Size: px
Start display at page:

Download ""

Transcription

1

2 i

3 ii

4 1 1 (Virtual Reality: VR) [1][2] [3] VR VR 3 VR 1 1 1

5 1 2 [4] [5] 2 6 (Inverse Kinematic: IK) [6] 2 Pamplona 1 AR [7] 1 ( ) (CV) [8] ARToolKit 6 [9]

6 1 3 PC VR/MR/AR 0%

7

8 5 2 [8] 6 ARToolKit AR 6 ( 2.1) IP MP 1 CM 2 4 DIP PIP 1 MP 2 4 MP 2 MP 2.1 ( ) DIP PIP MP IP CM 2.1:

9 : [10] 2.2 IP MP CM( ) CM( ) DIP PIP MP( ) MP( ) :

10 i(i = 1 4) i = 1 i = 4 0 DIP PIP [11]( 2.2) PIP MP ( ) S [12]( 2.3) IP MP ( 2.4) MP CM ( ) S ( 2.5) 2.2: DIP PIP 2.3: PIP MP ( )

11 : IP MP 2.5: MP CM ( ) DIP θ i1 (= f θi1 (θ i2 )) IP θ 01 (= f θ01 (θ 02 )) 2.2 θ i2 i PIP θ 02 MP i MP 2.3 MP ( ) θ i3 i MP ( ) θ i4 i MP ( ) f θi1 (θ i2 ) = 2 3 θ i2 (2.1) f θ01 (θ 02 ) = 4 3 θ 02 (2.2) { ( (θ i3 60.0)) θ i4 ( (θ i3 60.0)) (θ i3 60 ) 25 θ i4 25 (θ i3 < 60 ) (2.3) 2.2 (Forward Kinematics: FK) 2.1 Denavit-Hartenberg [13] i DH

12 DH a α d θ a α d θ θ i θ i3 3 L i3 0 0 θ i2 4 L i2 0 0 θ i1 5 L i : i DH a α d θ θ θ L θ 02 4 L θ 01 5 L : DH θ i1 L i1 θ 01 L 01 θ i2 L i2 θ θ L i4 i3 i3 θ 02 L 02 θ L 03 θ 2.6: i DH 2.7: DH 2.3 i F K i (θ i4, θ i3, θ i2, θ i1 ) F K 0 (θ 04, θ 03, θ 02, θ 01 ) 2.5 F K i (θ i4, θ i3, θ i2, θ i1 ) = L i1 sin θ i4 cos(θ i3 + θ i2 + θ i1 ) +L i2 sin θ i4 cos(θ i3 + θ i2 ) + L i3 sin θ i4 cos θ i3 L i1 cos θ i4 cos(θ i3 + θ i2 + θ i1 ) +L i2 cos θ i4 cos(θ i3 + θ i2 ) + L i3 cos θ i4 cos θ i3 L i1 sin(θ i3 + θ i2 + θ i1 ) + L i2 sin(θ i3 + θ i2 ) + L i3 sin θ i3 (2.4)

13 2 10 F K 0 (θ 04, θ 03, θ 02, θ 01 ) = L 01 cos θ 04 sin θ 03 cos(θ 02 + θ 01 ) L 01 sin θ 04 sin(θ 02 + θ 01 ) +L 02 cos θ 04 sin θ 03 cos θ 02 L 02 sin θ 04 sin θ 02 +L 03 cos θ 04 sin θ 03 L 01 cos θ 03 cos(θ 02 + θ 01 ) + L 02 cos θ 03 cos θ 02 + L 03 cos θ 03 L 01 sin θ 04 sin θ 03 cos(θ 02 + θ 01 ) + L 01 cos θ 04 sin(θ 02 + θ 01 ) +L 02 sin θ 04 sin θ 03 cos θ 02 + L 02 cos θ 04 sin θ 02 +L 03 sin θ 04 sin θ 03 (2.5) DIP θ i1 IP θ i F K i (θ i4, θ i3, θ i2 ) 2.7 F K 0 (θ 04, θ 03, θ 02 ) F K i (θ i4, θ i3, θ i2 ) = F K 0 (θ 04, θ 03, θ 02 ) = L i1 sin θ i4 cos(θ i θ i2) + L i2 sin θ i4 cos(θ i3 + θ i2 ) +L i3 sin θ i4 cos θ i3 L i1 cos θ i4 cos(θ i θ i2) + L i2 cos θ i4 cos(θ i3 + θ i2 ) +L i3 cos θ i4 cos θ i3 L i1 sin(θ i θ i2) + L i2 sin(θ i3 + θ i2 ) + L i3 sin θ i3 L 01 cos θ 04 sin θ 03 cos 7 3 θ 02 L 01 sin θ 04 sin 7 3 θ 02 +L 02 cos θ 04 sin θ 03 cos θ 02 L 02 sin θ 04 sin θ 02 +L 03 cos θ 04 sin θ 03 L 01 cos θ 03 cos 7 3 θ 02 + L 02 cos θ 03 cos θ 02 + L 03 cos θ 03 L 01 sin θ 04 sin θ 03 cos 7 3 θ 02 + L 01 cos θ 04 sin 7 3 θ 02 +L 02 sin θ 04 sin θ 03 cos θ 02 + L 02 cos θ 04 sin θ 02 +L 03 sin θ 04 sin θ 03 (2.6) (2.7)

14 AR : CSV LUT CSV LUT (x i, y i ) AR (x i, y i ) AR- ToolKit ( ) (x i, y i ) L t

15 2 12 X F Z Y L t C Y X ( x i, yi ) 2.9: L t = C + te (2.8) t C e 2.9 F 6 F L t F i f li (θ i3 ) PIP θ i2 (= f θi2 (θ i3 )) MP ( )

16 2 13 θ i4 MP ( ) f θi2 (θ i3 ) = α i θ i3 3 + β i θ i3 2 + γ i θ i3 (2.9) α i, β i, γ i F K i (θ i4, θ i3, θ i2 ) f θi2 (θ i3 ) i f li (θ i3 ) 2.10 L i1 cos θ 04 cos 5 3 (α iθ 3 i3 + β i θ 2 i3 + γ i θ i3 ) + θ i3 +L i2 cos θ i4 cos(α i θ 3 i3 + β i θ 2 i3 + γ i θ i3 + θ i3 ) + L i3 cos θ i4 cos θ i3 f li (θ i3 ) = L i1 sin θ 04 cos 5 3 (α iθ 3 i3 + β i θ 2 i3 + γ i θ i3 ) + θ i3 +L i2 sin θ i4 cos(α i θ 3 i3 + β i θ 2 i3 + γ i θ i3 + θ i3 ) + L i3 sin θ i4 cos θ (2.10) i3 L i1 sin 5 3 (α iθ 3 i3 + β i θ 2 i3 + γ i θ i3 ) + θ i3 +L i2 sin(α i θ 3 i3 + β i θ 2 i3 + γ i θ i3 + θ i3 ) + L i3 sin θ i3 f l0 (θ 03 ) MP θ 02 (= f θ02 (θ 03 )) CM ( ) θ 04 f θ02 (θ 03 ) = α 0 θ β 0 θ γ 0 θ 03 (2.11) α 0, β 0, γ 0 F K 0 (θ 04, θ 03, θ 02 ) f θ02 (θ 03 ) i f l0 (θ 03 ) 2.12 f l0 (θ 03 ) = L 01 cos θ 04 sin θ 03 cos 7 3 (α 0θ β 0 θ γ 0 θ 03 ) L 01 sin θ 04 sin 7 3 (α 0θ β 0 θ γ 0 θ 03 ) +L 02 cos θ 04 sin θ 03 cos(α 0 θ β 0 θ γ 0 θ 03 ) L 02 sin θ 04 sin(α 0 θ β 0 θ γ 0 θ 03 ) + L 03 cos θ 04 sin θ 03 L 01 cos θ 03 cos 7 3 (α 0θ β 0 θ γ 0 θ 03 ) +L 02 cos θ 03 cos(α 0 θ β 0 θ γ 0 θ 03 ) + L 03 cos θ 03 L 01 sin θ 04 sin θ 03 cos 7 3 (α 0θ β 0 θ γ 0 θ 03 ) +L 01 cos θ 04 sin 7 3 (α 0θ β 0 θ γ 0 θ 03 ) +L 02 sin θ 04 sin θ 03 cos(α 0 θ β 0 θ γ 0 θ 03 ) +L 02 cos θ 04 sin(α 0 θ β 0 θ γ 0 θ 03 ) + L 03 sin θ 04 sin θ 03 (2.12)

17 2 14 f li (θ i3 ) f l0 (θ 03 ) 2.8 L t L t f li (θ i3 ) f l0 (θ 03 ) L s 2.13 L s = P + sd (2.13) s P d 2.8 L t Q L s R QR QR = R Q QR = (P + sd) (C + te) = P C + sd te (2.14) QR QR e QR d QR e = 0 (2.15) QR d = 0 (2.16) t s t = { d 2 (CP e) (e d)(cp d)} e 2 d 2 (e d) 2 (2.17) s = {(e d)(cp e) e 2 (CP d)} e 2 d 2 (e d) 2 (2.18)

18 2 15 CP = P C t 2.8 L t Q s 2.13 L s R L s 0.0 s 1.0 s < 0.0 R 1.0 < s R L s R QR L t Q F Cyclic-Coordinate Descent(CCD) [14] CCD 1 CCD 2.10 ( ) e ( ) g 1. c e E c g G E G 3. c 2. ( ) c b a

19 2 16 (1) (2) (3) (4) c b g a (7) g c b a e G E g c b a c g a b g c b a e e e e G E (5) (6)(2)~(5)! "#$%&' g c b a E G c g a b e e 2.10: CCD

20 CCD damping( ) i damping DIP IP PIP θ i2 MP θ 02 DIP θ i1 IP θ 01 2 e G damping DIP θ i1 PIP θ i2 DIP θ i1 f θi1 (θ i2 ) PIP θ i2j MP ( ) θ i3j f c θ i2 (θ i3j ) f c θ i3 (θ i2j ) j 0 j n j = 0 j = n θ i2j, θ i3j t j f ct θ i2 (t j ) f ct θ i3 (t j ) t n

21 2 18 MP ( ) θ i4 θ i4 θ i4 t j fθ t i4 (t j ) fθ t i4 (t j ) fθ t i2 (t j ) fθ t i3 (t j ) 2.11: 2.12: F K i (θi4, θi3, θi2)

22 2 19 θ i3 j c ( θ θ i2 j i3 f ) ct θ i 3 f ( t j ) θ i3n t θ i 3 f ( t j ) θ i2 j 2.13: θ i2n θ i3 j θ i2 j c ( θ θ i3 j i2 f ) t θ i 2 f ct θ i 2 f ( t ( t j j ) ) θ i2n 2.14: θ i3n θ i4 j t θi4 f ( t j ) θ i4 n 2.15: θ i4n

23 i k(k i) k k kd, r kd, 2.6 L kd S kd 2.16 r kd L kd kd S kd 2.16: S kd i F K i (θi4, θi3, θi2) F i F i F i

24 :

25 ( ) ( 0% 100% 0% 400%)

26 % 100% f θi1 (θ i2 ) f θ01 (θ 02 ) f θi2 (θ i3 ) f θ02 (θ 03 ) i(i=1 4) i(i = 1 4) i ( ( (mm)) 2 ) : 2.3 CSV LUT

27 3 24 LUT : AR

28 3 25 ( (mm) (mm)) : 3.2: ( ) 3.3: ( ) open :

29 3 26 AR : :400% 3.6: :0% 3.7: :200% 3.8: :300% 3.9: :200% 3.10: :100%

30 : :150% 3.12: :100% 3.13: :50% 3.14:

31 :

32 3 29 5

33 CPU : Pentium(R) Dual-Core CPU E GHz PC C++ BUFFALO USB BSW20K pixel( 30fps) pixel pixel :

34 (msec) CG : 30fps 74% 10 12fps : 4: 7: 3 1: 2:

35 4 32 3: ( CG) : 4.3: 4.4: 4.5: 1 4.6: 2

36 : MP PIP 3.5 CG 1 MP ( ) MP ( ) 4

37 34 5 0% 400%

38 5 35 MP ( )

39 36

40 37 [1] VR Vol.12 No.1 pp [2] Vol.11 No.4 pp [3] 2012 [4] Vol.J81-D-2 No.1 pp [5] IS [6] (CD-ROM) [7] Vitor F. Pamplona Leandro A. F. Fernandes Joao Prauchner Luciana P. Nedel e Manuel M. Oliveira The Image-Based Data Glove Proceedings of X Symposium on Virtual Reality (SVR 2008) pp [8] Sanshiro Yamamoto Kenji Funahashi Yuji Iwahori A Study for Vision Based Data Glove Considering Hidden Fingertip with Self-Occlusion Proc. SNPD2012 pp

41 38 [9] Billinghurst Mark Vol.4 No.4 pp [10] [11] ELKOURA G and SINGH K Handrix Animating the Human Hand Symposium on Computer Animation - SCA, pp , 2003 [12] [13] S. Hayati K. Tso and G. Roston Robot Geometry Calibration Trans. of IEEE Robotics and Automation Vol.2 pp [14] Chris Welman. Inverse kinematics and geometric constraints for articulated figure manipulation M.Sc Thesis Simon Fraser University 1993.

27 24 24115059 i 1 1 2 4 2.1...................... 4 2.1.1.............................. 5 2.1.2...................... 7 2.2............................ 9 2.2.1.................................. 10 2.2.2...............................

More information

2007 3DCG : M DCG 3DCG 3DCG 3D (huristic method) C++

2007 3DCG : M DCG 3DCG 3DCG 3D (huristic method) C++ 2007 3DCG M0104402 2007 3DCG : M0104402 3DCG 3DCG 3DCG 3D (huristic method) C++ 1 1 1.1............................ 1 1.2.............................. 3 2 4 2.1......................... 4 2.2....................

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

IP IIS Construction of Overhead View Images by Estimating Intrinsic and Extrinsic Camera Parameters of Multiple Fish-Eye Cameras Shota Kas

IP IIS Construction of Overhead View Images by Estimating Intrinsic and Extrinsic Camera Parameters of Multiple Fish-Eye Cameras Shota Kas I-08- IIS-08- Construction of Overead View Images by Estimating Intrinsic and Extrinsic Camera arameters of Multiple Fis-Eye Cameras Sota Kase, Ryota Okutsu, Hisanori Mitsumoto (Cuo University) Yoei Aragaki,

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

VRSJ-SIG-MR_okada_79dce8c8.pdf

VRSJ-SIG-MR_okada_79dce8c8.pdf THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 630-0192 8916-5 E-mail: {kaduya-o,takafumi-t,goshiro,uranishi,miyazaki,kato}@is.naist.jp,.,,.,,,.,,., CG.,,,

More information

2010 : M

2010 : M 2010 M0107288 2010 : M0107288 1 1 1.1............................ 1 1.2............................... 3 2 4 2.1................ 4 2.2....................... 6 3 9 3.1......................... 9 3.1.1..............................

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis 1,a) 2 2 2 1 2 3 24 Motion Frame Omission for Cartoon-like Effects Abstract: Limited animation is a hand-drawn animation style that holds each drawing for two or three successive frames to make up 24 frames

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055 1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free

More information

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i 007 8 8 4 1 1.1 ( ) (partial differential equation) (ordinary differential equation) 1 dy = f(, y) (1) 1 1 y() (1) y() (, y) 1 dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) 1 1 5 y() () y() y(

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2 Curved Document Imaging with Eye Scanner Toshiyuki AMANO, Tsutomu ABE, Osamu NISHIKAWA, Tetsuo IYODA, and Yukio SATO 1. Shape From Shading SFS [1] [2] 3 2 Department of Electrical and Computer Engineering,

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

スライド 1

スライド 1 swk(at)ic.is.tohoku.ac.jp 2 Outline 3 ? 4 S/N CCD 5 Q Q V 6 CMOS 1 7 1 2 N 1 2 N 8 CCD: CMOS: 9 : / 10 A-D A D C A D C A D C A D C A D C A D C ADC 11 A-D ADC ADC ADC ADC ADC ADC ADC ADC ADC A-D 12 ADC

More information

5104-toku3.indd

5104-toku3.indd 基礎 : 開発用ツール 橋本 直 ( 独 ) 科学技術振興機構 敷居が低くなった AR 開発 2007 AR AR 1 CPU GPU AR CG AR PC AR 2 Web Web Web 5,000 USB Web 10 1280 960 0fps AR PC AR AR 2007 AR AR Web PC AR Flash AR FLARToolKit Web AR IT AR ツールキットが提供する基本的な機能と開発者に求められるスキル

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2015-CVIM-195 No /1/22 AR マーカ除去のための実時間背景画像変形 *1 1 1 Abstract 本稿では, 拡張現実感で用いられる AR マーカの違和感のない視覚的除去を実現するた

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2015-CVIM-195 No /1/22 AR マーカ除去のための実時間背景画像変形 *1 1 1 Abstract 本稿では, 拡張現実感で用いられる AR マーカの違和感のない視覚的除去を実現するた AR マーカ除去のための実時間背景画像変形 *1 1 1 Abstract 本稿では, 拡張現実感で用いられる AR マーカの違和感のない視覚的除去を実現するための, 背景画像の実時間変形手法を提案する. 従来,AR マーカの実時間除去は, マーカが平面上に存在するという仮定のもと, カメラ位置姿勢に基づく単一の射影変換行列を用いて, 背景画像を変形し, マーカ上に重畳することで実現していた. しかし,

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

proc.dvi

proc.dvi M. D. Wheler Cyra Technologies, Inc. 3 3 CAD albedo Mapping textures on 3D geometric model using reflectance image Ryo Kurazume M. D. Wheler Katsushi Ikeuchi The University oftokyo Cyra Technologies, Inc.

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function 1 2 2 3 4 2 Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function Kunimichi Shibata, 1 Masakuni Moriyama, 2 Kazuhide Yukawa, 2 Koji Ueno, 3 Kazuo Takahashi 4 and Shigeo Kaneda

More information

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo 5D1 SY4/14/-485 214 SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomomichi SUGIHARA 2 1 School of Engineering, Osaka University 2-1

More information

VG-145 / VG-140 / VG-130 / VG-120 取扱説明書

VG-145 / VG-140 / VG-130 / VG-120 取扱説明書 VG-145/VG-140/D-715 VG-130/D-710 VG-120/D-705 VG-145/VG-140/D-715 VG-130/D-710 VG-120/D-705 VG-145/VG-140/D-715 CD-ROM VG-145 CD-ROM VG-140 1 LI-70B USB-AC F-2AC USB AV OLYMPUS Setup CD-ROM : 2 p. 16 3

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

main.dvi

main.dvi B 15 0150023 16 3 1 1 1 6 2 7 2.1.......................... 7 2.1.1................. 7 2.1.2..................... 7 2.2........................ 8 2.2.1...................... 8 2.2.2 INS................................

More information

DV-AR11s

DV-AR11s DV-AR11 DV-AR12 »»»»»»»»» »»»»» 106 107»»»»»»»» »»»»» 108 109 HDD HD DVD-RW VR DVD-R VR CD HDD VR HDD SD DVD-RW DVD-R DVD CD»»»»»» 1» 2 3 4»» 5 6 7 110 7 8» 1» 10 11 12»»» 9»»»»»»» 710» 712 13»»»»»» 111

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

DMS300

DMS300 DMS300 5 6 7 8 11 12 13 14-15 16 DMS300 18 18 19 10 20 DMS300 21 22 23 DMS300 25 25 DMS300 26 10 27 28 LED3000 29 HD 32 HD 32 PC 33 PC 33 PC 34 DMS300 36 DMS300 36 37 38 39 40 42 43 DMS300 2 HD 46 46 DMS300

More information

27 AR

27 AR 27 AR 28 2 19 12111002 AR AR 1 3 1.1....................... 3 1.1.1...................... 3 1.1.2.................. 4 1.2............................ 4 1.2.1 AR......................... 5 1.2.2......................

More information

dvipsj.4852.dvi

dvipsj.4852.dvi NAOSITE: Nagasaki University's Ac Title Author(s) 3D 計測によるコンクリート打継部及び曲面板の振動解析に関する研究 松田, 浩 ; 和田, 眞禎 ; 小嶋, 悟 ; 崎山, 毅 ; 森田, 千尋掲維 ; 仲村, 政彦 ; 山本, 晃 ; 鶴田, 健 Citation 応用力学論文集 Vol.3, pp.5-4, Issue Date URL http://hdl.handle.net/69/648

More information

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,

More information

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 1 1 1 GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Self-location is very informative for wearable systems.

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

i

i 29 23 23115148 i 1 1 2 3 2.1..................................... 3 2.2.................................. 6 2.2.1............................... 6 2.2.2.................................. 8 3 10 3.1........................................

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

07.報文_及川ら-二校目.indd

07.報文_及川ら-二校目.indd 8 01 01 4 4 1 5 16 18 6 006 H 18 4 011 H 6 4 1 5 1 5 007 H 19 5 009 1 5 006 007 009 011 9 10 4 000 H 1 4 5 004 H 16 4 004 009 H 1 5 4 4 5 1 4 006 011 1 1 4m 5m 10m 007 1 7 009 009 1 5 10 1 000kg 10a 006

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

21 e-learning Development of Real-time Learner Detection System for e-learning

21 e-learning Development of Real-time Learner Detection System for e-learning 21 e-learning Development of Real-time Learner Detection System for e-learning 1100349 2010 3 1 e-learning WBT (Web Based training) e-learning LMS (Learning Management System) LMS WBT e-learning e-learning

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

Σ A Σ B r Σ A (Σ A ): A r = [ A r A x r A y r z ] T Σ B : B r = [ B r B x r B y r z ] T A r = A x B B r x + A y B B r y + A z B B r z A r = A R B B r

Σ A Σ B r Σ A (Σ A ): A r = [ A r A x r A y r z ] T Σ B : B r = [ B r B x r B y r z ] T A r = A x B B r x + A y B B r y + A z B B r z A r = A R B B r 3 : Σ A = O A {X A, Y A, Z A } : Σ B = O B {X B, Y B, Z B } O B : A p B X B, Y B, Z B Σ A : A x B, A y B, A z B Σ A : A p B Σ A : { A x B, A y B, A z B } A R B = [ A x A B y A B z B ] ( A R B ) T ( A R

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

VR-330 / VR-320 / VR-310 取扱説明書

VR-330 / VR-320 / VR-310 取扱説明書 VR-330/D-730 VR-320/D-725 VR-310/D-720 VR-330/D-730 VR-320/D-725 VR-310/D-720 VR-330/D-730 1 LI-42B USB-AC F-2AC USB AV OLYMPUS Setup CD-ROM : 2 p. 16 3 p. 22 4 p. 3 5 PictBridgep. 51 DPOFp. 55... 8...

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

Canon Industrial Imaging Platform Vision Edition 使用説明書

Canon Industrial Imaging Platform Vision Edition 使用説明書 Ver. 1.1 Canon Industrial Imaging Platform Vision Edition 2 Canon Industrial Imaging Platform Vision Edition * PC PC Power over Ethernet * A 180 ( ) - - - - - - - ( ) - - - - - AF AF 3 ( ) A PC PoE PLC

More information

it-ken_open.key

it-ken_open.key 深層学習技術の進展 ImageNet Classification 画像認識 音声認識 自然言語処理 機械翻訳 深層学習技術は これらの分野において 特に圧倒的な強みを見せている Figure (Left) Eight ILSVRC-2010 test Deep images and the cited4: from: ``ImageNet Classification with Networks et

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

光学

光学 Fundamentals of Projector-Camera Systems and Their Calibration Methods Takayuki OKATANI To make the images projected by projector s appear as desired, it is e ective and sometimes an only choice to capture

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

cm H.11.3 P.13 2 3-106-

cm H.11.3 P.13 2 3-106- H11.3 H.11.3 P.4-105- cm H.11.3 P.13 2 3-106- 2 H.11.3 P.47 H.11.3 P.27 i vl1 vl2-107- 3 h vl l1 l2 1 2 0 ii H.11.3 P.49 2 iii i 2 vl1 vl2-108- H.11.3 P.50 ii 2 H.11.3 P.52 cm -109- H.11.3 P.44 S S H.11.3

More information

2009 : M DCG 3 4 3

2009 : M DCG 3 4 3 2009 M0106121 2009 : M0106121 3DCG 3 4 3 1 1 1.1............................. 1 1.2.............................. 4 2 5 2.1.............................. 5 2.2............................. 6 2.2.1...........................

More information

Z340_ManualCover_JP.ai

Z340_ManualCover_JP.ai Instant Digital Camera with ZINK Zero Ink Printing Technology Z340 2 2 4 4 5 5 5 5 6 7 8 9 10 10 10 SD/SDHC 11 Polaroid ZINK Paper 11 / 12 12 12 LCD 13 LCD 13 LCD 17 18 18 19 19 19 20 26 31 37 39 39 39

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information