2016

Size: px
Start display at page:

Download "2016"

Transcription

1 2016

2 1 G x x G d G (x) 1 ( ) G d G (x) = 2 E(G). x V (G) 2 ( ) 1.1 1: n m on-off ( 1 ) off on 1: on-off ( on ) G v v N(v) on-off G S V (G) N(v) S { 3 G v S v S G G = 1 OK ( ) G u S u u u 1

3 G u S u S u G u S u G S u u 3.2 u, v (u v) S u,v u v 3.1 S u S v S u,v G S u S v u v G v v v off {v V (G) : d G (v) } v 1, v 2,..., v 2k 3.2 S v1,v 2, S v3,v 4,..., S v2k 1,v 2k on on-off 3 4? 2 1 on off on 1.2 2: A B 1 0m A B ( B ) A B A B A B A B 2: A, B 4 A, B 2

4 0, 1, 2,..., l A 0 B l S = { (i, j) : 0 i j l, i j } S S (i, j) (i, j ) i = i ± 1 j = j ± 1 G S A B A i B j A i B j (i, j) (i, j ) ( ) 4.1 (i) (0, l) S G 1 (ii) (i, j) S {(0, l)} i j (i, j) G 4.1 (i) (0, l) G (0, l) C C (0, l) (i, j) 4.1 (ii) i = j C (0, l) (i, i) i A B : 5 ABCD ( 3 ) ABCD A, B, C, D A B x D y G G (x, y) x y (x, y) 4 (1, 1/2), ( 2, 1/2), ( 2, 5/2) (1, 5/2) 4 G B x D y 3

5 D C (1, 5/2) ( 2, 5/2) (1, 1/2) ( 2, 1/2) A B 4: G 3: 5 G ? 1.4 4: Hex G a, b, c, d A B A B a, c b, d A a c B b d d c d c a b a b 5: Hex A 6: H Ã B G C 6 a, c- b, d- Ã, B, C 4

6 à = {x V (G) : x a }, B = {x V (G) : x b }, C = V (G) à B. a à b B c, d C 3 Ã, B, C G G 3 xyz x Ã, y B, z C Ã, B G a, x- b, y- z a x z b y z z C 6.1 H V (H) = { } { }, E(H) = {uv : u v à B }. H (i) 0, 1 2 (ii) 1 3 (iii) 1 (iii) H (i) (ii) grid 1.5 5: Sperner ABC ( 7 ) ABC Sperner A 1 B 2 C 3 AB 1 2 BC 2 3 CA 3 1 1, 2 3 5

7 A B : Sperner 3 C 7 (Sperner ) Sperner ABC 1, 2, 3 3 ( ) 8 7 H 6 8 (Brouwer ) f 2 f ( x f(x) = x ) 2 T = ABC x T f(x) x T 0, T 1,... 0 ( 8 ) T 0 = T k 0 T k ( 9 ) A A A B C B T 0 = T C B T 1 T 2 8: 0 T 0, T 1, T 2,... C A 1 B 2 C 3 x xf(x) T k AB 3 BC 1 CA 2 xf(x) T k A 2 3 B C

8 AB BC CA x f(x) ; X, Y {A, B, C} x XY xf(x) X x Y T k Sperner Sperner T k 3 3 i (i {1, 2, 3}) v i k A x B f(x) C 9: x f(x) x 3 T k T ( ) vk 1 ( ) u 1 k 1 l l 1 u 1 l u (as l + ) T 0, T 1,... 0 u 1 l v2 k, v3 k u2 l, u3 l u1 l u2 l, u1 l u3 l 0 (as l + ) u 2 l u, u 3 l u (as l + ) l 1 T l u 1 l 1 u1 l f(u1 l ) BC f u 1 l u (as l + ) uf(u) BC u 2 l u3 l uf(u) CA, AB 7

9 2 Ramsey K n n K 2 K 3 2 G H G H (2 ) Ramsey r 2 (G, H) r 2 (G, H) N K N 2 G H 2.1 Ramsey Ramsey G K n H K m 9 (1) r 2 (K 2, K m ) = m. (2) r 2 (K 3, K 3 ) = 6. (1) (a) ( ) K m 2 K 2 K m ( K m K 2 ) (b) ( ) K m 1 2 K 2 K m ( ) (2) ( ) K 6 2 v v 5 v (a) 3 (b) 3 (a) A v A v K 3 A A 3 K 3 K 3 K 3 ( ) K 5 K 3 K 3 ( ). K 6 K 3 ( 6 3) = 20 R: K 3, B: K 3, M: 2 K 3 R + B + M = 20 2 K 3 2 ( ) = 2M 8

10 v v r(v), b(v) r(v) + b(v) = 5 (v ) = r(v) b(v) ( r(v) + b(v) 2 ) 2 = K 6 6 ( ) 36 M 18 R + B 2 9 K 7 2 K 3 4 N 7 K N 2 K 3 10 (Ramsey, 1930) n, m 2 r 2 (K n, K m ) r 2 (K n, K m ) r 2 (K n 1, K m ) + r 2 (K n, K m 1 ). N = r 2 (K n 1, K m ) + r 2 (K n, K m 1 ) K N 2 v A = {u V (K N ) : uv }, B = {u V (K N ) : uv }, A + B = N 1 (a) A r 2 (K n 1, K m ) (b) B r 2 (K n, K m 1 ) (a) r 2 (K n 1, K m ) A K n 1 K m v K n K m (b) K n K m 10 (b) 10 ( ) m + n 2 r 2 (K n, K m ). m 1 r 2 (K m, K m ) 2 2m 3 Ramsey n, m r 2 (K 4, K 4 ) = r 2 (K 5, K 5 ) r 2 (K 3, K 4 ) 10 r 2 (K 3, K 4 ) = 9 11 r 2 (K 3, K 4 ) 9 9

11 11 n, p, q 2 m = p + q 1 r 2 (K n, K m ) r 2 (K n, K p ) + r 2 (K n, K q ) 1. N 1 = r 2 (K n, K p ) 1, N 2 = r 2 (K n, K q ) 1 N = N 1 + N 2 K N K n K m K n K p K N1 K n K q K N2 K N N 1 N 2 K N1 K N2 12 K N1 K N2 r 2 (K 3, K 4 ) 8 13 r 2 (K 3, K 4 ) 9 12 (Erdős, 1947) m 3 r 2 (K m, K m ) 2 m/2. 9 (2) r 2 (K 3, K 3 ) = = 2 3/2 m 4 N < 2 m/2 K N 2 K m K m N 1, 2,..., N K N 2 G N G N = 2 (N 2) K N N m m K m 2 (N 2) ( m 2) KN 2 K m GN red K m ( N m) K m 2 (N 2) ( m 2) G red N ( N m) 2 ( N 2) ( m 2) ( N m) N m ( 14) N < 2 m/2 m 4 2 m 1 G red N G N ( ) N 2 (m 2) N m m 2 2) m 2 m 1 2 (m < 2 2 (m 2) m+1 = 2 m K N 2 K m GN blue GN blue < 1 G N 2 ( ) G N GN red Gblue N K m K m 14 ( ) N m N m 2 m 1 12 m N = 2 m/2 1 K N K m 10

12 2.2 Ramsey G, H Ramsey P m m ( m 1 ) C m m 13 (Parsons, 1973) n 2 r 2 (K n, P m ) = (n 1)(m 1) + 1. ( ). N = (n 1)(m 1) K N 2 K n P m K N (m 1) (n 1) m 1 P m. n n 1 n 2 2 K n ( ) 14 m 1 m 14 ( ). n N = (n 1)(m 1) + 1 K N 2 K n P m n = 2 n 3 15 n = 2 1 x x (n 2)(m 1) + 1 x A A (n 2)(m 1)+1 A (a) K n 1 (b) P m (a) K n 1 x K N K n (b) P m 2 x x (n 2)(m 1) H V (H) = V (K N ) E(H) = {uv : uv }. 2 δ(h) N 1 (n 2)(m 1) = m 1 14 H P m K N P m

13 15 m H δ(h) m 1 H T 16 (Chvátal, 1977) T m n 2 r 2 (K n, T ) = (n 1)(m 1) m 16 C m m m 4 17 r 2 (K 3, C m ) = 2m n 3 n H δ(h) > n/2 3 k n H k 2.3 Ramsey k 2 n 1,..., n k 2 r k (K n1,..., K nk ) N K N 1, 2,..., k i K ni r k (K 3,..., K 3 ) r k (3) 18 k 2 r k (3) k = 2 r 2 (3) = r 2 (K 3, K 3 ) = 6 r k (3) k r k (3) r 2 (K 3, K m ) m = r k 1 (3). N = r 2 (K 3, K m ) K N 1,..., k k K 3 A = 1, B = 2,..., k, K N A, B 2 N = r 2 (K 3, K m ) K N (a) A K 3 (b) B K m (a) 1 K 3 (b) K m 2,..., k k 1 m = r k 1 (3) K m K 3 17 k 4 r k (3) r 2 (K m, K m ) m = r k/2 (3) 18 r 3 (K 3, K 3, K 3 ) 17 12

14 2.4 Ramsey Schur {1, 2,..., 13} 3 A 1 = {1, 4, 10, 13}, A 2 = {2, 3, 11, 12}, A 3 = {5, 6, 7, 8, 9}. i (1 i 3) x, y A i x + y A i (x = y x A i 2x A i ) Schur 19 (Schur, 1916) k 1 N {1, 2,..., N} k A 1,..., A k i (1 i k) x, y A i x + y A i ( x = y ) N = r k (3) = r k (K 3, K 3,..., K 3 ) 18 N {1, 2,..., N} k A 1,..., A k i (1 i k) x, y A i x + y A i V (K N ) = {1, 2,..., N} N K N ij i j A l l K N k N = r k (3) K 3 i (1 i k) a, b, c V (K N ) ab, bc, ac i a < b < c b a, c b, c a A i x = b a y = c b x, y A i x + y = c a A i 19 k = 2 N = 5 N = 4 k G r k (G, G,..., G) k 1 N {1, 2,..., N} k A 1,..., A k i (1 i k) x, y, z A i x + y + z A i 20 (Schur, 1916) k 1 N p N p x, y, z x k + y k z k (mod p). k 1 19 N p N p x, y, z Z p Z p {0} p Z p g x Z p r x g r (mod p) 0 i k 1 i A i := {x Z p : x g r (mod p) j r = kj + i} A 0,..., A k 1 {1, 2,..., p 1} 13

15 N, p i (0 i k 1) x, y, z A i x + y = z x, y, z A i j 1, j 2, j 3 x g kj 1+i, y g kj 2+i, z g kj 3+i (mod p) x + y = z g kj 1+i + g kj 2+i g kj 3+i (mod p), g i (g kj 1 + g kj 2 g ) kj 3 0 (mod p) p g i 0 (mod p) g kj 1 + g kj 2 g kj 3 (mod p), x = g j 1, y = g j 2, z = g j 3 x, y, z 2.5 Ramsey K N A B A B A K m B K m A K m K m -Ramsey 21 m N K N K m -Ramsey A N = r 2 (K m, K m ) A (i) m = 3, N = 5 A (ii) m = 3, N = 4? (iii) A A (iv) m B N (N = 2m 4 ) 22 (Erdős & Selfridge, 1973) m N l = ( m 2 ) 1 l 2 l > ( N m) KN K m -Ramsey B m, N m ( 1 + o(1) ) 2 log N log 2 14

16 ( ) : 11: (1) 5 5 ( 11) (2) 4 4 (1) ( ) a b c d a b c d : b2 c3 13: b2, c2, b3, c3 (2) 12 2 b2 c3 2 1 a4 2 d

17 2 1 a4 2 d (2) ( 2) 13 4 b2, c2, b3, c3 a1, d1, a4, d4 5 4 b1, d2, a3, c c1, a2, d3, b4 4 a1, d1, a4, d4 b1, d2, a3, c4 c1, a2, d3, b4 4 6 ( ) a b c d c1 d3 a1 a2 c2 b4 a4 b3 c3 b2 d4 b1 a3 d1 14: (4 4)- d2 c4 15: S G S G S ω(g S) S S ω(g S) S + 1 G G S ω(g S) > S G S G S G S S ω(g S) 16

18 S ω(g S) > S G (Schwenk) m n m n (I) m n (II) m = 1, 2 4 (III) m = 3 n = 4, (III) m = 3 n = (1) (I) (II) m = 4 n = 4 23 (2) (II) m = 1, 2 20 (3 4)- (3 6)- n 5 (4 n) (3 8) (Smith, 1946 ) G 3- e G e G 17

19 e e e 16: 3- ( ) e 2 ( ) Thomassen e 0 OK e e = xy G = G y H V (H) = {P : P x G }, P P P = v 1, v 2,..., v n 1 ( v 1 = x) k (1 k n 3) v k N(v n 1 ) P = v 1, v 2,..., v k, v n 1, v n 2,..., v k+1 H ( 17 ) P P v 1 v k v k+1 v n 2 v n 1 v 1 v k v k+1 v n 2 v n 1 17: H G P P 26.1 P = v 1,..., v n 1 { 2 vn 1 N G (y), d H (P ) = 1 v n 1 N G (y). v n 1 N G (y), G 3- v n 1 v n 2 2 H P d H (P ) = 2 v n 1 N G (y) P = v 1,..., v n 1 v n 1 N G (y) v 1,..., v n 1, y, x G e G e y v n 1 N G (y) x v n 1 G 26.1 H 1 G e H 26 G x G x G 3- G 3 18

20 4 27 (, 1750?) G F (G) G V (G) E(G) + F (G) = Thurston G x (x ) +1 1 ( ) = V (G) E(G). ( ) x well-defined f f f (f ) f 1 f f f +1 ( ) = ( F (G) 1 ) + 1 = F (G) : 27 ( ) 28 G ( ) G n G 2n 4 19

21 v v d G (v) f f d G (f) ( ) d G (v) = 2 E(G) v V (G) d G (f) = 2 E(G) f F (G) ( ) d G (v) 6 + v V (G) f F (G) ( ) 2d G (f) 6 = 12 (1) 23 (1) G 2 f d G (f) 3 2d G (f) 6 0 (1) ( ) d G (v) 6 12 v V (G) 0 v d G (v) 6 < (1) (4 ) (1) 4 31 G G 5 G xy x 5 y 6 20

22 v f ( ) ch(v) ch(f) ch(v) = d G (v) 6, ch(f) = 2d G (f) 6 = 0. (1) ch(x) = 12. v V (G) 7 v 5 1/5 v ch (v) v G 5 ch(v) 1 v 5 v 7 ch (v) ( d G (v) 6 ) = 0 v 5 ch (v) ch(v) = d G (v) 6 = 0 v 7 G v 5 d G (v) 2 ( v 5 ) ch (v) ( d G (v) 6 ) 1 5 d G (v) d G(v) 6 0 ch (v) 0 v V (G) ch(x) = ( ) 3 ( ) ( ) 2 ( ) G 3 31 ch(v) = d G (v) 6, ch(f) = 2d G (f) 6, 21

23 f 19 3/2 x ch (x) ch (x) = ch(x) = 12 (2) x V (G) F (G) x V (G) F (G) f 19: ( 3/2 ) 24 v f ch 0 x ch (x) 0 ch (x) 0 x V (G) F (G) (2) ( ) 4 7 ( ) 11 5 Steinberg ( ) 4- ( ) (I) G (I) G 4-22

24 (II) G 3 3 (Grünbaum ) (III) G +1 1 mod 3 0 (Heawood ) : 4- Grünbaum Heawood (I) (II) G 4- c Z 2 Z 2 4 (0, 0), (0, 1), (1, 0), (1, 1) e = xy e c(x) + c(y) + Z 2 Z 2 G 3 x, y, z 3 c(x) + c(y), c(y) + c(z), c(x) + c(z) c G c(x) c(y) c(x) + c(y) (0, 0) c(x) + c(z) c(y) + c(z) (0, 0) G Grünbaum G (1) 4- (2) 35 (I) (II) 4- Grünbaum (3) 35 (II) (III) Grünbaum Heawood (II) (III) G Grünbaum f f 3 0, 1, 2 G T 0, 1, 2 φ : F (G) {+1, 1} T Heawood v v e 1, e 2,... e k e i e i+1 T i ( e k+1 = e 1 ) φ f(e i+1 ) f(e i ) φ(t i ) (mod 3) 23

25 : 22: f(e k+1 ) f(e k ) φ(t k ) f(e 1 ) k φ(t i ) (mod 3) i=1 f(e k+1 ) = f(e 1 ) (II) (I) G Grünbaum f f 3 Z 2 Z 2 (0, 1), (1, 0), (1, 1) ( ) 35.1 G C f(e) = (0, 0). e E(C) G c G v 0 (0, 0) v 0 (I) (II) v u c(v) = c(u) + f(uv) ( 23 ) + Z 2 Z 2 f Z 2 Z 2 4 c 2 xy c(x) c(y) xy c(x) = c(y) c x 0, x 1,..., x p ( x 0 = v 0 x p = x) x x i+1 x i c(x i ) c(x i+1 ) = c(x i ) + f(x i x i+1 ) i = 0, 1,..., p 1 i p 1 c(x) = c(x i ) + f(x j x j+1 ) (3) j=i 24

26 (1, 1) (1, 0) (1, 0) (1, 1) (1, 1) (0, 1) (0, 1) (1, 1) (0, 1) v 0 (1, 0) (0, 0) (1, 0) 23: Grünbaum 4- ( c ) y y 0, y 1,..., y q ( y 0 = v 0 y q = y) q 1 c(y) = c(y i ) + f(y j y j+1 ) (4) j=i i x s = y s s 0 x 0 = y 0 = v 0 s (3) (4) p 1 q 1 c(x s ) + f(x j x j+1 ) = c(x) = c(y) = c(y s ) + f(y j y j+1 ) j=s j=s p 1 q 1 f(x j x j+1 ) + f(y j y j+1 ) = (0, 0) j=s j=s (x s = y s f(y j y j+1 ) = f(y j y j+1 ) ) C = x s, x s+1,..., x p, y q, y q 1,..., y s+1, y s 35.1 e E(C) f(e) = (0, 0) (0, 0) = e E(C) p 1 q 1 f(e) = f(x j x j+1 ) + f(y j y j+1 ) + f(xy) j=s f(xy) = (0, 0) c G C F (int(c)) 2 j=s T F (int(c)) e E(T ) f(e) 25

27 (III) (II) Heawood φ G e e f(e) 0 e φ(t ) = +1 T 0, 1, 2 Grünbaum (II) (I) (III) (II) G Heawood (1) 35 (III) (II) Heawood Grünbaum (2) 35 (II) (I) Grünbaum Sprouts Sprouts n A B (i) 2 ( ) (ii) (i) 4 ( 24 ) A B A B 24: n = 3 Sprouts 36 n Sprouts 3n 1 ( ) x a(x) = 3 ( ) a(x) x 3n (i) 2 (ii) ( x a(x) = 1 ) 3n 1 37 n Sprouts 2n 26

28 n Sprouts p n + p 2 x (1) 2 (2) x N(x) 3 ( (1) ) x y N(x) N(y) n + p s 3s n + p 3s 36 s 3n p = s s p 2n Sprouts p A B 2n ( ) 3n 1 ( ) (n = 3 ) n n Sprouts n 0, 1, 2 (mod 6) 25 25: Sprouts (ii) A 2 ( A ) 6n 2 8n 3 Sprouts Brusseles Sprouts n free end 27

29 4n free end A B (i) free end (ii) free end (i) A B A B 26: n = 3 Brusseles Sprouts 39 Brusseles Sprouts 5n 2 n n Brusseles Sprouts p G G n 0 V (G) = n + p, E(G) = 2p G free end free end ( (i) (ii) free end ) free end ( free end ) G free end 2 free end 2 free end free end 4n F (G) = 4n (n + p) 2p + 4n = 2 p = 5n 2 n Brusseles Sprouts B (ii) (A ) 28

30 4.4 T 40 T T S(T ) 1/2 T T x y T 1/2 41 (Pick, 1899) Q S(Q) S(Q) = n int n bound 1 n int Q n bound Q 27 Q n int = 1 n bound = 9 41 Q = : ( ) ( ) 41. Q ( 27 ) T Q 40 S(Q) = 1 2 f f T Q ( ) T Q f T Q V (T Q ) = n int + n bound. 29

31 3 T Q n bound 2 E(T Q ) = 3f + n bound ( ) f + 1 = E(T Q ) V (T Q ) + 2 = 1 ) (3f + n bound ( ) n int + n bound = 3 2 f n int 1 2 n bound + 2. S(Q) = 1 2 f = n int 1 2 n bound m m = 4 m Q Q Q Q m m S(T ) S(T ) a S(T ) = 1 2 a2 sin(2π/m) a 2 2 ( ) sin(2π/m) m 4 S(T ) m 4 Q 43 5 K 5 ( ) 1 5 (x 1, y 1 ),..., (x 5, y 5 ) i, j {1, 2, 3, 4, 5} (x i, y i ) (x j, y j ) ( x i +x j, y i+y j ) 2 2 (, ), (, ), (, ) (, ) 4 5 (x 1, y 1 ),..., (x 5, y 5 ) i, j {1, 2, 3, 4, 5} x i + x j y i + y j (x i, y i ) (x j, y j ) m Z 3 m x 1,..., x m i, j {1, 2,..., m} ( i j) x i x j 44 T (, ), (, ), (, ) (, ) 4 T T 3 30

32 ( ) T = ABC 3 A B AB ( 43 ) AB ( AB A B ) BC AC A, B, C T 41 T ( ) T = ABC 3 A B AB C BC AC C BC AC 41 T 44 T = ABC AB 3 AC 3 T S(T ) ( ) 45 (Chvátal, 1975) n n 3 45 n n 3 28: G 2 G G G 2 G 2 G 31

33 G G 4 G 3 G n f G n 2 E(G) = 3f + n ( ) 3 f n n + (f + 1) = E(G) E(G) = n + 3f 2n + 2f = 2 ( E(G) + 1 ) G G G 3 3 G 4 G v G v G v T v 3 v 2 v v 45. Fisk (1978) n Q T Q ( 3 ( ) ) V (T Q ) = n T Q 47 T Q 3 T Q n n 3 n 3 1 Q Q n+2 3 n Q (O Rourke, 1982) h n+2h 3 48 n n 4 48 n

34 49 (Hoffmann & Kriegel, 1996) Q n/3 n Q 50 T T 3 T 49. Zhang & He (2005) 45 Q 3 50 ( 3 ) ( ) 2, T ( 29 ) T 29: ( ) ( ) v C v C v Q R v X v ( 30 ) R v + X v x R v 2 C v x r 1, r 2 r 1 + r 2 = R v C v X v r 1 r 2 T v deg T (v) = X v + r 2 = X v + ( R v r 1 ) 0 (mod 2). 31 ( ) 33

35 v v = R v Q = X v 30: v ( ) C v R v X v ( ) 31: ( 4 ) m 51 (Erős & Szekeres, 1935) m 3 m f(m) f(m) m m f(m) ( ) 2m m 2 f(4) 5 f(5) 9 m 34

36 52 (Horton, 1983) N N 7 6 N 463 (Koshelev, 2007) 30 (Overmars, 2003) 35

37 (Sylvester Gallai ) n (n 3.) n 2 n S S 2 L l L S 3 n 1 l L l p S (l, p) p l (l 0, p 0 ) p 0 l 0 q 0 l 0 S 3 p 1, p 2 S l 0 q 0, p 1, p 2 ( q 0 = p 1 ) p 0 p 2 l 1 p 1 l 1 p 1 l 1 p 0 l 0 (l 0, p 0 ) ( 32 ) l 1 p 0 l 0 q 0 p 1 p 2 32: G 5 G ( ) ( 6 dg (v) ) + ( 6 2dG (f) ) = 12. (5) v V (G) f F (G) d G (f) f 3 12 = ( ) v V (G) ( 6 dg (v) ) 5 (5) 36

38 Norman Steenrod n S S 2 53 n 3 n n 2 p C p p C p 2 1 C 2 p C, p C C p C p 2 p C, p C C 2 p C p C C k p 1,..., p k p C p C k C p 1,..., C pk ( ) 53 n 3 n n 2 n ( ) G G 2 G 4 54 G 4 v v 2 n 54 (5) n n (n 3.) 2 n n n = 3 n 4 n S 53 S 2 l l S p S = S {p} S n 1 S 2 n 1 l S 2 n S n 1 l 0 S p p p S 2 37

39 n 1 l 0 S 2 n ( 33 ) p l 0 33: 55 S n 1 l K n H 1, H 2,..., H m K n H i K n H 1, H 2,..., H m 56 K n H 1, H 2,..., H m m = 1 m n 28 n S S 2 G G K n H 1, H 2,..., H m m 1 m < n +1 n x x H i x H i r x x H i 1 r x x x H k m r x H k. H k y K n xy H i m r x x H i r x m H k H k H k x V (H k ) x 1 r x x V (H k ) 1 r x x V (H k ) 38 1 m H k

40 x V (H k ) x n H k x V (H k ) 1 r x x V (H k ) 1 m H k = n H k m H k > n m n > m H k 1 n = ( ) > m n m = n m n 56 m n H i n n = 7 7 V (K 7 ) = {0, 1, 2, 3, 4, 5, 6} H 1,..., H 7 V (H 1 ) = {0, 1, 6}, V (H 2 ) = {0, 2, 5}, V (H 3 ) = {0, 3, 4}, V (H 4 ) = {1, 2, 4}, V (H 5 ) = {1, 3, 5}, V (H 6 ) = {2, 3, 6}, V (H 7 ) = {4, 5, 6} ( ) K : 30 K n H i H 1, H 2,..., H n n t n = t 2 t + 1 n 7 13 (t = 4 ) n = 13 K 13 n 39

41 57 K n 2 H 1, H 2,..., H m m n 1 K n 2 H 1, H 2,..., H m m < n 1 H i 2 L i, R i K n v X v H 1, H 2,..., H m K n m ( ) X u X v = X s X t (6) i=1 s L i t R i u,v V (K n),u v X v = 0, v V (K n) s L i X s = 0 (i = 1,..., m). n m + 1 < n X v = α v (v V (K n )) (6) i s L i α s = 0 α u α v = 0 u,v V (K n),u v v V (K α n) v = 0, ( ) 2 0 = α v = αu 2 + v V (K n) v V (K n) u,v V (K n),u v α u α v = v V (K n) α v (v V (K n )) v V (K n) α2 u > 0 57 K n n = 1 n 2 1 v v 2 K 1,n 1 H n 1 K n v K n 1 2 K 1,n 2,... K 1,1 n 1 2 K n ( 35 n = 5 ) α 2 u K 5 H 4 H 3 H 2 H 1 35: H 1, H 2, H 3, H 4 K 5 H i K 1,i (1 i n 1 H i K 1,i ) H i L i 1 57 i R i 1 40

42 5.3 ( ) ( ) 3 32 G n P 3 (3 ) E(G) n 2 58 (Turán, 1941) G n n n E(G) Cauchy Schwarz a, b 2 a 2 b 2 a = (a 1,..., a n ) T b = (1,..., 1) T n = 2 59 n a 1,..., a n ( n ) 2 n a i n a 2 i. i=1 a 1 = a 2 = = a n 58. n E(G) n2 4 G A α (.) G α + 1 G u N G (u) d G (u) α B = V (G) A A G B E(G) u B d G(u) B = β α + β = n E(G) ( α + β ) 2 n 2 d G (u) αβ = 2 4. u B i=1 Mantel 58. E(G) n2 G n 4 G G uv d G (u) + d G (v) n ( ) d G (u) + d G (v) n E(G) uv E(G), u d G (u) d G (u) n E(G) ( ) d G (u) + d G (v) = ( 2. d G (u)) uv E(G) 41 u V (G)

43 59 u V (G) ( ) 2 1 ( d G (u) n u V (G) ) 2 4 E(G) 2 d G (u) = n n 34 G n m G 4m 3n ) (m n2 4 Mantel 58 G uv uv d G (u) + d G (v) n 2 S = { (uv, T ) : uv E(G), T uv G }. 58 G n 59.1 G 3 u, v, w uv, uw E(G) vw E(G) u u v u v v v w w w 36: 3 u, v, w. 37: u, v, w ( 36 ) 2 1: d G (u) < d G (v) d G (u) < d G (w) d G (u) < d G (v) G ( 37 ) u N(v ) = N(v) v 42

44 G vv E(G ) G T G T v vv E(G ) T v v v G G E(G ) = E(G) d G (u) + d G (v ) = E(G) d G (u) + d G (v) > E(G) G 2: d G (u) d G (v) d G (u) d G (w) G v, w N(u ) = N(u ) = N(u) u, u G 1 G E(G ) = E(G) ( d G (v) + d G (w) 1 ) + 2d G (u) > E(G) u, v uv E(G) u v V (G) G 2 G 2 G 2 K n1,n 2 ( n 1 + n 2 = n ) E(K n1,n 2 ) = n 1 n 2 n 2 n : G n K 4 E(G) n (Turán, 1941) G n K k+1 E(G) ( 1 1 ) n 2 k

45 (Reiman, 1958) G n n ( ) E(G) 1 + 4n G n S 2 { (u, ) } S = {v, w} : v w uv, uw E(G). ( u, {v, w} ) S vw G u S = ( ) dg (u) = 1 ( ) 2 1 d G (u) d G (u) u V (G) u V (G) u V (G) G {v, w} ( u, {v, w} ) S u S ( n 2) 1 2 u V (G) ( ) 2 1 d G (u) 2 u V (G) d G (u) ( ) 2 d G (u) n(n 1) + u V (G) 59 ( u V (G) u V (G) u V (G) ) 2 d G (u) n 2 (n 1) + n u V (G) ( ) n 2 d G (u). d G (u) d G (u) = 2 E(G) 4 ( E(G) ) 2 2n E(G) n 2 (n 1) 0 2 E(G) 36 G n K 2,3 E(G) n 3/2 61 S S t 2 G n K 2,t G 44

46 61 ( n p = t 1 30 n ) 62 p n = p 2 + p + 1 n G E(G) = n 1 ( ) 1 + 4n 3. 4 p Z p 3 X X = { v = (v 1, v 2, v 3 ) : v i Z p, i = 1, 2, 3 } Z p ( Z p ) X v [v] v 1 ( v 0 = (0, 0, 0) ) [v] = { u : u = kv, 0 k p 1 } [v] = p G p V (G p ) = { [v] : v X {0} }, E(G p ) = { [v][w] : [v] [w], v, w = v 1 w 1 + v 2 w 2 + v 3 w 3 = 0 }. v, w = 0 [v] [w] well-defined ( kv [v] v, w = 0 kv, w = 0 ) 37 p = 3 G 3 1 [v] 0 p 1 X 0 p 3 1 X v w [v] [w] = {0} [v] = [w] V (G p ) = p3 1 p 1 = p2 + p + 1 = n G p 2 [v] [w] G p [u] [u][v], [u][w] E(G p ) G p u = (u 1, u 2, u 3 ) x = (x 1, x 2, x 3 ) : v 1 x 1 + v 2 x 2 + v 3 x 3 = 0, w 1 x 1 + w 2 x 2 + w 3 x 3 = 0. v = (v 1, v 2, v 3 ) w = (w 1, w 2, w 3 ) [v] [w] G p v w 1 45

47 1 [u] 1 [v] [w] G p [u] G p G p G p [v] v 1 x 1 + v 2 x 2 + v 3 x 3 = 0 Xv 2 Xv 0 p 2 1 X 1 0 p 1 Xv p 2 1 p 1 = p [v] G p 1 p E(G p ) (p + 1)n n = p 2 + p + 1 p = 1+ 4n 3 2 E(G p ) (p + 1)n 2 = n ( ) 1 + 4n 3 4 Xv p [v] G p p + 1 [v] G p [v] d Gp ([v]) = p { p + 1 (v1 ) 2 + (v 2 ) 2 + (v 3 ) 2 0 (v 1 ) 2 + (v 2 ) 2 + (v 3 ) 2 = 0 (7) p (x 1 ) 2 + (x 2 ) 2 + (x 3 ) 2 = 0 x = (x 1, x 2, x 3 ) 62.1 (x 1 ) 2 + (x 2 ) 2 + (x 3 ) 2 = 0 p + 1 [v] (7) G p p [v] p + 1 G p p 2 + p + 1 p + 1 p 2 2 E(G p ) = p(p + 1) + (p + 1)p 2 = p(p + 1) 2 n = p 2 + p + 1 E(G p ) = p(p + 1)2 2 = p2 + p 4 ( ) n 1( ) 1 + (2p + 1) = 1 + 4n X 1 [v (1) ], [v (2) ],..., [v (n) ] n n A 46

48 A i j v (i), v (j) = v (i) (x 1 ) 2 + (x 2 ) 2 + (x 3 ) 2 = 0 v (i), v (i) = 0 A 62.1 A 1 A trace ( ) trace A = (A ). A A 2 A i v (i) 1 x 1 + v (i) 2 x 2 + v (i) 3 x 3 = 0 x = (x 1, x 2, x 3 ) 1 1 ( v (i) = (v (i) 1, v (i) 2, v (i) 3 ) ) 1 p + 1 A 2 i i ( ) p + 1 p + 1 p + 1 A 1 1 A1 = (p + 1)1 p + 1 A 1 A i j v (i) 1 x 1 + v (i) 2 x 2 + v (i) 3 x 3 = 0 v (j) 1 x 1 + v (j) 2 x 2 + v (j) 3 x 3 = 0 x = (x 1, x 2, x 3 ) 1 1 A 2 i j 1 A 2 p A 2 1 p = p + 1 = pi + J. J 1 n n I J n ( 1) 0 ( n 1) A 2 n + p ( 1) p ( n 1) A A ± n + p ( 1) ± p ( n 1) p + 1 A ( n + p = p 2 + 2p + 1 = p + 1 ) A p s p t trace A = (A ) = (p + 1) + s p t p 47

49 A p s = t A p p = 3 A A 2 48

50 G G cr(g) G cr(g) = 0 2 K 3,3 cr(k 3,3 ) = 1 G 2 63 (Truán, 1940s) n, m cr(k n,m ) = n n 1 m m K n m cr(k n,m ) ( n 2)( m 2 ) ( ) 63 ( ) ( ) K 5, : K 5,6 49

51 39 n, m n = K 3,m 64 K 3,m 3 2 m m 1 m m 1 = y 1 x 1 y 4 y 4 y 3 y 1 y 3 y 2 x 2 y 2 x3 39: K 3,4 H (X = {x 1, x 2, x 3 } ) K 3,m X Y 3 X m Y y Y y K 3,m E(y) E(y) = 3 K 3,m φ Y H Y 2 y 1, y 2 E(y 1 ) E(y 2 ) φ H y 1 y 2 E(H) = {y 1 y 2 : E(y 1 ) E(y 2 ) φ } ( 39 ) φ E(H) m m 1 E(H) 2 2 H H H H 2 ( E(H) = {y 1 y 2 : y 1 y 2 E(H)}.) K 3, H H y 1 y 2 y 3 H H E(y 1 ), E(y 2 ), E(y 3 ) X y 1, y 2, y 3 K 3,3 K 3,3 50

52 58 H m m E(H) 2 2 E(H) ( ) m m(m 1) E(H) = E(H) 2 2 m m 2 2 = m 2 m n ( m) 66 n, m cr(k n,m ) n n 2 cr(k n 1,m). 2 K n,m S 2 S = { (p, H) : p K n,m H K n 1,m p }. K n,m n n 1 K n 1,m H H cr(k n 1,m ) H n S n cr(k n 1,m ) K n,m p p K n,m n 2 2 H p H n 2 p cr(k n,m ) S = (n 2) cr(k n,m ) n K 4,m K n cr(k n ) 2 K n 67 (Hill, 1960) n cr(k n ) = 1 4 n n 1 n 2 n 3,

53 67 K n n n 41 n cr(k n ) n n 4 cr(k n 1). (rectilinear crossing number) K n n cr(k 6 ) = G cr(g) 68 G n = V (G), m = E(G) cr(g) m 3n 68. G n = V (G), m = E(G) G t t m 3n G G G G V (G ) = n + t 2 4 E(G ) = m + 2t E(G ) 3 V (G ) m + 2t 3 ( n + t ) 6 t m 3n + 6 H E(H) 3 V (H) 3 E(H) 3 V (H) E(H) 3 V (H) 6 E(H) 3 V (H) 6 52

54 69 ( ) G n = V (G), m = E(G) m 4n cr(g) m3 64n G G p (0 p 1) G p ( xy x y G p ) n p, m p X p G p 68 H cr(h) E(H) + 3 V (H) 0 Ex(X p m p + 3n p ) 0 Ex(n p ), Ex(m p ), Ex(X p ) G p Ex(n p ) = pn G Ex(m p ) = p 2 m G G p 2 G p 4 G p Ex(X p ) = p 4 cr(g) 0 Ex(X p ) Ex(m p ) + 3Ex(n p ) = p 4 cr(g) p 2 m + 3pn cr(g) m p 2 3n p 3. p = 4n/m m 4n p 1 cr(g) m 3n ( ) 2 ( ) 3 = 1 ( 4nm 3 3nm 3 ) 4n/m 4n/m 64 n 3 = m3 64n n S A = { {p, p } : p, p S, p p 1 } A < 8n 4/3. S p p 1 C p 1/19 53

55 70.1 p S C p, C p p S C p S 70.1 p S A p C p C p p B = { (p, C q ) : p, q S, p C q } B = 2 A G V (G) = S E(G) = {pp : q S p, p C q C q p p S }. G E(G) C q C q C q 2 G cr(g) ( ) n cr(g) 2 < n 2. 2 cr(g) 69 ( ) 70.1 G 2 p, p p p C q 2 q S B 2 (p, C q ) (p, C q ) E(G) 1 4 B = 1 2 A E(G) 4n = 4 V (G) A 2 E(G) 8n 8n 4/3 E(G) > 4n G cr(g) 1 E(G) 3 1 A 3 64 n n 2 A 3 512n 2 cr(g) < 512n A O(n 4/3 ) Erdős $ (Erdős, 1946) 70 A a, c n 1+c/ log log n A a n 54

56 (Szemerédi and Trotter, 1983) S L A = { (p, l) : p S, l L, p l } A max { 4 S + L 1, 4 S 2/3 L 2/3 + L }. Székely L G V (G) = S, E(G) = {(p, p ) : p p l L } 43 G 72 55

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1 5 K K Q R C 5.1 5.1.1 V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v)+w = u +(v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv)

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

離散最適化基礎論 第 11回 組合せ最適化と半正定値計画法

離散最適化基礎論 第 11回  組合せ最適化と半正定値計画法 11 okamotoy@uec.ac.jp 2019 1 25 2019 1 25 10:59 ( ) (11) 2019 1 25 1 / 38 1 (10/5) 2 (1) (10/12) 3 (2) (10/19) 4 (3) (10/26) (11/2) 5 (1) (11/9) 6 (11/16) 7 (11/23) (11/30) (12/7) ( ) (11) 2019 1 25 2

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

1

1 1 1 5 1.1....................................... 5 1............................................. 6 8 3 10 4 1 5 17 6 0 7 6 8 8 8.1 PTAS................................ 8 8. FPTAS...............................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information