1 (P m (α,β), P n (α,β) ) := = α+β+1 1 P (α,β) m 1 2n + α + β + 1 (t)p n (α,β) (t)(1 t) α (1 + t) β dt Γ(n + α + 1)Γ(n + β + 1) δ mn 0 Γ(n + α + β + 1)n!. Jacobi Gauss, (1 t 2 ) d2 y(t) dt 2 + {β α (α + β + 2)t} d y(t) dt + n(n + α + β + 1)y(t) = 0, ( t = 1 2x ).., Jacobi. α = β Gegenbauer. A Macdonald, Gegenbauer q- (A 1 )., ( ).,,, Jacobi?, 1 0 x α 1 (1 x) β dx, (x k, x l ) = 1 0 x α+k+l (1 x) β dx 5

6 .,,,,.??.,.. n ( ),,.,.,., closed.,., f g?.., (f, g),,.,.,.,.., 30.,. 1 Macdonald (A GL ) Macdonald q, q?, q,,,,,..? 80, 90? 6

7 Macdonald ( ),.., Macdonald, ( ) (q, t)-kostka,,.,. 1.1, A GL Macdonald.., A Weyl, Laurent,., K., q t,,. K,. n x 1,..., x n n, K[x] = K[x 1,..., x n ]. n, K[x] S n, n., S n n. n n, K[x] K K. σ S n, K, x i, f = f(x 1,..., x n ) K[x] : σ(f) := f(x σ(1),..., x σ(n) ).. S n K[x] K[x]. σ f σ(f) K[x] Sn := {f K[x] σ(f) = f} K[x] 7

8 , n.,,,. n = 1.,. 2,,., N, µ = (µ 1,..., µ n ) N n, n x := (x 1,..., x n ) µ x µ := x µ 1 1 x µn n. deg x µ = µ := µ µ n., S n, S n N n (or Z n )., σ µ := (µ σ 1 (1),..., µ σ 1 (n)) inverse,.,,, inverse., σ(x µ ) = x µ 1 σ(1) xµ n σ(n) = xµ σ 1 (1) 1 x µ σ 1 (n) n = x σ µ S n K[x], compatible. (monomial) L := N n,, L + := {λ = (λ 1,..., λ n ) L λ 1 λ n 0} 2,., Bourbaki.,.. 8

9 . L + λ, n, λ m λ (x) := x µ µ S n λ. S n L,,,, L +.,, {m λ (x)} λ L +., K[x] S n = λ L + K m λ (x) K[x] = λ L K x λ.,. λ = (l, 0,..., 0) =: (l) = }{{} l m (l) (x) = x l x l n =: p l (x) ( ), λ = (1,..., 1, 0,..., 0) =: (1 }{{} l ) = l m (1 r,0,...,0)(x) = λ = (2, 1, 0,..., 0) = 1 i 1 < <i r n }{{} m (2,1,0,...,0) (x) = l x i1 x in =: e r (x) 1 i,j n i j x 2 i x j. ( ), (dominance ordering) 3. Macdonald,, (dominance ordering) 4. lex µ 1 λ 1 µ 1 + µ 2 λ 1 + λ 2 µ λ. µ µ n 1 λ λ n 1 µ µ n = λ λ n ( µ = λ ) 4, dominance ordering. 9

10 ,,., (3, 3) (4, 1, 1) 3 4, > , ( 1.2 (1) )., µ, λ L. λ = (λ 1,..., λ n ) L + µ = (µ 1,..., µ n ) S n λ., λ 1 λ, µ 1 λ, λ 1 µ 1., λ 1 + λ 2 µ 1 + µ 2. µ 1 µ n, λ 1 λ n, λ 1 + λ 2 λ 1 λ n, µ 1 + µ 2., λ L + S n S n λ µ, λ µ.., i. ε i = (0,, 0, ˇ1, 0,, 0), P := Z n = n Z ε i., µ = (µ 1,..., µ n ) µ = n µ i ε i., α ij := ε i ε j = (0,..., 0, ˇ1, 0,..., 0, i j ˇ 1, 0,..., 0) (i < j),. α i := α ii+1 = ε i ε i+1 = (0,..., 0, ˇ1, i i+1 ˇ 1, 0,..., 0) (i = 1,..., n 1)., A GL., α ij = α i + + α j

11 1.2. µ, ν P (1) µ ν µ ν. lex (2) µ ν µ ν Q + µ ν = 1 i<j n k ijα ij (k ij N).,, Q n 1 Q := Z α i,. 5 n 1 Q + := N α i (2), λ Young α ij i, j.,. (6, 4, 3, 2) (4, 4, 4, 3), (6, 4, 3, 2) (4, 4, 4, 3), α 12 α 23 α 14.,,. 1.2 Schur.. Schur, Schur,., Schur. Macdonald,, Schur, Schur, Schur. Schur, Macdonald, ( ). 5 P. 11

12 Schur, n λ = (λ 1,..., λ n ) L + s λ (x),, s λ (x) := det (xλ j+n j i ) n i,j=1 (x) K[x] Sn.. (x), Vandermonde (x) = (x 1,..., x n ) := (x i x j ) = det (x n j 1 i<j n i ) n i,j=1, det (x λ j+n j i ) n i,j=1., (x), s λ (x) K[x]., Schur, Schur,,, 6. GL n (C) GL n (C), P +, Schur. T Young λ 1 n, ( ), ( )., λ = (2, 1),, T 1 = 1 1 2, 2 1 1, T 2 = 1 2 2, 2 1 2, SSTab n (λ) λ L + Young, µ i = µ i (T ) := T i, T wt(t ) = µ := (µ 1,..., µ n ). λ = (2, 1), { SSTab 2 ((2, 1)) = T 1 = 1 1, T 2 2 = 1 2 } 2 6,,,,. 12

13 , µ 1 (T 1 ) = 2, µ 2 (T 1 ) = 1, µ 1 (T 2 ) = 1, µ 2 (T 2 ) = 2, wt(t 1 ) = (2, 1), wt(t 2 ) = (1, 2),., Schur. s λ (x) = x wt(t ) T SSTab n (λ) Schur., ( ) x 3 1 x 3 2 det x 1 x 2 s (2,1) (x) = = x 2 x 1 x 1x 2 + x 1 x , T SSTab 2 ((2,1)) x wt(t ) = x wt(t 1) + x wt(t 2) = x (2,1) + x (1,2) = x 2 1x 2 + x 1 x 2 2 Schur., λ wt(t ) (T SSTab n (λ)).,, 1 1, T 1 µ 1 (T ) λ L + 1 λ , T 1 2 µ 1 (T ) + µ 2 (T ), λ L λ 1 + λ 2.. GL n GL n 1, Gelfand Tsetlin, Gelfand Tsetlin.. 7 Kostka Schur s λ (x) K[x] Sn = λ L K m + λ (x) m λ (x). s λ (x) = K λ,µ m µ (x) = K λ,µ x µ. µ L λ µ µ L + λ µ 7.,. 13

14 K λ,µ,, λ T wt(t ) µ. SSTab n (λ) wt=µ := {T SSTab n (λ) wt(t ) = µ} K λ,µ := SSTab n (λ) wt=µ., λ = (2, 1),, { SSTab 2 ((2, 1)) wt=(2,1) = T 1 = 1 1 }, SSTab 2 ((2, 1)) 2 wt=(1,2) = { T 2 = µ L., K (2,1),(2,1) = K (2,1),(1,2) = 1 0, K (2,1),µ m µ (x) = K (2,1),(2,1) m (2,1) (x) = m (2,1) (x) = x 2 1x 2 + x 1 x 2 2 = s (2,1) (x), µ L + (2,1) µ K (2,1),µ x µ = K (2,1),(2,1) x (2,1) + K (2,1),(1,2) x (1,2) = x 2 1x 2 + x 1 x 2 2 = s (2,1) (x) µ L (2,1) µ. Kostka,. }, 1.3 Macdonald A GL Macdonald,. q, t,, q (Macdonald ). 8 D x := n 1 j n j i tx i x j x i x j T q,xi., T q,xi i q-. T q,xi (f)(x) := f(x 1,..., qx i,..., x n ) 8 Jacobi,, q Macdonald. 14

15 D x T q,xi x, (x) t- T t,xi x i (x). D x T t,xi ( )(x) (x) D x = n = 1 j n j i tx i x j x i x j T t,xi ( )(x) T q,xi, (x)., (1) D x (K[x] S n ) K[x] S n. (2) D x K[x] Sn., D x (m λ (x)) = m µ (x)d µλ = m λ (x)d λ + m µ (x)d µλ., d λ := d λλ, µ L + λ µ d λ = n t n i q λ i. µ L + λ>µ,,...,. D x (Macdonald ),,. (1), f(x) K[x] S n, D x (f(x)), D x. D x (f(x)). D x (f(x)) = 1 (x) n., h(x), T t,xi ( )(x)t q,xi (f)(x) K(x) Sn 1 (x) K[x] D x (f(x)) h(x) (x),,, h(x)., g(x) h(x) = (x)g(x). D x (f(x)) = g(x),. 15

16 (2), Macdonald, 9. D x i, 1 j n j i tx i x j T q,xi = (tx i x 1 ) (tx i x i 1 )(tx i x i+1 ) (tx i x n ) x i x j (x i x 1 ) (x i x i 1 )(x i x i+1 ) (x i x n ) = t n i 1 j<i 1 tx i /x j 1 x i /x j i<j n 1 t 1 x j /x i 1 x j /x i T q,xi. x µ, Laurent, 1 j n j i, tx i x j x i x j T q,xi (x µ ) = t n i q µ i x µ = t n i q µ i x µ 1 j<i k=0 x µ 1 j<i ( 1 t x i x j 1 i<j n. 1.2 (2), µ ν µ ν = 1 tx i /x j 1 x i /x j )( xi x j ( ) kij xj x i 1 i<j n, x µ = x µ 1 1 x µ n n xν = x ν 1 1 x ν n n x ν = x µ 1 i<j n i<j n ) k i<j n l=0 1 t 1 x j /x i 1 x j /x i k ij α ij (k ij N), µ ν ( ) kij xj x i ( 1 t 1 x j x i T q,xi )( ) l xj, x µ x ν, µ ν., ( ) x µ lower., 1 j n j i tx i x j x i x j T q,xi (x µ ) = t n i q µ i x µ + (lower), i, ( n ) D x (x µ ) = t n i q µ i x µ + (lower). 9 Macdonald. x i 16

17 µ S n λ, D x (m λ (x)), 1.1 λ lower, 1.3 (1) K[x] S n = λ L K m + λ (x), λ lower, ( n ) D x (m λ (x)) = t n i q λ i m λ (x) + m µ (x)d µλ.. µ L + λ>µ Macdonald K := Q(q, t). λ L +, P λ (x) = λ µ D x P λ (x) = P λ (x)d λ, d λ = p µλ m µ (x) = m λ (x) + λ>µ p µλ m µ (x) = x λ + (lower terms), (1.1) n t n i q λ i. (1.2) P λ (x) = P λ (x; q, t). λ (A GL )Macdonald. 1.3,., λ L +, λ m µ (x) K- 10 K[x] S n λ := K m µ (x) µ L + µ λ. D x K[x] S n λ, {m µ(x)} µ, 1.3 (2),... dµ D x (..., m µ (x),..., m λ (x)) = (..., m µ (x),..., m λ * (x))... 0 d λ. λ µ, d λ d µ, D x, d λ. 10 m µ (x) m λ (x), Young,. 17

18 ,., D x, P λ (x) := µ L + µ<λ D x d µ d λ d µ m λ (x) K[x] Sn., 1.3 (2), P λ (x) = m λ (x) + p µλ m µ (x) K[x] Sn µ L + µ<λ. D x, Cayley Hamilton det (z id K[x] Sn D x ) = (z d µ ) λ µ L + µ λ (D x d λ )P λ (x) = 0. P λ (x) (1.1), (1.2), (1.1), d λ Pλ (x) = ν λ d λ p νλ m ν (x). (1.2) 1.3 (2), d λ Pλ (x) = D x Pλ (x) = ν λ p νλ D x m ν (x) = ν λ = µ λ p νλ d µν m µ (x) µ ν d µ p µλ m µ (x) + {m ν (x)} µ K[x] S n K, (d µ d ν )p µλ = µ<ν λ µ<ν λ d µν p νλ m µ (x). d µν p νλ, p λλ = 1. P λ (x) p µλ,. 18

19 , Macdonald...,. 1.5 (2 Macdonald ). φ(x 1, x 2 ) = x λ 1 1 x λ 2 2 k=0 ( ) k x2 c k x 1, D x φ(x 1, x 2 ) = φ(x 1, x 2 )(tq λ 1 + q λ 2 ). (q-)gegenbauer P (r) (x), P (1 r,0,...,0)(x) n Macdonald. 2,. Macdonald. [M1] I. G. Macdonald: Symmetric Functions and Hall Polynomials, Second Edition, Oxford University Press, bible, 6 q, t A GL, Macdonald. [M2] I. G. Macdonald: Symmetric functions and orthogonal polynomials, University Lecture Series, 12 American Mathematical Soc., [M1] [M3] 19

20 . [M3] I. G. Macdonald: Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Math. 157 Cambridge University Press, Cherednik Hecke Macdonald., A GL 1. Macdonald. 2. Hecke (Macdonald-Cherednik ).,.,, 2. ( )? Hecke,.,., 1.,,,,.,. ( ). Hecke, [M3], [M2]., [ 1] : Hecke Macdonald, , , ( ), Hecke., [ 2] : Hecke Macdonald Cherednik, 1997,. 20

21 ,., A, BC Koornwinder, Hecke, q, ,,,.., P λ (x) = P λ (x; q, t) K[x] S n n, λ L + := {λ = (λ 1,, λ n ) N n λ 1 λ n 0} n {P λ } λ L +,, q., D x, D x = D x P λ (x) = P λ (x)d λ ( n j i tx i x j x i x j ) T q,xi q. d λ, n d λ = t n i q λ i = t n 1 q λ 1 + t n 2 q λ q λ n., (t n 1 q λ 1, t n 2 q λ 2,, q λ n ) n, d λ, 1., t δ q λ. δ Macdonald, δ = (n 1, n 2,..., 0). staircase,. 3 Macdonald ( ) 3.1 q n = 2, 11 yanagida/others-j.html 21

22 . q,, q.,. 2ϕ 1 q, Gauss q-analogue,., 2ϕ 1 ( a, b c ; q, z ) = k=0 (a; q) k (b; q) k (q; q) k (c; q) k z k ( q < 1, z < 1) (a; q) k = (1 a)(1 qa) (1 q k 1 a) (k = 0, 1,...) q-analogue.,. (a; q) = (1 q i a) i=0 q < 1, a.. (α) k = α(α + 1) (α + k 1) Pochhammer symbol, (a; q) k q- Pochhammer symbol, Askey Pochhammer (α) k Pochhammer symbol., Pochhammer symbol.,. Askey shifted factorial. q-shifted factorial (a; q) k, shifted factorial (α) k q-analogue,,. 1 qα, q R 1 q, q 0 1, 1 qα 1 q α., a = q α (a; q) k (1 q) k = (qα ; q) k (1 q) k (α) k. 2ϕ 1, a = q α, b = q β, c = q γ, 1 q, q-shifted factorial shifted, 2 ϕ 1 Gauss 2 F 1. q-analogue.,. q-analogue q, ϕ D.. ( ) a, b 1,..., b n ϕ D ; q; z 1,..., z n = (a; q) µ (b 1 ; q) µ1 (b n ; q) µn z µ 1 1 z µ n n c (c; q) µ N n µ (q; q) µ1 (q; q) µn 22

23 (Lauricella )F D q-analogue,., Macdonald, q,, n. (1) 1., ϖ r = ε ε r = (1, 1,..., 1, 0,, 0) = (1 }{{} r ) = r }{{} r α 1 = ε 1 ε 2,..., α n 1 = ε n 1 ε n, α n = ε n. α n 1, GL 1, α n., ϖ i, α j = δ i,j (i, j = 1,..., n).,.,,, 1.,,,,.,,, (1 r ). (1 r ), minimal. Macdonald, P (1 r )(x; q, t) = m (1 r )(x) = e r (x)., minimal A,. (2) 1 λ = (l, 0,, 0) = (l) = }{{} l 23

24 l. Schur l, l 1, Macdonald,. P (l) (x; q, t) = const. µ 1 + +µ n=l (t; q) µ1 (t; q) µn x µ 1 1 x µn n (q; q) µ1 (q; q) µn µ µ n = l (l, 0,..., 0), (t; q) µ1 (t; q) µn x µ 1 1 x µ n n (q; q) µ1 (q; q) µn µ 1 + +µ n =l (t;q) l (q;q) l x l 1. Macdonald 1,. P (l) (x; q, t) = (q; q) l (t; q) l µ 1 + +µ n =l (t; q) µ1 (t; q) µn x µ 1 1 x µ n n (q; q) µ1 (q; q) µn n, l, n x l 1, µ 1 = l µ 2 µ n q-shifted factorial, µ 2 µ n,. P (l) (x; q, t) = x l 1 µ 2,,µ n 0 (q l ; q) µ2 + +µ n (t; q) µ2 (t; q) µn (q 1 l t 1 ; q) µ2 + +µ n (q; q) µ2 (q; q) µn ( qx2 ϕ D, ( ) P (l) (x; q, t) = x l q l, t,..., t 1ϕ D ; q; qx 2,..., qx n q 1 l t 1 tx 1 tx 1 tx 1 ) µ2 ( qxn. 1 Macdonald. F D. 1, D x, ( 5.1).,,. n = 2, 2 ϕ 1.. D x? tx 1 ) µn 24

25 , Macdonald,, D x ( ) m n Macdonald,,. BC,,,.,?.,.. 4 Macdonald, Macdonald. K[x] S n,, Macdonald., Macdonald, Macdonald. K[x] Sn = λ L + KP λ (x), D x K[x] Sn, 1,. 4.1 ( ) q, t Macdonald. t = 1 (t = q κ, κ = 0 ) n D x = T q,xi, P λ (x; q, 1) = m λ (x) t = q (t = q κ, κ = 1 ) P λ (x; q, q) = s λ (x) Schur 25

26 κ = 1 κ = 2,. 2 q = 0 Hall Littlewood t = 0 q-whittaker q t duality Hall Littlewood q-whittaker, q t. q = 0 q-whittaker, dual Whittaker.. t = q κ, q 1 lim q 1 P λ (x; q, q κ ) = P λ (x; κ) Jack, κ = 0, κ = 1 Schur., κ = 1 zonal,. 2 zonal., t = q 1 2, zonal q-analogue. κ = 2, κ = 1 SO 2, κ = 2 Sp. Macdonald q A Heckman Opdam, Jack., Heckman Opdam A Jacobi Jack., 2 F 1, BC, A. Jack?. Jack James., GL n, SO radial part, zonal. SO. 4.2 q Macdonald D x 1, D x, q 26

27 . r = 0, 1,..., n, D (r) x = t (r 2) I {1,...,n}, I =r i I,j / I. r, T I q,x = i I T q,xi tx i x j x i x j i I T q,xi, D (r) x A I (x; t) = T I t,x (x) (x) = t (r 2) i I,j / I. D x (r) = A I (x; t) Tq,x I I {1,,n}, I =r tx i x j x i x j, D x,,,., D (0) x = 1, D (1) x = D x, D x (2),..., D (n) x = t (n 2) Tq,x1 T q,xn ( Euler ). 0 1 Euler, 2, 1, Euler..,. D x (u) := n r=0 ( u) r D (r) x 4.1 (Ruijsenaars, Macdonald). (1) : D x (r) D x (s) = D x (s) D x (r) (r, s = 0, 1,..., n), D x (u)d x (v) = D x (v)d x (u). (2) Macdnald D (r) x (r = 0, 1,..., n) : D (r) x P λ (x) = P λ (x)e r (t δ q λ ), t δ q λ = (t n 1 q λ 1,..., tq λ n 1, q λ n ), n ( D x (u) P λ (x) = P λ (x) 1 ut n i q ) λ i. 27

28 , Macdonald 1, n q, Macdonald,. D x = D x (1) 1, 1. D x (r), D x (r) D x. Macdonald D x (r) (r = 0, 1,..., n),.,., Ruijsenaars 1987.,,,,. r s,,.,,.?. Ruijsenaars, Macdonald,,. Ruijsenaars, relativistic, Ruijsenaars model, Calogero-Moser.? Ruijsenaars, Corollary., Macdonald. Macdonald, D x (r) (r = 0, 1,..., n),,, D x,. D x (r) (r = 0, 1,..., n).,. 28

29 4.3 Macdonald K = C, q, t R, 0 < q < 1, 0 < t < 1. R[x]. f, g R[x], f(x), g(x) = 1 1 n! (2π f(x 1 )g(x)w(x) dx 1 dx n 1) n T x n 1 x n, T n = {x = (x 1,..., x n ) C n x 1 = = x n = 1} n. q-analogue Jackson, Macdonald, Jackson, n.?, K = C, Hermite, f(x 1 ) f(x). Macdonald q, t Q, q, t R,, K = R., w(x) = 1 i<j n (x i /x j ; q) (tx i /x j ; q) } {{ } w + (x) (x j /x i ; q) (tx 1 i<j n j /x i ; q) }{{} w (x). x i /x j = x ε i ε j ε i ε j,., x i /x j (i < j). 1 w + (x), w (x). (x;q) x < 1, x Re(t) < 1 w(x),. w(x), D x (r) (r = 0,..., n)., Af, f = f, A g A = A,.. ϖ r = ε ε r, w + (x). T ϖ r q,x (w + (x)) w + (x) = const. 1 i r,r+1 j n tx i x j x i x j..,, 29

30 . q-shift. q,,, Cauchy,. q-shift, D x (r) S n., f(x 1 )g(x)w(x) = f(x 1 )w + (x 1 )g(x)w + (x) Tq,x ϖr, D(r) x. r = 1, D x ( 5.2)., D x P λ (x), P µ (x) = P λ (x), D x P µ (x) d λ P λ (x), P µ (x) = d µ P λ (x), P µ (x)., d λ d µ P λ (x), P µ (x) = 0., Macdonald, Macdonald., Jackson, Jackson.,,., Laurent 1,. 1, 1,,. 1, 1 = n (t; q) (qt i 1 ; q) (q; q) (t i ; q),. P λ, P λ. Kadell.,.,, Cherednik, E 8,. Cherednik Hecke,,, E 8. 30

31 ,?.,. Cherednik. 4.4 ( ), δ = (n 1, n 2,..., 0)., λ = 0 t δ q λ, t δ = (t n 1, t n 2,..., 1). δ A Macdonald, ρ ( ) ( ) P λ (t δ ) = t n(λ) 1 i<j n (t j i+1 ; q) λi λ j (t j i ; q) λi λ j (, n(λ) := ) n (i 1)λ i, 1 Gauss. Macdonald,. ( ) P λ(t δ q µ ) = P µ(t δ q λ ) (λ, µ L + ) P λ (t δ ) P µ (t δ ) P λ (x) := P λ(x) 1, P λ (t δ ) P λ (t δ q µ ) = P µ (t δ q λ ). λ, x, t δ q µ, ( ).,. x (e λx ) = λe λx, λ (e λx ) = xe λx,. dual. q. Jacobi, x Gauss n n,, Macdonald., 31

32 ,, q,. 4.5 Pieri Macdonald, Macdonald. P µ (x)p ν (x) = c λ µ,νp λ (x) λ, c λ µ,ν.,, µ, ν,,, character, Schur. c λ µ,ν Littlewood-Richardson. Cherednik?..,. 1, e r (x)p µ (x) = φ λ/µp λ (x) 1, P (l) (x) P µ (x) = µ λ L + λ µ:vertical r-strip µ λ L + λ µ:horizontal l-strip φ λ/µ P λ (x), φ λ/µ φ λ/µ. 1 Pieri., λ µ : vertical r-strip, λ µ, 0 1, r, horizontal l-strip, λ µ, 0 1, l. r l. 32

33 λ µ : vertical 3-strip µ = λ = λ µ : horizontal 3-strip µ = λ =, m + n Macdonald, x (m ) y (n ), x Macdonald y Macdonald,. P λ (x 1,..., x m, y 1,..., y n ) = µ,ν a λ µ,νp µ (x 1,..., x m )P ν (y 1,..., y n ) Schur, GL m+n GL m GL n,,., n Macdonald,. P λ (x 1,..., x n ) = ψ λ/µ = i<j µ λ L + λ µ:horizontal-strip P µ (x 1,..., x n 1 )ψ λ/µ x λ µ m (q µ i λ j +1 t j i+1 ; q) λi µ i (q µ i µ j t j i ; q) λi µ i (q µ i λ jt j i ; q) λi µ i (q µ i µ j +1 t j i ; q) λi µ i 1, n Macdonald.,. P λ (x) = n i j µ ψ (k 1) µ (k) /µ (k 1)x µ(k) k ϕ=µ (0) µ (1) µ (n) =λ k=1, horizontal strip. horizontal strip, λ T SSTab n (λ). T 1 µ (1), 2 µ (2),..., ϕ 33

34 λ ϕ = µ (0) µ (1) µ (2) µ (n) = λ, horizontal strip, 1 1.,, SSTab n (λ) x,, Schur Macdonald. Macdonald (bible). 4.6 (Cauchy ). ( 5.1). n Macdonald 1, x n y 1., m x = (x 1,..., x m ) Macdonald n y = (y 1,..., y n ) Macdonald. m n j=1 (tx i y j ; q) (x i y j ; q) = l(λ) min{m,n} b λ P λ (x 1,..., x m )P λ (y 1,..., y n ) 1,. b λ,., Macdonald, Macdonald,, Littlewood-Richardson dual. Schur Cauchy m n j=1 1 1 x i y j = l(λ) min{m,n} s λ (x 1,..., x m )s λ (y 1,..., y n ) (1) q. ( q < 1, x < 1.) (ax; q) (x; q) = k=0 (a; q) k (q; q) k x k 34

35 (2) n x = (x 1,..., x n ) 1 y n (tx i y; q) = g l (x; q, t)y l (x i y; q) g l (x; q, t). (3). D x n (tx i y; q) (x i y; q) = l=0 (t n 1 T q,y + 1 ) n tn 1 1 t 5.2. D x. ( ) (tx i y; q) (x i y; q) 5.1. (1) x Taylor. x q. (t; q) µ1 (t; q) µn (2) g l (x; q, t) = x µ 1 1 x µ n n. (q; q) µ1 (q; q) µn µ 1 + +µ n =l (3).. P (l) (x). (1) a = q α, q 1, Newton (1 x) α (α) k = x k (1) k. (2) t = q κ, q 1 n (1 x iy) κ. y n (1 x i y) κ = g l (x)y l, g l (x) = l=0 g l (x) = Res y=0 ( y l 1 n k=0 µ 1 + +µ n=l ) (1 x i y) κ dy (κ) µ1 (κ) µn (1) µ1 (1) µn x µ 1 1 x µ n n. (l = 0, 1, 2,...) (5.1), y Jordan-Pochhammer. x = (x 1,..., x n ), F D, g l (x) F D. ( ) 35

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

Fuchs Fuchs Laplace Katz [Kz] middle convolution addition Gauss Airy Fuchs addition middle convolution Fuchs 5 Fuchs Riemann, rigidity

Fuchs Fuchs Laplace Katz [Kz] middle convolution addition Gauss Airy Fuchs addition middle convolution Fuchs 5 Fuchs Riemann, rigidity 2010 4 8 7 22 2 Fuchs Fuchs Laplace Katz [Kz] middle convolution addition Gauss Airy Fuchs addition middle convolution Fuchs 5 Fuchs Riemann, rigidity 0 Fuchs addition middle convolution Riemann Fuchs

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f : ( ) 2008 5 31 1 f(t) t (1) d 2 f(t) + f(t) = 0 dt2 f(t) = sin t f(t) = cos t (1) 1 (2) d dt f(t) + f(t)2 = 0 (1) (2) t (c ) (3) 2 2 u(t, x) c2 u(t, x) = 0 t2 x2 1 (1) (1) 1 t, x (4) 3 u(t, x) + 6u(t,

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

III Kepler ( )

III Kepler ( ) III 20 6 24 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information