Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Size: px
Start display at page:

Download "Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x"

Transcription

1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4) (7.1) E = m 2 c 4 + p 2 c 2 = mc 2 1+ p2 m 2 c 2 (7.5) 123

2 124 7 p 2 /(mc) 2 E = mc p 2 2 m 2 c 2 1 ( ) p m 2 c ( ) p m 2 c 2 + = mc [ 2 mv2 1 1 ( ) v ( ) (7.6) v 4 ] 4 c 8 c p = mv (7.4) v/c p p = p 0 p 0 (p 1 p 1 + p 2 p 2 + p 3 p 3 )= E2 c 2 p2 (7.7) ( ) E p µ =(p 0,p 1,p 2,p 3 )= c, p (7.8) a b = 3 a µ b µ = µ=0 3 a µ b µ = a 0 b 0 a b (7.9) µ=0 contravariant vector covariant vector x µ 3 3 x x = x µ x µ = x µ x µ =(ct) 2 x 2 (7.10) µ=0 µ=0 Minkowski g µν = g µν = (7.11) a b = µν g µν a µ b ν = g µν a µ b ν (7.12) µν

3 a µ = g µν a ν a µ = g µν a ν (7.13) ν=0 Einstein ν=0 ν 0 3 a µ = g µν a ν a µ = g µν a ν (7.14) Lorentz Newton Galilei Newton a µ z v a µ a 0 a 1 a 2 a 3 1/ 1 β β/ 1 β 2 = β/ 1 β / 1 β 2 a 0 a 1 a 2 a 3 (7.15) β = v c (7.16) cosh 2 θ sinh 2 θ = 1 β = tanh θ (7.17) 1 1 β 2 = cosh θ β 1 β 2 tanh θ = sinh θ cosh θ (7.18) = sinh θ (7.19) Lorentz (7.15) a 0 a 1 a 2 a 3 = cosh θ 0 0 sinh θ sinh θ 0 0 cosh θ a 0 a 1 a 2 a 3 (7.20)

4 126 7 x µ x µ Lorentz ct x y z = 1/ 1 β β/ 1 β β/ 1 β / 1 β 2 ct x y z (7.21) z x y z t = z = t 1 β 2 + v 1 β 2 + vz/c2 1 β 2 z 1 β 2 (7.22) β = v/c 0 t x y z = v t x y z (7.23) Galilei p µ Lorentz E /c p 1 p 2 p 3 = 1/ 1 β β/ 1 β β/ 1 β / 1 β 2 E/c p 1 p 2 p 3 (7.24) p =0 E = mc 2 Lorentz E = mc2, 1 β 2 p 1 = p 2 =0, p 3 mv = 1 β 2 (7.25) E v m E 2 = p 2 c 2 + m 2 c 4 = m2 c 4 1 v2 c 2 (7.26)

5 p = Ev c 2 (7.27) Lorentz a µ b µ Lorentz (7.15) a µ b µ a b = a 0 b 0 a 1 b 1 a 2 b 2 a 3 b 3 = a0 βa 3 1 β 2 b 0 βb 3 1 β 2 a1 b 1 a 2 b 2 βa0 + a 3 1 β 2 βb 0 + b 3 1 β 2 (7.28) = a 0 b 0 a 1 b 1 a 2 b 2 a 3 b 3 = a b

6 Dirac m E = p2 2m (7.29) Schrödinger E p E i h t p h i (7.30) (7.29) Hamiltonian H = p2 2m (7.31) Schrödinger i h ψ(t, x) t = h2 2m 2 ψ(t, x) (7.32) ψ(t, x) (7.32) ψ (7.32) ψ ρ t + j = 0 (7.33) ρ = ψ ψ = ψ 2 j = 1 h 2m i [ψ ( ψ) ( ψ ) ψ] (7.34) (7.33) ρ Klein-Gordon Schrödinger (7.32) E 2 = p 2 c 2 + m 2 c 4 (7.35) Lorentz (7.35)

7 7.2 Dirac 129 (7.30) [ ( ) ] h 2 2 t 2 c2 2 + m 2 c 4 ψ = 0 (7.36) Klein-Gordon ( ) ( 1 1 c t, = c t, x 1, x 2, ) x 3 (7.37) Lorentz ( ct, x 1,x 2,x 3 ) ( ) ( ) 1 1 c t, = c t, x 1, x 2, x 3 (7.38) ( ct, x 1, x 2, x 3 )=(ct, x 1,x 2,x 3 ) p µ p µ p µ = i h µ = i h x µ = p µ = i h µ = i h x µ = ( i h c ( i h c t, h i Klein-Gordon t, h i ) x x ) (7.39) p µ p µ m 2 c 2 = 0 (7.40) [ h 2 µ µ + m 2 c 2 ] ψ = 0 (7.41) Schrödinger (7.33) Klein-Gordon ρ = i h 2mc 2 j = 1 2m ρ t + j = 0 (7.42) [ ( ) ( ψ ψ ψ t t h i [ψ ( ψ) ( ψ ) ψ] ) ] ψ (7.43)

8 130 7 j ρ ρ ρ Klein-Gordon Klein-Gordon ψ = N exp [ īh ] (Et p x) (7.44) (7.43) ρ = 1 mc 2 N 2 E (7.45) E = ± p 2 c 2 + m 2 c 4 (7.46) ρ Klein-Gordon Klein-Gordon Dirac P.A.M. Dirac Lorentz E 2 = p 2 c 2 + m 2 c 4 Schrödinger Dirac Hψ = i h ψ t = hc ( α 1 ψ ) ψ ψ + α2 + α3 i x1 x2 x 3 + βmc 2 ψ ( hc = ) i αk x k + βmc2 ψ (7.47) k =1, 2, 3 ( ) i h 2 ( hc )( hc ψ = c t i αj x j + ) βmc2 i αk x k + βmc2 ψ 3 = ( hc) 2 (α k ) 2 2 ψ 3 ( x k ) 2 ( hc)2 (α j α k + α k α j ) + hcm i k=1 3 k=1 1=j<k (α k β + βα k ) ψ x k + β2 m 2 c 4 ψ 2 ψ x j x k (7.48)

9 7.2 Dirac 131 (7.35) Klein-Gordon ( ) i h 2 ) ( hc 2 ψ = c t i x k ψ + m 2 c 4 ψ (7.49) α k β α j α k + α k α j =2δ ik α k β + βα i = 0 (7.50) β 2 = 1 (7.51) Hamiltonian Hamiltonian Hermite α k β Hermite α k = α k β = β (7.52) α k β ψ α k β γ 0 = β γ k = βα k ( k =1, 2, 3 ) (7.53) α k β (7.50), (7.51), (7.52) γ µ γ ν + γ ν γ µ =2g µν (7.54) γ 0 = γ 0 γ k = γ k (7.55) g µν γ 0 Hermite γ k Hermite ψ Pauli (7.54) µ = ν =0 (γ 0 ) 2 =1 γ 0 ±1 k = µ = ν 0 (γ k ) 2 = 1 γ k ±i µ ν (γ ν ) 2 = ±1 Tr (γ µ γ ν γ ν )= Tr (γ ν γ µ γ ν )= Tr (γ µ γ ν γ ν ) = 0 (7.56) Tr (γ µ ) = 0 (7.57)

10 132 7 ψ(t, x) = ψ 1 (t, x) ψ 2 (t, x) ψ 3 (t, x) ψ 4 (t, x) (7.58) ( ) ( ) I 0 0 σ γ 0 = γ k k = 0 I σ k 0 (7.59) I σ k Pauli ( ) ( ) i σ 1 = σ 2 = σ 3 = 1 0 i 0 ( ) (7.60) Dirac-Pauli unitary ( ) ( ) 0 I 0 σ γ 0 = γ k k = I 0 σ k (7.61) 0 Wyle Chiral Dirac (7.47) ( i h γ 0 x 0 + γ1 x 1 + γ2 x 2 + ) γ3 x 3 ψ mc ψ = 0 (7.62) 1 2 Dirac Dirac ( i hγ µ µ mc ) ψ = 0 (7.63) Klein-Gordon Dirac (7.47) Hermite (7.47) Hermite i h ψ t ( = ψ hc i α ) + βmc 2 (7.64)

11 7.2 Dirac 133 ψ x ρ = ψ ψ ψ x = ψ x (7.65) ρ t + j = 0 (7.66) j = cψ α ψ = c( ψ α 1 ψ, ψ α 2 ψ, ψ α 3 ψ, ) ρ ρ =(ψ1,ψ2,ψ3,ψ4 ) (7.67) j µ x µ = µj µ =0 j µ =(cρ, j ) (7.68) ψ 1 ψ 2 ψ 3 ψ 4 4 = ψ k 2 > 0 (7.69) k= Dirac Dirac E p ψ(t, x) =w exp [ īh ] (Et p x) (7.70) w w = u 1 u 2 u 3 (7.71) u 4 (7.71) Dirac (7.62) Dirac-Pauli (7.59) (7.60) u k (p) k =1, 2, 3, 4 E mc 2 0 cp 3 c(p 1 ip 2 ) u 1 0 E mc 2 c(p 1 + ip 2 ) cp 3 u 2 cp 3 c(p 1 ip 2 ) E + mc 2 0 u = 0 (7.72) 3 c(p 1 + ip 2 ) cp 3 0 E + mc 2 u 4

12 134 7 u k 0 ( E 2 (pc) 2 m 2 c 4) 2 = 0 (7.73) p E ± = ± p 2 c 2 + m 2 c 4 (7.74) Klein- Gordon E + w = N 1 0 cp 3 E + + mc 2 c(p 1 + ip 2 ) E + + mc 2 w = N 0 1 c(p 1 ip 2 ) E + + mc 2 cp 3 E + + mc 2 E cp 3 c(p 1 ip 2 ) E mc 2 E c(p 1 + ip 2 mc 2 ) cp 3 w = N E mc 2 w = N E mc (7.75) (7.76) N = [ 1+ ] p 2 c 2 1/2 ( E ± + mc 2 ) 2 (7.77) w ( ) u1 ( ) φ = φ u w = ( 2 ) (7.78) χ u3 χ = (7.70) Dirac (7.62) (7.59) ( )( ) ( )( ) ( )( ) E I 0 φ 0 σ p φ I 0 φ + mc = 0 (7.79) c 0 I χ σ p 0 χ 0 I χ u 4

13 7.2 Dirac 135 φ χ (E mc 2 ) φ c σ p χ = 0 (E + mc 2 ) χ c σ p φ = 0 (7.80) χ w w = N φ c σ p E + mc 2 φ (7.81) (7.80) χ Pauli (σ p)(σ p) =p 2 I (7.82) (E mc 2 )(E + mc 2 ) φ =(pc) 2 φ (7.83) (7.73)

14 Dirac Lorentz Lorentz Lorentz Lorentz x µ x µ x µ = Λ µ ν x ν (7.84) x x = x µ x µ (7.85) x µ x µ = x µ x µ (7.86) (7.86) g µν x µ x µ x µ (7.84) (7.86) x µ x µ = g µν x µ x ν = gµν (Λ µ ρx ρ )(Λ ν σx σ )=g µν Λ µ ρλ ν σ x ρ x σ (7.87) x ρ x ρ = g ρσ x ρ x σ (7.88) Lorentz Λ µ ν g µν Λ µ ρλ ν σ = g ρσ (7.89) g µν Λ µ ν (7.89) (7.89) ( det Λ ) 2 = 1 (7.90) det Λ = ±1 (7.91) z Lorentz (7.15) 1/ 1 β β/ 1 β 2 det Λ = = 1 (7.92) β/ 1 β / 1 β 2

15 7.3 Dirac 137 Lorentz det Λ =+1 det Λ = 1 Lorentz Λ P, T P = T = (7.93) (7.94) (7.89) g τρ τ ρ g τρ g µν Λ µ ρλ ν σ = g τρ Λ νρ Λ ν σ = Λ τ ν Λ ν σ (7.95) g τρ g ρν = δ τ σ (7.96) Λ τ ν Λν σ = δτ σ (7.97) δ τ σ Kronecker (7.97) Λµ ν Λ ν µ Λ (Λ 1 ) T Λ ν µ =(Λ 1 ) ν µ (7.98) x µ x µ x µ = g µν x ν = gµν Λ ν ρ xρ = g µν Λ ν ρ gρσ x σ = Λ σ µ x σ (7.99) Λ (7.98) x µ x µ = Λ ν µ x ν = x ν ( Λ 1 ) ν µ (7.100)

16 138 7 Lorentz T µν g µν T µν T µν = Λ µ ρ Λ ν σt ρσ (7.101) g µν g µν = Λ µ ρ Λ ν σg ρσ = Λ µσ Λ ν σ = g µρ Λ σ µ Λ ν σ = g µρ δ ν ρ = g µν (7.102) Lorentz Dirac Lorentz k k =1, 2, 3 θ k θ s J k 2s +1 ψ s ψ s = S(θ)ψ s (7.103) S(θ) = exp (ij k θ) (7.104) 1 2 Pauli J k = 1 2 σk ( ) S(θ) = exp i σk 2 θ (7.105) σ k exp(iσ k θ/2) ( ) ( ) exp i σk n 2 θ 1 = i σk n! 2 θ (7.106) Pauli n=0 ( ) exp i σk 2 θ = I cos θ 2 + iσk sin θ 2 ( σ k ) 2 = I (7.107) (7.108)

17 7.3 Dirac 139 Dirac 1 2 Dirac ψ ψ(x) ψ (x )=S(θ) ψ(x) (7.109) S(θ) S(θ) = ( I 0 0 I ) exp ( ) i σk 2 θ (7.110) σ k k Hermite unitary Lorentz x v x 0 x 1 β = v/c = tanh θ Lorentz (7.20) x 0 x 0 =+x 0 cosh θ x 1 sinh θ x 1 x 0 = x 0 sinh θ + x 1 cosh θ (7.111) Lorentz ψ(x) ψ(x) ψ (x )=S(θ) ψ(x) (7.112) S(θ) ( S(θ) = exp i σ ) 01 2 θ (7.113) σ 01 = i 0 0 i 0 0 i 0 0 i (7.114) σ 01 1 S(θ) =I 4 cosh θ 2 iσ 01 sinh θ 2 (7.115) I 4 σ 01 Hermite unitary

18 140 7 Lorentz Dirac ψ x µ x µ = Λ µ ν x ν (7.116) ψ ψ = Sψ (7.117) Lorentz (7.111) Dirac (7.112) unitary ψ Hermite ψ Lorentz Dirac Hermite Hermite γ 0 ψ ψ = ψ γ 0 (7.118) ψ =(ψ 1,ψ 2,ψ 3,ψ 4 ) γ 0 =(ψ 1,ψ 2, ψ 3, ψ 4 ) (7.119) Lorentz S(θ) ψ(x) ψ (x )=ψ(x) S(θ) 1 (7.120) (7.120) ψ 1 ψ 2 ψ 1 ψ 2 ψ 1ψ 2 = ψ 1 S 1 Sψ 2 = ψ 1 ψ 2 (7.121) Lorentz 1 2 Lorentz γ µ ψ 1 γ µ ψ 2 ψ 1 γ µ ψ 2 ψ 1γ µ ψ 2 = ψ 1 S 1 γ µ Sψ 2 (7.122) S S 1 γ µ S = Λ µ νγ ν (7.123) ψ 1 γ µ ψ 2 ψ 1γ µ ψ 2 = Λ µ ν ψ 1 γ µ ψ 2 (7.124)

19 7.3 Dirac 141 (7.123) ψ 1 γ µ γ ν ψ 2 ψ 1γ µ γ ν ψ 2 = Λ µ ρλ ν σψ 1 γ ρ γ σ ψ 2 (7.125) γ µ γ ν σ µν σ µν = i 2 [ γµ,γ ν ] (7.126) σ 01 (7.113) Dirac j µ =(cρ, j )=(cψ ψ, cψ αψ ) (7.127) ψ β 2 = I β = γ 0 ψ = ψ γ 0 γ k = βα k j µ = cψγ µ ψ (7.128) j µ Lorentz { t + t x x (7.129) Lorentz Λ µ ν gµν { + γ P 1 γ µ P = g µν γ ν 0 (µ =0) = γ k (7.130) (µ =1, 2, 3) P P =e iϕ γ 0 (7.131) P P 1 =e iϕ (γ 0 ) 1 =e iϕ γ 0 (7.132) P 1 γ µ P = γ 0 γ µ γ 0 (7.133)

20 142 7 µ =0 ( γ 0) 3 = γ 0 µ =1, 2, 3 γ 0 γ k γ 0 = γ k γ 0 γ 0 = γ k (7.134) unitary P P = γ 0 e iϕ e iϕ γ 0 =(γ 0 ) 2 = I (7.135) P 1 = P (7.136) x p x p γ 5 ( ) 0 I γ 5 = γ 5 = iγ 0 γ 1 γ 2 γ 3 = (7.137) I 0 Dirac-Pauli ψ 1 γ 5 ψ 2 Lorentz ψ 1 ψ 2 ψ 1 γ µ ψ 2 ψ 1 γ 5 γ µ ψ 2 Lorentz Dirac ψ ψ = ψ γ 0 ψγψ 16 Γ 16 Lorentz S ψψ 1 P ψγ 5 ψ 1 V ψγ µ ψ 4 A ψγ 5 γ µ ψ 4 T ψσ µν ψ 6 16

21 7.3 Dirac 143 (7.137) γ 5 ( γ 5 ) 2 = ( I 0 0 I ) (7.138) ±1 Dirac +1 1 P + = 1+γ5 2 P = 1 γ5 2 (7.139) (7.138) ( P + ) 2 = P + ( P ) 2 = P P + P = 0 (7.140) P + + P = 1 (7.141) P ± P + γ 5 +1 P 1 ψ R = P + ψ ψ = ψ R + ψ L ψ L = P ψ (7.142) right-handed left-handed R L Hole Dirac Klein-Gordon p E E = ± p 2 c 2 + m 2 c 4 E =0 mc 2 <E<mc 2 Dirac Dirac Fermi Pauli

22 144 7 mc 2 mc mc 2 mc 2 7.1: hole hole hole 7.1 e + e + γ + γ (7.143) hole 7.1 Feynman Feynman e Feynman e

23 7.3 Dirac 145 t t e e e + e e e x x 7.2: e e + e e E e E e +e e + e + e e + E e + hole Dirac Dirac Hole Anderson positron ψ ψ Lorentz C Dirac

24 146 7 ψ c = C ψ T (7.144) ψ =(ψ ) T γ 0 ψ γ 0 C Dirac C C 1 γ µ C = (γ µ ) T (7.145) C unitary Dirac-Pauli C = iγ 2 γ 0 = (7.146) ψ ψ = ψ 1 ψ 2 ψ 3 (7.147) ψ 4 ψ ψ c = ψ 4 ψ 3 ψ 2 ψ 1 (7.148) (7.145) C γ 5 C 1 γ 5 C =(γ 5 ) T (7.149) ψ ψ c = C ψ T = C ( ψ γ 0) T = C (γ 0 ) T ψ (7.150) P L = 1 γ5 2 P R = 1+γ5 2 (7.151)

25 7.3 Dirac 147 γ 5 Dirac-Pauli (ψ L ) c = C P L ψ T = C (γ 0 ) T (P L ψ) (7.150) = C (γ 0 ) T P L ψ P L = P L = CP R (γ 0 ) T ψ γ 0 γ 5 = γ 5 γ 0 (7.152) = P R C (γ 0 ) T ψ = P R ψ c (7.150) γ 5 (ψ L ) c =(ψ c ) R (ψ R ) c =(ψ c ) L (7.153)

26 Maxwell Maxwell E B ρ em j em E = ρ em (7.154) E = B (7.155) t B = 0 (7.156) B = j em + E (7.157) t ρ em t + j em = 0 (7.158) φ A E = φ A (7.159) t B = A (7.160) (7.155) (7.156) 0 Lorentz A µ A µ ( ) ( ) φ φ A µ = c, A A µ = c, A (7.161) ρ em j em j µ em =(cρ em, j em ) j em µ =(cρ em, j em ) (7.162) µ j em µ = j em µ x µ = 0 (7.163)

27 F µν = µ A ν ν A µ (7.164) F µν = F νµ (7.165) F µµ =0 µ =0,ν =1, 2, 3 F 0k = 1 A k 1 φ = 1 ( A k + φ ) c t c x k c t x k = 1 c Ek (7.166) E k 1 µ<ν 3 ( ) F jk = Ak Aj A k = x j x k x j Aj x k (7.167) B 0 E 1 /c E 2 /c E 3 /c F µν = E 1 /c 0 B 3 B 2 E 2 /c B 3 0 B 1 (7.168) E 3 /c B 2 B 1 0 F µν (7.164) Lorentz F µν = g µρ g νσ F ρσ (7.169) F µν = 0 E 1 /c E 2 /c E 3 /c E 1 /c 0 B 3 B 2 E 2 /c B 3 0 B 1 E 3 /c B 2 B 1 0 (7.170) 1 4 F µν F µν = 1 ( ) E 2 2 c 2 B2 (7.171)

28 150 7 Lorentz Maxwell (7.154) (7.157) µ F µν = Fµν x µ = j ν em (7.172) (7.164) A µ µ µ A ν ν ( µ A µ )=j ν em (7.173) E B φ A χ(t, x) A A = A + χ (7.174) 0 B E φ φ = φ χ (7.175) t A µ A µ = A µ µ χ (7.176) (7.174) (7.175) (7.176) χ F µν F µν (7.176) S em = cε d 4 x ( 1 ) 4 F µν F µν (7.177) A µ Maxwell F µν

29 Maxwell S em Lorentz µ A µ = 1 c φ t c + A = 0 (7.178) Lorentz Lorentz χ Lorentz A 1 2 χ c 2 ( χ) = 0 (7.179) t2 A = 0 (7.180) Coulomb ρ em = j em =0 φ =0 ( ) 1 2 c 2 t 2 A = 0 (7.181) A Coulomb (7.180)

30 L.I. Schiff, 3. Advanced Quantum Mechanics, J.J. Sakurai, (Addison-Wesley Publishing Company, 1967) 4. Relativistic Quantum Mechanics, J.D. Bjorken and S.D. Drell, (McGrow-Hill, Inc., New York, 1964) 5. Relativistic Quantum Field Theory, J.D. Bjorken and S.D. Drell, (McGrow-Hill, Inc., New York, 1964) 6. Gauge Theories in Particle Physics, I.J.R. Aitchison and A.J.G. Hey, Graduate Student Series in Physics, (Adam Hilger, Bristol, Philadelphia, 1989) 7. I II

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = 8 8.1 8.1.1 1 Chadwick [ 1 ] 1919,, electron number Q 0.0 0. 0.4 0.6 0.8 1.0 kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = E γ φ φ E e X 153 154 8, 3 H 3 He, ( ) 3 H( 1 ) 3 He(

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

22 2 24 3 I 7 1 9 1.1.......................... 10 1.1.1 Newton Galilei........ 10 1.1.2.......................... 11 1.1.3..................... 12 1.1.4........................ 13 1.1.5.....................

More information

19 /

19 / 19 / 1 1.1............................... 1. Andreev............................... 3 1.3..................................... 3 1.4..................................... 4 / 5.1......................................

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

1. 1.1....................... 1.2............................ 1.3.................... 1.4.................. 2. 2.1.................... 2.2..................... 2.3.................... 3. 3.1.....................

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

II

II II 28 5 31 3 I 7 1 9 1.1.......................... 9 1.1.1 ( )................ 9 1.1.2........................ 14 1.1.3................... 15 1.1.4 ( )................. 16 1.1.5................... 17

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 4 2 17 3 Coulomb 23 4 43 5 49 6 51 7 53 8 58 9 66 10 74 11 Lienard-Wiechert potential 78 12 86 13 89 14 Laplace 114 15 138 16 152 17 162 18 166 19 191

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Xray.dvi

Xray.dvi 1 X 1 X 1 1.1.............................. 1 1.2.................................. 3 1.3........................ 3 2 4 2.1.................................. 6 2.2 n ( )............. 6 3 7 3.1 ( ).....................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

i x- p

i x- p 3 3 i........................................................................................................... 3............................... 3.. x- p-.................... 8..3.......................

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

( ) 1 (Quantum Field Theory) = Maxwell Dirac Quantum Electro-Dynamics (QED) 1

( ) 1 (Quantum Field Theory) = Maxwell Dirac Quantum Electro-Dynamics (QED) 1 ( ) 1 (Quantum Field Theory) = Maxwell Dirac Quantum Electro-Dynamics (QED) 1 = 2 Key words = : = : = UV divergence = IR divergence massless ( photons) 3 QFT = : a = ( ) Λ = 1/a = = UV cut-off λ( a) QFT

More information

1

1 1 1.. ( ) ( ) ( ) (A) E icb φ Et = + cdiva ct (H3) (B) ( ) ct ct ' ctct ' + ' = ' ct ' + ct ' i( ') (H3,H18) 3 (i) cosh Ψ = cosh ΘcoshΩ sinhψ sinhθ sinhω cosh Ψ cosh Θ cosh Ω = sinhψ sinhθ sinhω tanhψ

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

25 7 31 i 1 1 1.1......................... 1 1.1.1 Newton..................... 1 1.1.2 Galilei................. 1 1.1.3...................... 3 1.2.......................... 3 1.3..........................

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

(Onsager )

(Onsager ) 05819311 (Onsager ) 1 2 2 Onsager 4 3 11 3.1................ 11 3.2............ 14 3.3................... 16 4 18 4.1........... 18 4.2............. 20 5 25 A 27 A.1................. 27 A.2..............

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Planck Bohr

Planck Bohr I 30 7 11 1 1 5 1.1 Planck.............................. 5 1. Bohr.................................... 6 1.3..................................... 7 9.1................................... 9....................................

More information

Andreev Josephson Night Club

Andreev Josephson Night Club Andreev Josephson Night Club email: asano@eng.hokudai.ac.jp 27 6 25 1 1 2 2 2 2.1...................................... 2 2.2 2......................... 3 2.3 Cooper.......................... 8 2.4.......................................

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ 1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

untitled

untitled C n π/n σ S n π/n v h N tc C S S S S S S S S S S S S S σ v S C σ v C σ v S. O. C / 8 Grou ABCABC EAAEA E AA - A- AE A - N C v EC C σ v σ v σ v 6 C C σ v σ v σ v X X A X - AXB B A B A B B A A C B C A B...

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information