( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )

Size: px
Start display at page:

Download "( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )"

Transcription

1 1.... ( ) 5. VSS (VIM ) 1. ( ) 11. (ANN ) ( )

2

3 1 Lagrange 1..1 Lagrange q, Lagrange D(q)q + C(q; _q)_q + G(q) = (1.1) D(q)q C(q; _q)_q G(q) ( ) D(q) D(q) m ; M < M m (D(q)) (1.) (D(q)) M M < 1 (1.) (M) M (M) C(q; _q) _q jjc(q; _q)jj C M jj _qjj (1.) C(q; 1) C(q; x)y = C(q; y)x (1.5) C(q; x + y) = C(q; x) + C(q; y) (1.) K := _ D(q) C(q; _q) K + K T = x T Kx = for 8 x (1.) G(q) q a (1.1) Y a Y (q; _q; q)a = (1.8)

4 1 LAGRANGE 1.. q q x () x = f(q) (1.9) f () _x _q = J(q) (1.1) x = J(q)x + _ J _q (1.11) q = f 1 (x) (1.1) _q = J 1 _q (1.1) q = J 1 x _ JJ 1 _x (1.1) (1.1) D(f 1 (x))j 1 x + C(f 1 (x);j 1 _x) D(f 1 (x) J) _ J 1 _x + G(f 1 (x)) = (1.15) q x q q W W = T q (1.1) x f x = Jq! q = J 1 x (1.1) W = T q = T J 1 x = J T 1 T x (1.18) f = J T (1.19) (1.15) J T J T D(f 1 (x))j 1 x + J T C(f 1 (x);j 1 _x) D(f 1 (x)) _ J M x (x) := J T D(f 1 (x))j 1 C x (x; _x) := J T C(f 1 (x);j 1 _x) D(f 1 (x)) _ J G x (x) := J T G(f 1 (x)) (1.1) J 1 _x + J T G(f 1 (x)) = J T (1.) J 1 M x (x)x + C x (x; _x)_x + G x (x) = f (1.1) [ ] [ ] ( [ ] )

5 5 1.. ( ) q 1 ;q (q 1 R m1 ;q R m ) f(q 1 ;q )=; f : R m1 R m1! R n (1.) q = f (q 1 ) (1.) f (q 1 )+q = (1.) _q 1 _q = J c _q = (1.5) J c := @q _q 1 _q ( (q 1 ;q ) ) q (1.1) (.) (.) F c D(q)q + C(q; _q)_q + G(q) = F c (1.) F c F c W = F T c q (1.) (.) J c J c = c T 1 1 c T r 5 (1.8)

6 1 LAGRANGE F c = rx i=1 c i i = J T c ; = 1 1 r 5 (1.9) i J c _q = F c D(q)q + C(q; _q)_q + G(q) = J c (1.) (q; _q) q q M(q) (q; ) J c q = J _ c _q (1.1) q (q; ) D(q) Jc T J c rank q = D(q) Jc T J c C(q; _q)_q G(q)+ J _ c _q (1.) = m 1 + m + r (1.) r = m J c =[J 1 J ] (1.) rankj = r (q 1 ;q ) J J c J 1 J 1 J c = J 1 I r =: J 1 I r J c (1.5) D(q)q + C(q; _q)_q + G(q) = J T c (1.) J c (.) := J T _q = J 1 _q 1 (1.) _q _q = I m1 J _q 1 =: J _q 1 ; J := 1 I m1 J 1 (1.8) (1.) q 1 q (t) =q () Z t J 1 _q 1 ()d (1.9)

7 (1:) q = J q 1 + _ J _q 1 (1.) (1.) J T J T J T c =[I m 1 J T 1 ] J T 1 I r = J T 1 J T 1 = (1.1) J T DJ q 1 + J T (CJ + D _ J)_q 1 + J T G = J T (1.) D 1 := J T DJ C 1 := J T (CJ + D _ J) G 1 := J T G 1 := J T m 1 D 1 q 1 + C 1 _q 1 + G 1 = 1 (1.) q = f (q 1 ) (1.) D 1 (q) q 1 ( q = f (q 1 ) ) _q _q + J c (q)_q + = (1.5) ( ; + ) F c = J T c ^(t); ^ R r (1.) ^ D(q)q + C(q; _q)_q + G(q) = J T c ^(t) () + Z + (D(q)q + C(q; _q)_q + G(q))dt = Z + ( J T c ^(t))dt (1.)! ; +! _q q D(q)q + D(q)q = J T c ^ (1.8)

8 8 1 LAGRANGE (1.5) (1.8) D(q) Jc T J c _q +^ = D(q)_q (1.9) ^ ^ =(J c D 1 J T c )1 J c _q (1.5) _q + _q + =: P _q ; P := (I n D 1 J T c (J cd 1 J T c )1 J c ) (1.51) P _q _q + (PP= P )

9 9 y (x ;y ) l mg (x 1;y 1) mg x 1.1: m l mx 1 = (1.5) my 1 = mg (1.5) mx = (1.5) my = mg (1.55) (x 1 x ) +(y 1 y ) = l (1.5) [(x 1 x )(y 1 y ) (x 1 x ) (y 1 y )] _x 1 _y 1 _x _y 5 = (1.5) m m m m 5 x 1 y 1 x y 5 + mg mg 5 = (x 1 x ) (y 1 y ) (x 1 x ) (y 1 y )] 5 (1.58) x 1 y 1 x 5 = y g 5 m g [(x 1 x )(y 1 y ) (x 1 x ) (y 1 y )] (x 1 x ) (y 1 y ) (x 1 x ) 5 (1.59) (y 1 y )] x 1 y 1 x y 5 = 8 (_x 1 _x )+(_y 1 _y )9 (1.)

10 1 1 LAGRANGE = m l 8 (_x 1 _x )+(_y 1 _y )9 (1.1) _y y 1 y = _y = 1 y 1 y ((x 1 x )_x 1 +(y 1 y )_y 1 (x 1 x )_x ) (1.) _x 1 _y 1 _x _y 5 = J _x 1 _y 1 _x 5 (1.) J := (x 1 x )=1 (y 1 y )=1 (x 1 x )=1 5 ; 1:=y 1 y (1.) 1 (x 1 x )=1 +mj T J_ 1 (y 1 y )=1 1 (x 1 x )=1 _x 1 _y 1 _x 5 = 5 m m m m 1 (x 1 x )=1 1 (y 1 y )=1 1 (x 1 x )= (x 1 x )=1 (y 1 y )=1 (x 1 x )=1 x 1 x y 1 y (x 1 x ) (y 1 y ) 1 5 x 1 y 1 x 5 5 (1.5) m 1+ (x1x) (x 1x )(y 1y ) (x1x) (y 1y ) (y 1y )(x 1 x ) (x1x) mj T J x 1 _y 1 _x 5 + (x 1 x ) 1 mg (1 + y1y 1 )mg (x 1x ) 1 mg 5 (1.) = (1.) y 1 y = _x x = x 1 + l cos (1.8) y = y 1 + l sin (1.9) _x = _x 1 l sin _ (1.) _y = _y 1 + l cos _ (1.1)

11 11 _x 1 _y 1 _x _y 5 = l sin 1 l cos 5 _x 1 _y 1 _ 5 (1.) m l sin l cos l sin l cos l 5 x 1 y m l cos _ l sin _ 5 + mg l cos mg 5 = (1.) (x g ;y g ) x 1 = x g l cos (1.) y 1 = y g l sin (1.5) Newton Euler ( ) m l 5 x g y g 5 + mg 5 = (1.) (x 1 ;y 1 ) (1.) (x 1 ;y 1 ) (_x 1+ ; _y 1+ ; _ + ) 1 1 _x 1+ _y 1+ _ + 5 = (1.) (_x 1 ; _y 1 ; _ ) ( 1 ; ) m ml sin m ml cos ml sin ml cos ml 5 _x 1+ _y 1+ _ + 5 = m ml sin m ml cos ml sin ml cos ml ( 1 ; ) 1 1+cos sin cos _x 1 = m sin cos 1+sin _y 1 5 _x 1 _y 1 _ (1.8) (1.9) ml sin _x 1+ +ml cos _y 1+ +ml _ + =[ 1] l cos l sin 5 m _x 1+ m _y 1+ (x 1 ;y 1 ) 5 = ml sin _x 1 +ml cos _y 1 +ml _ (1.8) 5 1

12 1 1 LAGRANGE

13 _x = f(x); x() = x (.1) x e f(x e )= (.) [Lyapunov ( )] x e Lyapunov (.1 ) 8 >; 9() > ; kx x e k <!kx(t) x e k < (.) Lyapunov x(t) x e [ ] Lyapunov 9 >; kx x e k <! lim t!1 kx(t) x e k = (.) x e x e x e [ ] 9 >;c>!kx(t) x e kce t kx x e k (.5) x [Lyapunov ] (.1) V (x) x e x e 1

14 1 x x x e x(t) x 1.1: 1. V (x) > ;V(x e )=. V (x) V _ (x) < (x = x e ) V (x) Lyapunov Lyapunov _x = ksin(x); k> (.) x e = Lyapunov V (x) = 1 x (.) V (x) > ( <x<;x= ) _V (x) =x _x = kxsin(x) < ( <x<;x= ) (.8) Lyapunov mx + c _x + kx = (.9) ms + cs + k = (.1) Routh Hurwitz m; c; k Lyapunov Lyapunov V (x) = 1 m _x + 1 kx (.11) x =[x; _x] T, x e =[; ] T V (x) > (x = x e ) V (x) _V (x) = _xmx + kx _x

15 (.1) _V (x) = _x(c _x kx)+kx _x = c _x (.1) x =[x; ] T V _ (x) = V (x) < (x = x e ) Lyapunov Lyapunov Lyapunov Lyapunov LaSalle [LaSalle ] (.1) V (x) x e x e 1. V (x) > ;V(x e )=. V (x) V _ (x)(x = x e ). V _ (x) x(t) =x e Lyapunov V _ (x) _x(t) (.1) (.1) x(t) (.1) kx = (.15) k > x = V _ x(t) = x e LaSalle x e Lyapunov _x = f(x; t); x() = x (.1) f(x e ;t)= (.1) [ K ] R + R + K 1. () =. (p) > 8 p >. Lyapunov [Lyapunov ( )] x e = ( )

16 1 1. K ; V (x; t) (kxk) V (x; t) (kxk) (.18). K _ V (x; t) _V (x; t) (kxk) (.19) K t Lyapunov.1. Barbalet() Lyapunov Lyapunov Lyapunov Barbalet f(t) 1. _ f! )= f t = 1 f(t) = log t. f t = 1 )= _ f! f(t) =exp(at) cos(exp(bt))(b >a>).. f(t) _ f ) f t = 1 Barbalet [] f(t) 8 R>; 9(R) > ;t 1 ;t ; jt 1 t j <)jf(t 1 ) f(t )j <R R t exp(t) Barbalet [Barbalet ] f t = 1 f _ f _! (t!1) [ ] f t = 1 f f _! (t!1) L p (; 1) = f(t) Z 1 jy( )j p d < 1 (.) L 1 (; 1) =ff(t) jess:supjf(t)j < 1for t (; 1)g (.1) Lebesgue() ess:sup sup sup H(s) strictly stable( ) H(1) = strictly proper( )

17 .1. 1 [ ] H(s) u L (; 1) Y (s) =H(s)U(s) (.) y y L (; 1) \ L 1 (; 1) _y L (; 1) Barbalet [ ] f f L (; R 1) f _ L 1 f f(t)! (t!1) t g(t) = jf( )j f _ L 1 Barbalet _g! f(t)

18 18

19 1. PTP(Point ToPoint). CP (Continuous Path) PTP CP 1.. x d q d q x q x d PTP CP.1 x d q d i 1 i i 1 i (.1) ( )! m J m, m, K J m _! m + m! m = Kv i (.1) 19

20 Link i 1:n _q i, i z i1! m, m Joint i Link i-1 v.1: i 1 n! m = n _q i (.) n m = i (.) (.1) _q i n J m q + n m = nkv i (.) D(q)q + C(q; _q)_q + G(q) = i X j d ij q + h i (q; _q) = i (.5) h i (q; _q) f i (q; _q; q) = (.) (.5) X j=1;j=i d ij q j + h i (q; _q) (.) (d ii (q)+n J m )q i + n m _q i + f i (q; _q; q) =nkv (.) q(q ) d ii = d ii (q) (.8) n 1 d ii (q) d ii = ( d ii + n J m )q i + n m _q i = i f i (q; _q; q) (.9) f i

21 .. PD 1 f i (q; _q; q) v nk 1 n Jms +n m _q i 1 s q i.: f i nk d ii + n J m n (f i ) f i (q; _q; q) q q. PD PTP q q d = K d _q(t) K p (q(t) q d )+G(q) (.1) K d ;K p x = [q T ; _q T ] T x x d =[q T ; d T ] T LaSalle (.1) D(q)q + C(q; _q)_q + K d _q + K p (q q d )= (.11) q d e := q q d _q = _e; e =q (e; _e) D(e + q d )e + C(e + q d ; _e)_e + K d _e + K p e = (.1) q d q d (e; _e) (; ) Lyapunov V (e; _e) = 1 _et D(q)_e + 1 et K p e (.1) D(q) K p V (e; _e) > (e; _e = (; )) V _V = _e T D(q)q + 1 _et _D(q)_e + e T K p _e (.1) (.1) _V = _e T (C(e + q d ; _e)_e K d _e K p e)+ 1 _et _D(q)_e + e T K p _e (.15)

22 _V = 1 _et ( _ D(e + q d ) C(e + q d ; _e)) _e _e T K d _e (.1) D(e _ + q d ) C(e + q d ; _e) = D(q) _ C(q; _q) _V = _e T K d _e (.1) LaSalle _V = _e T K d _e (.18) K d _q q (.1) K p e = (.19) K p e = (e; _e) =(; ) V _ (.1) (e; _e) =(; ) K d ;K p q. x d (t) q d (t) q d (t) ( ) f x = f(q) (.) x d q d x s q s x s = f(q s ) (.1) x s x q f x s + x = f(q s + q) (.) x s + x f(q s )+J(q)q; J (.) q = J 1 x (.) x x d x -J 1 x _q d = J 1 (q d )_x d (.5)

23 .. ( ) _q = _q d Z t _x = J(q d )J d _x d ; x(t) =x s + _x d d (.) _q d _q _q d = J 1 (q)(_x d K p (x x d )) (.) _q J 1 (q)(_x d K p (x x d )) (.8) e := x x d _x = _x d K p (x x d ) (.9) _e + K p e = (.) K p. ( ) PD PTP CP = D(q)v + C(q; _q)_q + G(q) (.1) v D(q)q + C(q; _q)_q + G(q) =D(q)v + C(q; _q)_q + G(q) (.) D(q) q = v (q i = v i ;i=1; 111;n) (.) v q (. ) q q d e := q q d ; (e i = q i q di ) (.) v =q d K d _e K p e (.5) K d ;K p (.) e + K d _e + K p e = (.) V = 1 _et _e + 1 et K p e (.) Lyapunov

24 v D(q) D(q)q + C(q; _q)_q + G(q) = q; _q q C(q; _q)_q + G(q) I s.: K d = diag(k d1 ; 111;k dn );K p = diag(k p1 ; 111;k pn ) (.8) e i e i + k di _e i + k pi e i = (.9) = ^D(q)v + ^C(q; _q)_q + ^G(q) (.) ^ (.5) PID Z v =q d K d _e K p e K i e( )d (.1) K d ;K p ;K i d dt R ed e _e 5 = I I 5 R ed e _e 5 + I 5 v (.) J(q) x = f(q) (.) _x = J _q (.) x = J q + _ J _q (.5) _q = J 1 _q (.) q = J 1 (x _ J _q) (.)

25 .5. 5 J T D(q)J 1 x + J T (C(q; _q) J T D(q) _ J)J 1 _x + J T G(q) =J T (.8) D x (x) := J T D(q)J 1 (.9) C x (x; _x) := J T (C(q; _q) J T D(q) _ JJ 1 (.5) G x (x) := J T G(q) (.51) x := J T (.5) D x (x)x + C x (x; _x)_x + G x (x) = x (.5) x d e x := x x d (.5) x = D x (x)v x + C x (x; _x)_x + G x (x) (.55) v x = x d K dx _e x K p e x (.5) x d q d D x (x) M _ x C x ( ).5 (Variable Structure Control:VSC) (. ) (Sliding Mode Control:SMC) ; () sup (M(q)) (.5) q inf (M(q)) (.58) q = ^C(q; _q)_q + ^G(q) k(q; _q; q d )Sgn(S) (.59) Sgn(S) = ( S ksk ksk = ksk = (.)

26 x x x 1 x 1 x x 1.: S S(e; _e) := _e +e (.1) h(q; _q) kc(q; _q)_q + G(q) ^C(q; _q)_q + ^G(q)k =: k ~ hk h(q; _q) (.) k() k(q; _q; _q d ; q d )= h(q; _q) + + kq d k + k_ek (.) V (S) (Lyapunov ) V (S) := 1 ksk = 1 ST S (.) _V = ksk _ ksk = S T (D 1 (q)(u ~ h) q d +_e) (.5) _V = ks T D 1 S=kSk + S T (D 1~ h q d +_e) (.) k ksk + ksk( h + kq dk + k_ek) (.) = ksk (.8) ksk = ksk ksk (.9) ksk t + ksk() (.) t ksk()= ksk ksk = _e = e (.1)

27 .5. e S=kSk S=kSk S Sat(S) = (.) ksk +

28 8

29 .1 q R n c i (q) =; (i =1; 111;m) (.1) C(q) =;C R m (.) D(q)_q + h(q) = (.) (.) _C(q) =J c _q = (.) J J c _q q (.) c (.) (.5) D(q)_q + h(q) = + c (.) T c _q = (.) _q (.5) c = J T c ; Rm (.8) (.5) J c q + _ J c _q = (.9) (.) D(q) J T c (q) J c (q) q = h(q; _q) J _ c _q (.1) q, (.1) 9

30 . x C(x) = (.11) _x = E f E Rmn (.1) C(x) E f E p E p rank = n (.1) E f E p q x x = f(q) (.15) _x = J _q; (.1) _C(x) =! E f J _q = (.1) D(q)q + h(q; _q) = J T E T f (.18) E p _x _x p _x p = E p _x (.19) E _x = _x p ; E := E p E f (.) E x + _ E _x = I x p (.1) (.1) x = J q + _ J _q (.)

31 .. 1 (.1) I x p = EJ 1 (D 1 ( h J T E T f ) _ J _q)+ _ EJ _q (.) u 1 u x p = u 1 (.) = u (.5) (.) I u 1 = EJ 1 (D 1 ( h J T E T f u ) _ J _q)+ _ EJ _q (.) (JE 1 = D I! ) u 1 EJ q + h + J T E T u f (.) (.) I x p = I u 1 + EJD 1 J T E T f (u ) (.8) [ I] =E f JD 1 J T E T (u f ) (.9) E f E f JD 1 J T E T f u = (.8) x p = u 1 x p x d, e p := x p x d d, e f := d u 1 =x d K 1 e p K _e p ; K 1 > ; K > (.) Z t u = d K e f ()d; K > (.1)..1

32 Gc r f r f l rc (a) (b) Rcc.1: RCC F e J D(q)_q + h(q) = J T F e (.) J T D(q)J 1 x + J T (C(q; _q) J T D(q) _ J)J 1 _x + J T G(q) =J T F e (.) F e x; _x ( ) M m e + D m _e + K m e = F e (.) e = x x d x d F e (.) q x = M 1 (x m d D m _e K m e + F e ) (.5) (.) = J J T D(q)J 1 M 1 m (x d D m _e K m e + F e )+J T (C(q; _q) J T D(q) J)J _ 1 _x + J T G(q)+Fe (.) F e M 1(x m d D m _ek m e+ F e ) ()...1(a) (b) Rcc (RCC:Remote Compliance Center)

33 .. RCC (a) M _v + G = f c + f (.) I _! +! I! = c + r f (.8) v;! f c ; c Rcc M d _v d = f (.9) I d _! d +! d I d! d = r c f (.) v d ;! d Rcc f c ; c (.8) (.) c c = r f + r c f = l f (.1) v = v d +! d l (.) _v = _v d + _! d l +! d! d l (.) _v = _v d = M 1 d f (.) f c M 1 (f c + f G) =M 1 d f + _! d l +! d! d l (.5) f c = M(M 1 d f + _! d l +! d! d l) f + G (.) _! d = I 1 d (r c f! I d!) (.).. (VIM) (.5) (Virtual Reference) x r v x = v (.8) x e := x x r (.9)

34 e = v x r (.5) u := v x r d dt e _e e 5 = I I 5 e _e e 5 + I 5 _u (.51) x T =[e; _e T ; e T ] _u Z 1 J = x T Qx + _u T R _udt (.5) _u = Fx (.5) x() = R ed u(t) =F Z x = F e _e 5 (.5) e ( ) R ed v =x r F e _e 5 (.55)

35 5 ( ) F 1 (s) v (s) = H(s) v 1 (s) F (s) (5.1) H(s) F 1 (s) v 1 (s) F (s)+v (s) = S(s) F 1 (s)+v 1 (s) F (s) v (s) (5.) S(s) H(s) S(s) S(s) = 1 1 (H(s) I)(H(s)+I) 1 (5.) 5

36 5 V1 V F1 F 5.1. n- Z T F T (t)v(t)dt ; for 8 T (5.) (H 1 ) [ ] n- ks(s)k 1 1 (5.5) kxk L p ks(s)k 1 = sup max (S (!)S(j!)) = sup ksxk! kxk S (j!)=s T (j!); kxk = Z 1 x T (t)x(t)dt

37 5.1. [ ]( ) ks(s)k 1 kf + vk kf vk (5.) Z 1 <F;v>; <F;v>:= F T (t)v(t)dt (5.) 5.1. v (t) =v 1 (t T ) (5.8) F 1 (t) =F (t T ) (5.9) T F1(s) v (s) = H(s) = S(s) = e Ts e Ts e Ts e Ts tanh(ts) sech(ts) sech(ts) tanh(ts) v 1 (s) F (s) (5.1) (5.11) (5.1) S H 1 S T (j!)s(j!)= tan (!T)+sec (!T) jtan(!t)sec(!t) jtan(!t)sec(!t) tan (!T)+sec (!T) (5.1)! =(jtan(!t)j + jsec(!t)j) ; (jjtan(!t)jjsec(!t)jj) (5.1) q ks(s)k 1 =sup max (S T (j!)s(j!)) = sup jtan(!t)j + jsec(!t)j = 1 (5.15)!! 5.1. D(q)q + C(q; _q)_q + G(q) = (5.1) q : ( q T =[ 1 ; 111; n ] : D(q) : C(q; _q)_q : G(q) :

38 8 5 _ D(q) C(q; _q) (5.1) C(q; _q)( ) P P T = P (5.18) x F F x T Px = (5.19) = G(q)+F (5.) D(q)_v + C(q; v)v = F (5.1) _q := v F v V (q; v)( ) V (q; v) = 1 vt D(q)v (5.) V _V = v T (D _v + 1 D(q)v) _ V (q; v) (5.) = v T (F C(q; v)v + 1 D(q))v _ = v T F + 1 vt ( _ D(q) C(q; v))v = v T F T Z T v T Fdt = V (T ) V () V () (5.) (5.1) v D F C

39 (5.1 D m (q m ) v m _ + C m (q m ;v m )v m = F cm + F o (5.5) D s (q s )_ v s + C s (q s ;v s )v s = F cs F e (5.) F o : F e : 1. v s v m ( ). F o F e ( ) F cs : F cs = K v e + K p R edt; e := vm v s F cm : F cm = F cs PD v s = v m = F cs = F e F m = F cm F cm = F cs F m = F e F m ;F e ( ) Vm Vs e Dm Ds Kv Cm Fcm Fcs Cs Kp Fm Fe v m F c v sd (t) =v m (t T ) F md (t) =F cs (t T ) ( )

40 5 Vm Vsd Vs delay e Dm Ds Kv Cm Fcm Fmd Fcs Cs Kp Fm Fe Vm Vsd Fmd Fcs 5.1. F md (s) v m (s) F cs (s)+v sd (s) S(s) = = S(s) e st e st F md (s)+v m (s) F cs (s) v sd (s) (5.) S (j!)s(j!) = I ks(s)k 1 = 1 F md (t) = v m (t)+(f cs v sd )(t T ) v sd (t) = F cs (t)+(f md + v m )(t T ) T F md = F cs ;v sd = v m T ( T ) 5.1. F m ; F e D v (q v )_v v + C v (q v ;v v )v v + K v q v = F m F e (5.8) K v

41 Vm Vm Vsd Vsd + delay - Fmd Fcs Fmd + - Fcs Vv Dv Cv Kv -Vv Fm Fe

42 5 Dv Cv Kv Vs Vs em es Dm Ds Fm Fe Kv Kv Cm Fcm Fcs Cs Kp Kp Fm Fe

43 5.1.

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

D:/BOOK/MAIN/MAIN.DVI

D:/BOOK/MAIN/MAIN.DVI 8 2 F (s) =L f(t) F (s) =L f(t) := Z 0 f()e ;s d (2.2) s s = + j! f(t) (f(0)=0 f(0) _ = 0 d n; f(0)=dt n; =0) L dn f(t) = s n F (s) (2.3) dt n Z t L 0 f()d = F (s) (2.4) s s =s f(t) L _ f(t) Z Z ;s L f(t)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

油圧1.indd

油圧1.indd 4 2 ff f f f f f f f f f f f f ff ff ff r f ff ff ff ff ff ff R R 6 7 φφ φφ φφ φ φ φφ φφφφφφφφ φφφφ φφφφ φφ! φ f f f f f f f f f f 9 f φ φ φ φ φ φ φ φ φφ φφ φ φ φ φ SD f f f KK MM S SL VD W Y KK MM S SL

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

slide1.dvi

slide1.dvi 1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +

More information

さくらの個別指導 ( さくら教育研究所 ) A AB A B A B A AB AB AB B

さくらの個別指導 ( さくら教育研究所 ) A AB A B A B A AB AB AB B 1 1.1 1.1.1 1 1 1 1 a a a a C a a = = CD CD a a a a a a = a = = D 1.1 CD D= C = DC C D 1.1 (1) 1 3 4 5 8 7 () 6 (3) 1.1. 3 1.1. a = C = C C C a a + a + + C = a C 1. a a + (1) () (3) b a a a b CD D = D

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

C-1 210C f f f f f f f f f f f f f f f f f f f f r f f f f f f f f f f f f f R R

C-1 210C f f f f f f f f f f f f f f f f f f f f r f f f f f f f f f f f f f R R 4 5 ff f f f f f f f f f f f f ff ff ff r f ff ff ff ff ff ff R R 7 b b ï φφ φφ φφ φ φ φφ φφφφφφφφ φφφφ φφφφ ù û û Æ φ ñ ó ò ô ö õ φφ! b ü ú ù û ü ß μ f f f f f f f f f f b b b z x c n 9 f φ φ φ φ φ φ

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

Nobelman 絵文字一覧

Nobelman 絵文字一覧 Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

00 3 9 ........................................................................................................................................... 4..3................................. 5.3.......................................

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

??

?? ( ) 2014 2014 1/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS = (ISS) FB 2014 2/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS R + : 0 K: γ: R + R + K γ γ(0) = 0 K : γ: R + R + K γ K γ(r) (r ) FB K K K K R

More information

a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

29 4 ... 1... 1... 1... 2... 3... 4.... 4... 4... 7... 8... 8... 8... 8...12...14...14...14...16...18...18...19...21... 42...42...42....42....46....49...51....51....51... 52...52...52...53 I. I. I. I.

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information