II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

Size: px
Start display at page:

Download "II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3"

Transcription

1 II (Percolation) ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] [ ] G Grimmett Percolation Springer-Verlag New-York [ ] p H FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( ) )

2 Percolation Z 2 B 2 = {{x y}; x y Z 2 x y =1} 2 bond p (0 p 1) open 1 p closed b = (p) b = (p) b (ω) b B 2 = { b ; b B 2 } P p S = {b B 2 ; b =1} O C O (open cluster) kc O k C O p H : Hammersley (critical probability) θ(p) =P p (kc O k = ) : p H =inf{p [0 1]; θ(p) > 0} p T : Temperley χ(p) =E p [kc O k]= : np p (kc O k = n)+ P p (kc O k = ) n=1 p T =inf{p [0 1]; χ(p) = } p H p T p H = p T 11 Z 2 p H p T p H = p T = 1/2 p c p>p c 1 p p c 1 11 Z d (d 3) p c =1/2 θ(p) =P p (kc O k = ) p p 11 p H p T 12 (Ω FP) (Ω FP) (probability space) Ω F( 2 Ω ) Ω σ (σ-field); (2 Ω Ω ) (1) Ω F

3 Percolation 2 (2) A F A c F (3) A n F (n =1 2) S A n F P = P (dω) (Ω F) (probability measure) ie 1 ; P : F [0 1] (1) P (Ω) =1( P ( ) =0 ) (2) A n F (n =1 2) P ( S A n )= P P (A n )(σ ) (Ω FP) = (ω) :Ω R (random variable) { a} := {ω Ω; (ω) a} F ( a R) (Ξ B) = (ω) Ξ { B} F ( B B) i (Ω FP) (Ξ i B i ) (i =1 2n) { i } n i=1 (independent) P ( 1 B 1 n B n )=P ( 1 B 1 ) P ( n B n ) ( B i B i i=1n) n { n } n 1 N 1 { n } N n=1 µ(a) = P ( A) (distribution) F (x) = P ( x) (distribution function) 12 P P : F [0 ] P ( ) =0 P ( ) =0 P (Ω) =1 1 Ω = Ξ := {0 1} B2 3 ω = ω(b); B 2 {0 1} (0 1) Ω ; (cylinder set) A i1in b 1b n = {ω; ω(b 1 )=i 1 ω(b n )=i n } (b k B 2 i k = 0 or 1k =1n) C F = B(Ξ) :=σ(c) (C σ-field C σ-field) B(Ξ) = \ {G 2 Ω ; G C σ-field} P = P p cylinder set P p (A i 1+ +i n b 1b n )=p i 1 i n (1 p) (1 i 1)+ +(1 i n ) ( ) b B 2 (Ω b F b P bp ) Ω b = {ω(b) =1 ω(b) =0} F b =2 Ω b P bp (ω(b) =1)=p b = (p) b b (ω) =ω(b) b P p ( b =1)= P p (ω(b) = 1) = p = { b ; b B 2 } P p (ω) =ω ( )

4 Percolation 3 12 (Ω FP) (1) B n F (n 1) T B n F ³[ (2) B n F B n P Bn = lim P (B n) n ³\ (3) B n F B n P Bn = lim P (B n) n ³[ (4) B n F (n 1) P Bn P (B n ) µ P (5) (Borel-Cantelli ) B n F (n 1) P (Bn ) < P lim sup B n = 0 ie ³ n P lim inf n Bc n =1 lim sup B n = \ [ B n lim inf B n = [ \ B n n n N 1 n N N 1 n N θ(p) =P p (kc O k = ) p θ n (p) :=P p (kc O k n) θ(p) = lim n θ n (p) θ n (p) b B 2 Z b Z b (ω) [0 1] {Z b } Q Q(Z b p) =p = P p ( b =1) S(p) ={b B 2 ; Z b p} O C O (p) p θ n (p) =P p (kc O k n) =Q(kC O (p)k n) θ n (p) 13 1/3 p H 2/3 p H Peierls 12 Hammersley p H = inf{p [0 1]; θ(p) = P p (kc O k = ) > 0} 1/3 p H 2/3 γ = {x 0 b 1 x 1 b 2 b n x n } ( path) (i) b = {x i 1 x i } (ii) i 6= j b i 6= b j γ = {b 1 b n } 12 [p H 1/3 ] p<1/3 θ(p) =0 γ n ( ) P p (γ C O )=P p ( b =1 b γ) =p n γ 4 3 n 1 γ P p (γ C O ) 4 γ; 3 n 1 p n (< if p<1/3) {γ k } kc O k = N 1 k N; γ k C O p<1/3 Borel-Cantelli θ(p) =P p (kc O k = ) P p \ [ {γ k C O } =0 N 1 n=1 k N

5 Percolation 4 p H 1/3 [p H 2/3 ] p>2/3 θ(p) > 0 Z 2 (Z 2 ) := {(m +1/2n+1/2); m n Z} (Z 2 ) b (B 2 ) b B Y b := b {Y b ; b (B 2 ) } = {Y b ; b B 2 } N 1 V N := {(m n) Z 2 ; m n := max( m n ) N} V N p>2/3 N = N(p) S = {b B 2 ; b =1} P p (S V N ) 1 (1) 2 kc O k < C O (B 2 ) (closed path) γ O V N P p (S V N ) = P p (V N (B 2 ) γ ) P p (Y b =0 b γ ) γ ; V N kγ k = k V N k 4(2N +1) = 8N +4 ( 8N) γ [0k] {0} ( {(j +1/2 1/2); 1 j k} ) γ k 4 3 k 1 P p (S V N ) 4k 3 k 1 (1 p) k p>2/3 N 0 ( ) N = N(p) (1) (1) { b ; b 6 V N } { b ; b V N } P p {b =1 b V N } {S V N } = P p ( b =1 b V N )P p (S V N ) 1 2 P p( b =1 b V N )= p4n 2 > 0 2 P p (kc O k = ) ( ) p>2/3 θ(p) > 0 p H 2/3 13 [0 p<1/3 θ(p) =0 p H 1/3] [2/3 < p 1 θ(p) > 0 p H 2/3] 14 p >2/3 P k3 k 1 (1 p) k < k 1 k 8N 15 θ(p) Z b S(p) ={b B 2 ; Z b p} θ(p + h) =P S(p + h) h 0 S(p + h) S(p) ie T S(p + h) =S(p) h>0 ( ) θ(p + h) θ(p) (h 0) θ h (p) (p ) θ n (p) θ(p) (n ) 16 f n (x) [0 1] f n f ( ) f(x) [0 1]

6 Percolation FKG BK Russo Ξ = ξ : B 2 {0 1} ª [ξ η ξ(b) η(b) ( b B 2 )] f : Ξ R ( ) ξ η f(ξ) f(η) (f(ξ) f(η) ) A B(Ξ) ( ) 1 A ( ) 21 A B(Ξ): [ξ A ξ η η A] x =(x 1 x 2 ) Z 2 x := x 1 x 2 =max{x 1 x 2 } V N = {b = {x y} B 2 ; x y N} ξ Ξ S N (ξ) ={b V N ; ξ(b) =1} f(ξ) =ks N k S(ξ) ={b B 2 ; ξ(b) =1} O C O (ξ) f(ξ) =kc O (ξ)k A = { P n i=1 ξ(b i) k} A = { P n i=1 ξ(b i) k} 21 FKG [Fortuin Kesten Ginibre] Harris Harris-FKG 60 Harris [2] 72 Fortuin Kesten Ginibre 3 [1] FKG 21 (FKG ) p [0 1] Ξ fg : E p [f()g()] E p [f()]e p [f()] fg 1 f(ξ) =f(ξ(b)) (g ) ( )=f(1)g(1)pf(0)g(0)(1 p) ( )=[f(1)p + f(0)(1 p)][g(1)p + g(0)(1 p)] ( ) ( )=[f(1) f(0)][g(1) g(0)]p(1 p) 0 (fg b1 bn ) BK [van den Berg and Kesten] A B Ξ {b 1 b n } A B {b 1 b n } ξ 0 A ξ 00 B ξ

7 Percolation 6 22 (BK ) A B p [0 1] : P p ( A B) P p ( A)P p ( B) FKG (P p) ( 0 P p) 2 BK 1 ep = P p P p ( ) {b 1b n} A e = A Ξ B0 e = B =1n Bk e [(ξ ξ 0 ) Bk e ξ 0 b 1 b k ξ b k+1 b n B ( )] P p( A B) = e P (( e ) e A e B0) P p( A)P p( B) = e P (( 0 ) e A e Bn) k =0 1N : ep (( 0 ) e A e Bk ) e P (( 0 ) e A e Bk+1 ) 23 Russo ξ Ξ A Ξ b B 2 ξ A (pivotal) 1 ξ δ b (ξ) (ξ b ) A A c b b : N(A) =N(A; ξ) =#{b B 2 ; b ξ A pivotal} = 1 {b ξ A pivotal} b B 2 A = { P n ξ(b P n i=1 i) k} ξ(b i=2 i)=k 1 ξ b 1 A 23 (Russo ) A b 1 b n : d dp P p( A) =E p [N(A; )] (p [0 1]) P p ( A) p [ ] b i open p i [0 1] p =(p 1 p n ) P p i =1n 1 p i p 0 i ( ) p 0 p i p 0 i P p 0( A) P p ( A) =(p 0 i p i )P p (b i A ) ( b i ( A) b i A ( bi =1) ( A) b i b i ( bi =1) P p 0 P p ) p i p 0 i P p ( A) =P p (b i A ) p i 1 pivot;

8 Percolation 7 p P p( A) = = n P p ( A) p i p=(pp) n P p (b i A ) i=1 i=1 = E p [N(A; )] 3 2 p H = p T (=: p c ) 2 Hammersley : p H =inf{p [0 1]; θ(p) :=P p (kc O k = ) > 0} Temperley p T =inf{p [0 1]; χ(p) :=E p [kc O k]= } p H p T 3 ( 2 ) 4 Mensikov 5 ( 1 ) : C O C O {kc O k = } = { C O = } θ(p) =P p ( C O = ) χ(p) :=E p [ C O ] p T =inf{p [0 1]; χ(p) = } ( C O /2 kc O k 4 C O ) A A 31 p H = p T : Menshikov p H p T p<p H χ(p) < 31 ( χ(p) < p p T ) [ ] ξ N(A : ) =N(A : ξ) =N(A) x C Z 2 x r x (C) =sup{ y x ; y C} π n (p) =P p (A n ) (A n = {ξ Ξ; r 0 (C O (ξ)) n}) Russo d dp π n(p) =E p [N(A n )] = π n(p) E p [N(A n ) A n ] p = A n b A n A n b =1 :

9 Percolation 8 { b A n } { b =1} = { b A n } A n b A n b b P p ( b A n )p = P p ({ b A n } A n ) E p [N(A n )] = P p ( b A n ) b V n = 1 P p ( b A n A n )P p (A n ) p b V n = π n(p) E p [N(A n ) A n ] p 0 <p 1 <p 2 < 1 (p 1 p 2 ) : π n (p 2 )=π n (p 1 )exp µz p2 p 1 E p [N(A n ) A n ] dp p (2) ½ ¾ 1 k n (p) =max k; k π [n/k] (p) ([n/k] n/k ;[ ] ) n 0< α < β <p H π n (α) π n (β)exp β α 4β k n(β) (3) ( BK ) n 0 = n[1/π n (β)] π n 0(α) π n (β)exp β α 4β (π n(β) 1 1) (4) 2 ( ) p<p H K>0 N n N π n (p) exp[ Kn 1/3 ] (Mensikov ) ( β <p H π n (β) 0 π n (β) C/n (4) π n 2(α) C 0 exp[ Kn] π n (β) a/ log n (4) (4) (3) ) V N = {x Z 2 ; x = N} p<p H θ(p) =0 χ(p) =E p [ C O ]= x Z 2 E p [1 {x CO } ]= x Z 2 P p (x C O )= N=0 x V N P p (x C O ) 8Nπ N (p) Mensikov p H p T p H = p T N=0

10 Percolation 9 32 p H = p T : Aizenman-Barsky BK (2 ) 4 41 C =( )( ) B(Ξ) =σ(c) P p cylinder set A i 1i n b 1 b n = {ω; ω(b 1 )=i 1 ω(b n )=i n } (b k B 2 i k = 0 or 1) P p (A b1 b n )=p i1+ +in (1 p) (1 i1)+ +(1 in) B(Ξ) ( n ) [ A(C) := A k ; A k Ck =1nn 1 k=1 ( ) B(Ξ) =σ(a(c)) 41 ( ) B B(Ξ) ²>0 A A(C); P p (A4B) <² A4B := (A \ B) (B \ A): A(C) 3{kC O k n} {kc O k = } B(Ξ) x Z 2 τ x : Ξ Ξ; τ x ξ := ξ( + x) (translation) B B(Ξ) τ x B = {τ x ξ; ξ B} = {ξ; τ x ξ B} ( P) Ξ µ = P 1 = P ( ) x Z 2 B B(Ξ)µ(τ x B)=µ(B) µ B B(Ξ); τ x B = B ( x Z 2 ) µ(b) =P ( B) =0or1 µ (ergodic) 41 (p) P p B Ξ := { x Z 2 ; kc x k = } [ ] cylinderset P p A B Ξ τ x (A4B) =(τ x A)4(τ x B) ( ) B B(Ξ); τ x B = B ( x Z 2 ) A A(C); P p (A4B) <² (B B 0 )4(A A 0 ) (B4A) (B 0 4A 0 ) P p (B4(A τ x A)) = P p ((B τ x B)4(A τ x A)) P p (B4A)+P p (τ x (A4B)) 2² (P p )

11 Percolation 10 P p (B) P p (A τ x A) P p (B4(A τ x A)) 2² A x A τ x A P p (A τ x A)=P p (A)P p (τ x A)=P p (A) 2 P p (B) P p (A) 2 2² P p (B) P p (A) P p (B4A) <² P p (B) P p (B) 2 P p (B) P p (A) 2 + P p (A) 2 P p (B) 2 2² +2² =4² ²>0 P p (B) =P p (B) 2 ie P p (B) =0or1 41 A B Ξ τ x (A4B) =(τ x A)4(τ x B)(x Z 2 ) 42 (S(ξ) Ξ open bonds ) Ξ := {ξ Ξ; S(ξ) } = [ {ξ Ξ; kc x (ξ)k = } x Z 2 42 θ(p) > 0 P p (Ξ )=1 N = N (ξ) :=#{S(ξ) } [ ] τ x Ξ = Ξ P p P p (Ξ )=0or1 θ(p) > 0 Ξ {kc O k = } P p (Ξ ) > 0 P p (Ξ )=1 P p (Ξ )=1 θ(p) =0 x Z 2 τ x C O = C x P p (kc x k = ) =0 P p (Ξ ) θ(p) > 0 x Z 2 P p (kc x k = ) =0 42 (Newman-Schulman) p [0 1] P p (N = k) =1 k {0 1 } [ ] p =0 1 p (0 1) 1 k< P p (N = k) =1 k =1 ξ {N = k} S(ξ) k 1 I 1 I k lim P p(v n I j 6= j =1k)=P p ( n [ {V n I j 6= j =1k}) =1 ²>0 n 0 ; P p (V n0 I j 6= j =1k) > 1 ² 0<²<1 n 0 n=1 A = A n0 := {ξ Ξ; N (ξ) =k V n0 I j 6= j =1k} V n0 1 Ξ n0 = {0 1} Vn 0 ϕ Ξ n0 A(ϕ) :={ξ A; ξ = ϕ on V n0 } A = [ A(ϕ) ϕ Ξ n0 ( )

12 Percolation 11 ξ Ξ ϕ Ξ n0 ξ ϕ Ξ ξ ϕ = ϕ on V n0 =ξ on Vn c 0 A(ϕ) ={ξ Ξ; ξ = ϕ on V n0 } {ξ Ξ; ξ ϕ A} {ξ ϕ A} V n0 2 ϕ Ξ n0 2 kv n k 0 α(p) :=p (1 p) 1 ² < P p (A) = = ϕ ϕ ϕ Ξ n0 P p ({ξ = ϕ on V n0 } {ξ ϕ A}) P p (ξ = ϕ on V n0 )P p (ξ ϕ A) ϕ Ξ n0 2 kvn 0 k α(p) kvn 0 k max{p p (ξ ϕ A); ϕ Ξ n0 } P p (ξ ϕ A) (2α(p)) kvn 0 k (1 ²) {ξ =1onV n0 } {ξ ϕ A} {N =1} P p (N =1) P p (ξ =1onV n0 )P p (ξ ϕ A) µ kvn0 k p (1 ²) > 0 2α(p) {N =1} P p (N =1)=1 43 (Burton-Keane) P p (N = ) =0 ie P p 5 51 Kesten : p c =1/2 p c 1/2 p c 1/2 duality ( ) (Z 2 ) Z 2 +1/2 (B 2 ) b B 2 b (B) Y b = b Y = {Y b } B 2 open bond (b; b =1) (B 2 ) closed bond (b ; Y b 51 (Harris) =0) duality θ µ 1 =0 ie p c p =1/2 [ ] θ(1/2) > 0 S = {b B 2 ; b =1} S = {b (B 2 ); Y b =0}

13 Percolation 12 open-closed 1/2 P 1/2 (S S )=1 (0 <P 1/2 (kc O k = ) P 1/2 ( x Z 2 ; kc x k = ) =P 1/2 ( x (Z 2 ) ; kc x k = ) = 1 ) n V n = {x R 2 ; x = n} 0 <²<1/4 n P 1/2 S S V n > 1 ² 4 A + n (r) (ora + n (l)a + n (u)a + n (d)) V n or S \ V n FKG P 1/2 (A + n (r)) = P 1/2 (A + n (l)) = P 1/2 (A + n (u)) = P 1/2 (A + n (d)) > 1 ² i = r l u d P 1/2 (A + n (i)) FKG P 1/2 (A + n (i) c ) 4 P 1/2 (A + n (r) c A + n (l) c A + n (u) c A + n (d) c ) <² 4 S V n U n = {b = {u v } (B ); n u v n 1} V n A n (r)a n (l)a n (u)a n (d) P 1/2 A + n (r) A + n (l) A n (u) A n (d) > 1 4² V n S S θ(1/2) = 0 52 p c 1 2 [ ] T (n) =[0n+1] [0n] B 2 S(n) = 1 2 n n+ 1 (B 2 ) 2 1/2 a n = P 1/2 (T (n) open path T (n) ) = P 1/2 (S(n) closed path S(n) ) = 1 2 p c > 1/2 Menshikov [p <p c K >0 N N; π n (p) P p (O V n ) exp[ Kn 1/3 ]( n N)] M>0 π n (1/2) M exp[ Kn 1/3 ]

14 Percolation 13 (A B A B ) P 1/2 (x y) M exp[ K y x 1/3 ] a n P 1/2 (x y) M(n +1) 2 exp[ K(n +1) 1/3 ] 0 x (T (n) ) y (T (n) ) (n ) a n =1/ [ 43 P p (N = ) =0 ie ] ξ {N = }x Z 2 x C x (ξ) 3 x (ξ ) (encounter point) P p (N = ) =1 ( P p (N = ) < 1 =0 ) P p ( ) > 0 42 n µ S(ξ) \ Vn V n P p ( B V n ) H = {x 1 x 2 x 3 } ( V n 3 ) B(H) :={ξ B; x i H V n S } H V n B(H) =B V n H 3 A(H) B(H) [ ]= S H V n (A(H) B(H)) ( ) β(p) :=p (1 p) P (A(H)) β(p) kvnk P p ( ) β(p) kvnk P p (B(H)) β(p) kvnk 1 2 > 0 H V n λ := P p ( ) > 0 lim P p(v n (λ/2) V n )=1 (5) n ( ) V n k V n S(ξ) \ V n k +2 V n P p (V n V n 2) = 1 n (λ/2) V n V n P p (N = ) =0 [ (5) ] A = { } ² = λ/2 (λ = P p (A)) lim P 1 p n 1 A (τ x ξ) P p (A) V n >² =0 (6) x V n

15 Percolation 14 ([1 A (τ x ξ)=1 x ξ ] ) : (P p ) A B B(Ξ) lim P p(a (τ x B)) = P p (A)P p (B) x [ ] P p = P A B (A B C ) x A τ x B A B ²>0 A 0 B 0 C; P (A4A 0 ) <²P(B4B 0 ) <² P P ((A τ x B)4(A 0 τ x B 0 )) P (A4A 0 )+P ((τ x B)4(τ x B 0 )) < 2² x Z 2 P (A τ x B) P (A 0 τ x B 0 ) < 2² x P (A 0 τ x B 0 )= P (A 0 )P (τ x B 0 ) lim sup P p (A (τ x B)) P p (A)P p (B) < 4² (7) x ²>0 61 (7) P p (5) Chebyshev [Chebyshev ] (Ω FP) ²>0 P ( >²) E[ 2 ]/² 2 62 ( E[ 2 ; >²]=E[ 2 1 { >²} ] ) (6) A = B = { } ²>0 L>0; x L P p (A (τ x A)) P p (A) 2 <² E p A (τ x ξ) P p (A) 1 V n = E V n 2 p [(1 A (τ x ξ) P p (A))(1 A (τ y ξ) P p (A))] x V n xy V n P p = 1 V n 2 xy V n P p ((τ x A) (τ y A)) = P p (A (τ x y A)) Pp ((τ x A) (τ y A)) P p (A) 2 ) x V n y V n y x <L y x L Pp (A (τ x y A)) P p (A) 2 Pp (A (τ x y A)) P p (A) 2 + ² V n y V n y V n ; x y <L x V n V n 2 (x y x L y (2L 1) 2 ) 1 V n 2 xy V n Pp ((τ x A) (τ y A)) P p (A) 2 4L2 V n + ² n lim sup n E p A (τ x ξ) P p (A) V n ² x V n

16 Percolation 15 ² 0 lim n E p A (τ x ξ) P p (A) V n =0 x V n Chebyshev (6) 62 p H = p T : Menshikov p H p T p<p H χ(p) < [ ] 0 < α < β <p H [ (3) π n (α) π n (β)exp β α 4β k n(β) (n À 1) ] A n = {O V n } ξ A n O V n N(A n ; ξ) =k ( n) b 1 b k A n O V n 2 ρ 1 O b 1 2 i k ρ i b i 1 b i : 61 r 1 r k 0; r r k n k P p (ρ 1 = r 1 ρ k 1 = r k 1 ρ k r k A n ) (1 π rk +1(p))P p (ρ 1 = r 1 ρ k 1 = r k 1 A n ) ρ k N(A n ) k [ ] b k 1 V n y k 1 b k 1 G k 1 BK P p ({ρ 1 = r 1 ρ k 1 = r k 1 } A n ) P p ({ρ 1 = r 1 ρ k 1 = r k 1 ρ k r k } A n ) P p {yk 1 V n } {y k 1 y k 1 + V rk +1} G k = P p (G k 1 = G y k 1 = y)p p {y V n outside G} {y y + V rk +1 outside G} (Gy) P p (G k 1 = G y k 1 = y)p p y V n outside G P p y y + V rk +1 outside G (Gy) P p {Gk 1 = G y k 1 = y} {y V n outside G} π rk +1(p) (Gy) = P p ({ρ 1 = r 1 ρ k 1 = r k 1 } A n ) π rk +1(p) : 62 1 k n 0 p 1 E p [N(A n ) A n ] k(1 π [n/k] (p)) k

17 Percolation 16 [ ] ρ 1 ρ k 1 0 [n/k] 1 E p [N(A n ) A n ] kp p (N(A n ) k A n ) h n i h n i kp p ³ρ 1 1ρ k 1 A n k h k n i h n i k(1 π [n/k] (p))p p ³ρ 1 1ρ k 1 1 A n k k k(1 π [n/k] (p)) k k = k n (p) :=max k; k 1/π [n/k] (p) ª π [n/k] (p) 1/k k 2 (n À 1 ) (1 1/k) k 1/4 (k 2 ) µ E p [N(A n ) A n ] k 1 1 k k k 4! Ã Z β (2) π n (β) =π n (α)exp E p [N(A n ) A n ] dp α p (3) π n (α) π n (β)exp β α 4β k n (p) k n(β) n 0< α < β <p H 63 k n (p) in n in p p<p H lim k n(p) = n [ ] π [n/k] (p) n p k n (p) k n (p)+1> 1/π [n/(kn(p)+1)](p) p<p H π m (p) 0(m ) k n (p) [ (4) π n 0(α) π n (β)exp β α 4β (π n(β) 1 1) (n 0 = n[1/π n (β)]) ] (3) n n 0 ( n) π n 0(β) π n (β) k n 0(β) (π n (β) 1 1) k =[π n (β) 1 ] n 0 = kn π [n0 /k](β) =π n (β) k =[π [n0 /k](β) 1 ] π [n0 /k](β) 1 k n 0(β) k k n 0(β) k =[π n (β) 1 ] π n (β) 1 1 [ (4) Mensikov ] 7 FKG BK FKG n 1 I = {1n} Ξ = {0 1} I B(Ξ) =2 Ξ (Ξ ) Ξ f [ξ η f(ξ) f(η)] 71 (FKG ) µ (Ξ B(Ξ)) µ(ξ) :=µ({ξ}) > 0(ξ Ξ) µ(ξ)µ(η) µ(ξ η)µ(ξ η) (ξ η Ξ) (8) Ξ fg : E µ [fg] E µ [f]e µ [g]

18 Percolation 17 I n = I = {1n} n 1 Ξ n = {0 1} I n n =1 ie Ξ = {ξ = ξ(1) = 01} = {0 1} ( )=f(1)g(1)µ(1) + f(0)g(0)µ(0) ( )=[f(1)µ(1) + f(0)µ(0)][g(1)µ(1) + g(0)µ(0)] µ(1) + µ(0) = 1 µ(1)µ(1) 0 fg ( ) ( )=[f(1) f(0)][g(1) g(0)]µ(1)µ(0) 0 n n +1 ξ(n +1) ² =0 1 ξ Ξ n ξ ² Ξ n+1 ξ ² (j) =ξ(j) (1 j n) = ² (j = n +1) µ µ(ξ ²) =µ(η ² ) µ(ξ ² ) Ξ n ξ η Ξ (8) ( ); ξ Ξ n µ(ξ ²)µ(η ²) µ(ξ η ²)µ(ξ η ²) F G : Ξ n R F (ξ) =f(ξ ² ) G(ξ) =g(ξ ² ) F G Ξ ² =0 1 F (ξ)g(ξ)µ(ξ ²) F (ξ)µ(ξ ²) G(η)µ(η ²) ξ Ξ n ξ Ξ n ξη Ξ n f(ξ ² )g(ξ ² )µ(ξ ² ) f(ξ ² )µ(ξ ²) g(η ² )µ(η ²) µ(ξ ² ) ξ Ξ n ξ Ξ n ξ Ξ n ξ Ξ n ² =0 1 1 ²=0 bf(²) := ξ Ξ n H(ξ ² )= ξ Ξ n+1 H(ξ) ξ Ξ n f(ξ ² )µ(ξ ²) bµ := ξ Ξ n+1 f(ξ)g(ξ)µ(ξ) ξ Ξ n µ(ξ ² ) 1 bf(²)bg(²)bµ(²) ²=0 fbg b bµ ( ) n =1 ξ Ξ n+1 f(ξ)g(ξ)µ(ξ) = 1 1 bf(²)bµ(²) bg(δ)bµ(δ) ²=0 δ=0 f(ξ)µ(ξ) g(η)µ(η) ξ Ξ n+1 η Ξ n+1 n +1 bfbg bµ bµ f b φ(ξ) :=µ(ξ 1)/µ(ξ 0) Ξ n ξ η [φ(ξ) φ(η)]µ(ξ 0)µ(η 0) = µ(ξ 1)µ(η 0) µ(ξ 0)µ(η 1) = [µ(ξ 1 )µ(η 0 ) µ(ξ 0 )µ(η 1 )]/[bµ(1)bµ(0)]

19 Percolation 18 ξ 0 η 1 = ξ 1 ξ 0 η 1 = η 0 µ (8) ( ) 0 φ f bf(1) = ξ Ξ n f(ξ 1 )µ(ξ 1) ξ Ξ n f(ξ 0 )µ(ξ 1) = ξ Ξ n f(ξ 0 )φ(ξ)µ(ξ 0) f(ξ 0 ) ξ Ξ n µ( 0) Ξ n (8) φ bf(1) f(ξ 0 )µ(ξ 0) φ(η)µ(η 0) = f(0) b 1= f(0) b ξ Ξ n η Ξ n bf FKG (21) fg {b 1 b n } ξ Ξ = {0 1} I µ(ξ) =P p ( b1 = ξ(1) bn = ξ(n)) (8) ( ) fg f n g n : E p [ f f n 2 + g g n 2 ] 0 (n ) ( f n = f1 Vn Lebesgue ) Schwartz E p [ fg f n g n ] 2 E p [ f f n 2 ]E p [ g g n 2 ] 0 (n ) 71 µ (8) 72 f f n = f1 Vn Lebesgue E p [ f f n 2 ] 0 (n ) BK I = {1n} Ξ = {0 1} I A Ξ ξ A ξ η η A ξ Ξ S(ξ) ={i I; ξ(i) =1} A B Ξ A B := ξ Ξ; L S(ξ); η A eη B; S(η) =L S(eη) =S(η) \ L ª ξ Ξ L I L 0 ξ (L) ; ξ (L) (j) =ξ(j) (j L) = 0 (j I \ L) : A B = n o ξ Ξ; L S(ξ); ξ (L) A ξ (S(ξ)\L) B 72 (BK ) =( 1 n ) P [0 1] A B Ξ : P ( A B) P ( A)P ( B)

20 Percolation 19 (P) ( 0 P) ep = P P ea = A Ξ B0 e = B Ξ k =1n B e k [(ξ ξ 0 ) B e k ξ 0 1 k ξ k +1 n T k (ξ ξ 0 ):=(ξ 0 (1)ξ 0 (k) ξ(k +1)ξ(n)) B ] (T 0 (ξ ξ 0 )=ξt n (ξ ξ 0 )=ξ 0 ) ea B e k := n(ξ ξ 0 ) Ξ Ξ; L S(ξ) L 0 S(ξ 0 ); (ξ (L) ξ 0(L0) ) A e (ξ (S(ξ)\L) ξ 0(S(ξ0 )\L 0) ) B e o k ea B e k ea B e n o k = (ξ ξ 0 ) Ξ Ξ; L S(ξ); ξ (L) A T k (ξ (S(ξ)\L) ξ 0 ) B A e B e 0 = A B Ξ A e Bn e = A B P ( A B) = e P (( 0 ) e A e B 0 ) P( A)P ( B) = e P (( 0 ) e A e B n ) k =0 1n 1 ep (( 0 ) e A e B k ) e P (( 0 ) e A e B k+1 ) ( 0 ) µ ie µ(u V )= P e (( 0 ) U V ) µ( A e B e k ) µ( A e B e k+1 ) (ξ ξ 0 ) A e B e k ( ξ b ξ b0 ) Ξ Ξ (ξ ξ 0 ) ( A e B e k ) ( A e B e k+1 ) (ξ ξ 0 ) ( A e B e k ) \ ( A e B e k+1 ) ξ ξ 0 k +1 (ξ ξ 0 ) ( e A e B k ) \ ( e A e B k+1 ) ( b ξ b ξ 0 ) e (A e B k+1 ) \ ( e A e B k ) (9) ( ) b : A e B e k A e B e k+1 ;(ξ ξ 0 ) ( ξ b ξ b0 ) 1 1 ( ( A e B e k ) ( A e B e k+1 ) ( A e B e k ) \ ( A e B e k+1 ) 1 1 ) µ(( ξ b ξ b0 )) = P e ( j = ξ(j) b j 0 = ξ b0 (j)j =1n) Y = P ( j = ξ(j))p (j 0 = ξ 0 (j))p ( k+1 = ξ 0 (k +1))P (k+1 0 = ξ(k +1)) = j6=k+1 ny P ( j = ξ(j))p (j 0 = ξ 0 (j)) j=1 = µ((ξ ξ 0 )) : µ( e A e B k ) = (ξξ 0 ) ea eb k µ(( b ξ b ξ 0 )) = µ({( ξ b ξ b0 ); (ξ ξ 0 ) A e B e k }) µ( A e B e k+1 ) ( j j 0 ) (9) [(ξ ξ 0 ) ( A e B e k )\( A e B e k+1 ) ( ξ b ξ b0 ) ( A e B e k+1 )\( A e B e k )] ξ b ξ b0 ) e (A B e k+1 bξ ξ b0 ) / ( A e B e k L 0 S(ξ); ξ (L 0) A T k (ξ (S(ξ)\L 0) ξ 0 ) B L S(ξ) ξ (L) A T k+1 (ξ (S(ξ)\L) ξ 0 ) / B

21 Percolation 20 T k (ξ (S(ξ)\L0) ξ 0 ) BT k+1 (ξ (S(ξ)\L0) ξ 0 ) / B k +1 B 1=T k (ξ (S(ξ)\L0) ξ 0 )(k +1)=ξ (S(ξ)\L0) (k +1) 0=T k+1 (ξ (S(ξ)\L0) ξ 0 )(k +1)=ξ 0 (k +1) ξ (S(ξ)\L0) k +1 / L 0 ξ(k +1)=1 j L 0 j 6= k +1 ξ b ξ b(l 0) (j) = ξ(j)ξ(j) b =ξ (L0) (j) ie ξ b(l 0) = ξ (L0) ( A) T k+1 ( b ξ (S(bξ)\L 0) b ξ 0 )=T k (ξ (S(ξ)\L 0) ξ 0 ) B (10) ( ( ξ b ξ b0 ) A e B e k+1 ) j k +1 ( T k+1 ( ξ b(s(bξ)\l 0) ξ b0 )(j) = ξ b0 ξ 0 (j) (j k) (j) = ξ(k +1) (j = k +1) k +1 / L 0 ξ(k +1)=1 k +1 S(ξ) \ L 0 ( T k (ξ (S(ξ)\L0) ξ 0 ξ 0 (j) (j k) )(j) = ξ(k +1) (j = k +1) j>k+1 ξ(j) = ξ(j) b (j 6= k +1) T k+1 ( ξ b(s(bξ)\l0) ξ b0 )(j) = ξ b(s(bξ)\l0) (j) =ξ (S(ξ)\L0) (j) =T k (ξ (S(ξ)\L0) ξ 0 )(j) (10) ( ξ b ξ b0 ) A e B e k+1 ( ξ b ξ b0 ) / A e B e k L S( ξ) b ξ b(l) A T k ( ξ b(s(bξ)\l) ξ b0 ) / B L k +1 L ξ(k b +1)=ξ 0 (k +1)=0 k +1 / S( ξ) b k +1 / L ξ (L) = ξ b(l) A (10) T k ( b ξ (S(bξ)\L) b ξ 0 )=T k+1 (ξ (S(ξ)\L) ξ 0 ) / B ( ) ( ξ b ξ b0 ) / A e B e k 73 T k ( ξ b(s(bξ)\l) ξ b0 )=T k+1 (ξ (S(ξ)\L) ξ 0 ) / B [1] Fortuin C M Kesten P W and Ginibre J; Correlation inequalities on some partially ordered sets Communications in Mathematical Physics (1972) [2] Harris T E; A lower bound for the critical probability in a certain percolation process Proceedings of the Cambridge Philosophical Society (1960)

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

untitled

untitled C n π/n σ S n π/n v h N tc C S S S S S S S S S S S S S σ v S C σ v C σ v S. O. C / 8 Grou ABCABC EAAEA E AA - A- AE A - N C v EC C σ v σ v σ v 6 C C σ v σ v σ v X X A X - AXB B A B A B B A A C B C A B...

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information