12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

Size: px
Start display at page:

Download "12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S"

Transcription

1 12 2 e S,T S s S T t T (map α α : S T s t = α(s (2.1 S (domain T (codomain (target set, {α(s} T (range (image s, s S t T s S t T, α s, s S s s, α(s α(s (2.2 α (injection 4 T t T (coimage α t t = α(s S (surjection (bijection S T (cardinal number S T ( Isomorphism, Homomorphism, Automorphism, Endomorphism 4 one to one

2 13 Figure 2: G H α : G H α(g g = α(g H α(g (2.3 (Group Homomorphism H H 1 G G,1 H H α(1 G = 1 H (2.4 g G α(g 1 = α(g 1 (2.5 ( group isomorphism SO(3. 5 (Automorphism (Endomorphism 5

3 G g G i g i G g 1 = g 1 g. g α g α g : G G : g i α g (g i = g i g (2.6 G ( r G g G G = Gg = (g 1 g, g 2 g g r g (2.7,G G G G G G g i g = g k g ig = g k g i = g i(g 1 q.e.d. α g (g 1 α g (g 2 = g 1 gg 2 g α g (g 1 g 2 (2.8 a α α : g aga 1 (2.9 α(gg = agg a 1 = aga 1 aga 1 = α(gα(g (2.10 α(g = α(g g = g ( C 2, C 3 ( 2.

4 gg = g\g e a b c e e a b c a a x b b c c (2.12 x x = e g\g e a b c e e a b c gg = a a e c b b b c e c c b e gg = g\g e a b c e e a b c a a e c b b b c a c c b a x = b g\g e a b c e e a b c gg = a a b c e b b c c c e gg = g\g e a b c e e a b c a a b c e b b c e c c e b Z 2 Z 2 (= D 2 x = e x = b x = c Z G G = {g 1, g 2,, g n }(n G = g 1 + g g n = n g i ( H = h 1 + h h k G( k, Hg g G H Hg = {h 1 g, h 2 g,, h k g} = h 1 g + h 2 g + + h k g (2.14

5 (coset H g 1 = e g i H,(i > 1 G G = r Hg i = Hg 1 + Hg Hg r (2.15 i=1 Hg i H ( H\G g i r (index of H G H G (coset decomposition g 1 = e G g 2 G H = Hg 1 g 2 H Hg 2 H Hg 2 G g 3 Hg 3 Hg i {g i } g i+1 H Hg i+1 G Hg i H (i 1 (hg i = h g i = h h 1 g H 1. G = Hg i,g/h = {ah a G} 2. (Lagrange s theorem, G = H G/H (2.16 G (H (G/H 3. e g i k #G = G C k = g i G G/H G /k G 1. C 3v C 3 C 3v = C 3 + C 3 σ 1 2. C 3 σ 1 C 3 σ 2

6 conjugacy class g G a G g(a g 1, g 2 G g G g 1 g 2 H 1, H 2 G g G H 1 H 2 g(a = gag 1 (2.17 g 1 = gg 2 g 1 (2.18 g 1 g 2 (2.19 H 1 = gh 2 g 1 (2.20 H 1 H 2 (2.21 G a [a] = {g 1 ag1 1, g 2 ag2 1,, g n agn 1 } (2.22 a g : a = gbg 1 a b ( G/ 6 (a a a (b a b b c a c (c a b b a

7 18 ( C 3v C 3v e,{c 3, c 1 3 },{σ i } C 3v : C 3v a b bab 1 = C 3v b\a e c 3 c 1 3 σ 1 σ 2 σ 3 e e c 3 c 1 3 σ 1 σ 2 σ 3 c 3 e c 3 c 1 3 σ 3 σ 1 σ 2 c 1 3 e c 3 c 1 3 σ 2 σ 3 σ 1 σ 1 e c 1 3 c 3 σ 1 σ 3 σ 2 σ 2 e c 1 3 c 3 σ 3 σ 2 σ 1 σ 3 e c 1 3 c 3 σ 2 σ 1 σ 3 (2.24 C 1 C 2 C 3 e c 3, c3 1 σ 1, σ 2, σ 3 [e] [c 3 ] [σ 1 ] ( C i = g C i g C 3v C 2 = c 3 + c 1 3, C 3 = σ 1 + σ 2 + σ gc i g 1 = C i C 3v σ 1 C 2 σ 1 = σ 1 c 3 σ 1 + σ 1 c 1 3 σ G = C i 4. g G gc i = C i g 5. a, b ab b(abb 1 = ba 6. C i C j = C k ijc k (

8 H = ghg 1 (2.27 g G ghg 1 = H H g : gh = Hg (2.28 g 1 Hg 2 H = g 1 g 2 HH = g 1 g 2 H H G/H(coset group a a (quotient group G G ϕ 1. ϕ : G G ϕ G ϕ(g G Im(ϕ G 2. ϕ : G G e G G (Kernel Ker(ϕ G ϕ K = Ker(ϕ G K = Ker(ϕ k K ϕ(gkg 1 = ϕ(gϕ(kϕ(g 1 = e (2.29 gkg 1 K. g G GKG 1 = K K (2.30 K

9 20 Theorem : ϕ : G G Im(ϕ G/Ker(ϕ f : G/K Im(ϕ G : f(kg ϕ(g. ϕ f(kg 1 Kg 2 = ϕ(g 1 g 2 = ϕ(g 1 ϕ(g 2 = f(kg 1 f(kg 2 (2.31 f Kg 1,Kg 2 f f(kg 1 = f(kg 2 ϕ(g 1 = ϕ(g 2 g 1 g 1 2 = k K g 1 = kg 2 (2.32 Kg 1 = Kkg 2 = Kg 2 g 1, g 2 f 1. C 3 = (e, c 3, c 1 3 C 3v 2. α : C 3v C 2 {e, τ} α : e, c 3, c 1 3 e (2.33 α : σ i τ (2.34 (e, c 3 c 1 3 e C 2 σ 1, σ 2, σ 3 τ α 3. C 3v, C 3 C 3v = C 3 (e, c 3, c C 3 σ 1 ({σ i } (2.35 C 3v /C 3 C ( C 2 C 3 C 3 σ 1 C 3 C 3 C 3 σ 1 (2.36 C 3 σ 1 C 3 σ 1 C 3

10 l n 1 n i p i ( 1 2 n (2.37 p 1 p 2 p n ( ( ( = ( 1 2 n q 1 q 2 q n ( 1 2 n p 1 p 2 p n 1. ( p q 2. e = ( i i 3. π = ( i p = = ( i p π 1 = ( p1 p 2 p n p q1 p q2 p qn ( p q1 p q2 p qn 1 2 n ( p i = ( i q ( 1 2 n p 1 p 2 p n (2.38 (2.39 ( ( q ( r ( p q ( i p = ( q r ( p ( q ( i p (2.41 n n S n C 3 v ( ( e = c = ( ( σ 1 = σ = C 3 v S 3 ( c 1 3 = σ 3 == ( (2.42

11 :(1, 2, 5 = ( ( (2, 4 Theorem : ( (1, 2, 5 = (1, 2(2, 5 = ( = (1, 2, 5(3, 4 (2.43 ( (2.44 = (1, 2, 5(3, 4 = (1, 2(2, 5(3, 4 ( S n A n Theorem : Cayley S n = A n + (1, 2A n (2.46 Theorem Cayley : G g 1,...g n g G gg 1,...gg n G g ( g1 g π g = n (2.47 gg 1 gg n π a π b = π ab (1, 5(1, 2, 3(1, 5 = (5, 2, 3 (2.48

12 23 2. S n n (partition n λ i [λ 1,, λ k ] i λ i = n S 5 [2, 3] [(1, 2(3, 4, 5] ( conjugation S n p(n n

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

2011 (2011/02/08) 1 7 1.1.................................... 7 1.2..................................... 8 1.3.................................. 9 1.4.................................. 10 1.5..................................

More information

p-sylow :

p-sylow : p-sylow :15114075 30 2 20 1 2 1.1................................... 2 1.2.................................. 2 1.3.................................. 3 2 3 2.1................................... 3 2.2................................

More information

線形空間の入門編 Part3

線形空間の入門編 Part3 Part3 j1701 March 15, 2013 (j1701) Part3 March 15, 2013 1 / 46 table of contents 1 2 3 (j1701) Part3 March 15, 2013 2 / 46 f : R 2 R 2 ( ) x f = y ( 1 1 1 1 ) ( x y ) = ( ) x y y x, y = x ( x y) 0!! (

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

March 4, R R R- R R

March 4, R R R- R R March 4, 2016 1. R- 2 1.1. R- 2 1.2. R- R- 4 1.3. R- 5 2. 6 2.1. 6 2.2. 6 2.3. 6 2.4. 7 3. 8 3.1. 8 3.2. 8 4. 10 4.1. 10 4.2. 10 4.3. 10 5. 12 5.1. 12 5.2. 14 6. Hom 14 6.1. Hom 14 6.2. Hom 15 6.3. Hom

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information

Tricorn

Tricorn Triorn 016 3 1 Mandelbrot Triorn Mandelbrot Robert L DevaneyAn introdution to haoti dynamial Systems Addison-Wesley, 1989 Triorn 1 W.D.Crowe, R.Hasson, P.J.Rippon, P.E.D.Strain- Clark, On the struture

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W Naoya Enomoto 2002.9. paper 1 2 2 3 3 6 1 1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W W G- G W

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

OCAMI

OCAMI OCAMI 2015 12 16 1. 2. R 3. Lie 4. U(n), SU(n), O(n), SO(n), Sp(n) 5. U(n), SU(n), O(n), SO(n), Sp(n) 6. Lie 7. G 2 G 2 /SO(4) 1. M Riemann M Riemann def x M, s x : s.t. s 2 x = id, x s x s x x R n S n

More information

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1 1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91

More information

10 4 2

10 4 2 1 10 4 2 92 11 3 8 20 10 2 10 20 10 28 3 B 78 111 104 1021 95 10 2 4 10 8 95 18 10 30 11 13 104 20 105 105 105 105 107 5 1 11 26 13301500 6 GH 1 GH 34 7 11 27 9301030 8 4 9 GH 1 23 10 20 60 --------------------------------------------------------------------------------------------------------------------------

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 1 11 A µ : A A A µx, y x y x y z x y z A x, y, z x y y x A x, y A e x e e x x A x e A e x A xy yx e y x x x y y x 1 111 A 1 A R x y xy + x + y R x, y, z, : xyz xy+x+yz xy+x+yz+xy+x+y+z xyz+y+z+x+yz+y+z

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

untitled

untitled 8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

(2) ( 61129) 117, ,678 10,000 10,000 6 ( 7530) 149, ,218 10,000 10,000 7 ( 71129) 173, ,100 10,000 10,000 8 ( 8530) 14

(2) ( 61129) 117, ,678 10,000 10,000 6 ( 7530) 149, ,218 10,000 10,000 7 ( 71129) 173, ,100 10,000 10,000 8 ( 8530) 14 16 8 26 MMF 23 25 5 16 7 16 16 8 1 7 16 8 2 16 8 26 16 8 26 P19 (1) 16630 16,999,809,767 55.69 4,499,723,571 14.74 9,024,172,452 29.56 30,523,705,790 100.00 1 (2) 16 6 30 1 1 5 ( 61129) 117,671 117,678

More information

i 2013 0.1. 0.2. JR 0.1 0.2 ii A B B A 0.2 0.1 0.1 0.2 iii 1 1 1.1............................. 1 1.2........................... 10 1.3............................... 17 2 21 2.1...........................

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

1 食品安全を主な目的とする取組

1 食品安全を主な目的とする取組 --a 2003 7 26 3. 3.1-1- 16 2 27 0227012-2-a 23 7 1 82 2 1 7 9 2 ( ) -2- -2-b 19 3 28 18 14701-2-c ) 15 5 2-3- 26 21 7 2 2 7 2 3 7 2 4 10 83 23 3 1 7 2 5 7 2 5-2-d -4- -5 - -3-a -6- -4-a -7- -4-b -8- -5-a

More information

2005 2006.2.22-1 - 1 Fig. 1 2005 2006.2.22-2 - Element-Free Galerkin Method (EFGM) Meshless Local Petrov-Galerkin Method (MLPGM) 2005 2006.2.22-3 - 2 MLS u h (x) 1 p T (x) = [1, x, y]. (1) φ(x) 0.5 φ(x)

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

() 1 1 2 2 3 2 3 308,000 308,000 308,000 199,200 253,000 308,000 77,100 115,200 211,000 308,000 211,200 62,200 185,000 308,000 154,000 308,000 2 () 308,000 308,000 253,000 308,000 77,100 211,000 308,000

More information

P14・15地域文化祭

P14・15地域文化祭 2008 1BETSUKAI 2008.10 BETSUKAI 2008.102 3BETSUKAI 2008.10 BETSUKAI 2008.104 5BETSUKAI 2008.10 BETSUKAI 2008.106 7BETSUKAI 2008.10 BETSUKAI 2008.108 9BETSUKAI 2008.10 BETSUKAI 2008.1010 11BETSUKAI 2008.10

More information

Y Y Y w Y

Y Y Y w Y 8 Y No.466 AUG. 200214 Y Y Y w Y e NEWS NEWS r Y t Y y u 1 i 1 o !0 f f c 1 b b 1 b f a !1 A 1 A 1 ba d g gc a b b A A A 1 1 Y Y Y Y 1 b d e c g af e e ae fe c 1 !2 Y 1 GA A 1 G 1 u u u u u u u u u u u

More information

untitled

untitled 351 351 351 351 13.0 0.0 25.8 1.0 0.0 6.3 92.9 0.0 80.5 0.0 1.5 15.9 0.0 3.5 13.1 0.0 30.0 54.8 18.0 0.0 27.5 1.0 0.0 2.5 94.7 0.0 91.7 0.0 1.3 14.7 0.0 3.8 14.4 0.0 25.0 50.5 16.0 0.0 27.5 2.0 0.0 2.5

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

第1章

第1章 . 23 % 16.52 0.2 17.4 34.63 0.5 36.6 43.56 0.6 46.0 3 94.71 1.2 100 558.69 7.2 7,779.55 100 13. 24 16.1 16.0 16.8 16.6 19.6 21.1 19.4 21.1 13.2 11.5 14.4 12.5 64 57 43 2,056.7 2,056.7 2,260.7 2,204.0 113

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

(H8) 1,412 (H9) 40,007 (H15) 30,103 851

(H8) 1,412 (H9) 40,007 (H15) 30,103 851 (H8) 1,412 (H9) 40,007 (H15) 30,103 851 (H3) 1,466 (H3) 9,862 (H15) 4,450 704 9,795 1,677 18,488 402 44,175 3,824 8,592 853 7,635 1,695 2,202 179 5,127 841 27,631 452 35,173 177 123,797 186 45,727 1,735

More information

22 25 34 44 10 12 14 15 11 12 16 18 19 20 21 11 12 22 10 23 24 12 25 11 12 2611 27 11 28 10 12 29 10 30 10 31 32 10 11 12 33 10 11 12 34

22 25 34 44 10 12 14 15 11 12 16 18 19 20 21 11 12 22 10 23 24 12 25 11 12 2611 27 11 28 10 12 29 10 30 10 31 32 10 11 12 33 10 11 12 34 22 25 34 44 10 12 14 15 11 12 16 18 19 20 21 11 12 22 10 23 24 12 25 11 12 2611 27 11 28 10 12 29 10 30 10 31 32 10 11 12 33 10 11 12 34 35 10 12 36 10 12 37 10 38 10 11 12 39 10 11 12 40 11 12 41 10 11

More information

- 1 - - 2 - - 3 - - 4 - H19 H18-5 - H19.7H20.3 8,629 11,600-6 - - 7 - - 8 - - 9 - H20.7 20 / - 10 - - 11 - 1 8,000 16,000 4,000 2 50 12 80-12 - 20 3040 50 18a 19a - 13 - - 14 - 1,000-15 - 3,000 4,500 560

More information

17 12 12 13301515 2F1 P2 1 22 P19 160

17 12 12 13301515 2F1 P2 1 22 P19 160 136 17 12 12 13301515 2F1 P2 1 22 P19 160 161 15 87 15 P5 26 4 162 10 3 60 1/3 3 1 163 137 138 139 % %.%. (. ) ( ) 48 32 13 40 43 30 42 50 13 99 140 39 12 12 42 55 35 6 79 2004 16 17 39 37 53 13 1 1.2

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

26 11 20 H20,H25 26 11 20 9 2014in (H24) 9 2014in (H2223,25) 34 (H2223,25) 9 2014in 26 11 20 9 2014in (H2223) (H2223,25) HAPPY 9 2014in (H2225) 5 6 50kg 60kg 17 6 50kg 60kg 71 1 1415 50kg 26 11 20 9 2014in

More information

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P = Super perfect numbers and Mersenne perefect numbers 3 2019/2/22 1 m, 2 2 5 3 5 4 18 5 20 6 25 7, 31 8 P = 5 35 9, 38 10 P = 5 39 1 1 m, 1: m = 28 m = 28 m = 10 height48 2 4 3 A 40 2 3 5 A 2002 2 7 11 13

More information

endo.PDF

endo.PDF MAP 18 19 20 21 3 1173 MAP 22 700800 106 3000 23 24 59 1984 358 358 399 25 12 8 1996 3 39 24 20 10 1998 9,000 1,400 5,200 250 12 26 4 1996 156 1.3 1990 27 28 29 8 606 290 250 30 11 24 8 1779 31 22 42 9

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt

Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt 1 2 3 4 5 6 7 8 9 10 11 No Image No Image 12 13 14 15 16 17 18 19 20 21 22 23 No Image No Image No Image No Image 24 No Image No Image No Image No Image 25 No Image No Image No Image No Image 26 27 28

More information

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z 95 5,,,,,,,, ( ) S 3, f1 2 3g f1 2 3g,,, 5.1,,, 1 1 16 G H ' : G! H, '(ab) ='(a)'(b) for 8a b 2 G (5.1), (,, )., 1 1,, ' e 2 G e 0 2 H '(e) =e 0., g 2 G, '(g ;1 )='(g) ;1 : (5.2) 2, 5.1 2 G, H, G H, '

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information