Microsoft PowerPoint - qchem3-9

Size: px
Start display at page:

Download "Microsoft PowerPoint - qchem3-9"

Transcription

1 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授

2 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理 : 重力と慣性力とは同等 重力方程式の解である計量テンソルをもつリーマン空間座標系 ( 空間各点が慣性系 測地線が質点運動の座標 加速系 OK) ローレンツ変換 (897, 899, 904 年 ) 電磁気学と古典力学との矛盾の解消のため ラーモアとローレンツが提案光速が座標系によらず一定とすると 高速で動く座標系で 点間距離が縮む 慣性系 Sの時空座標 (t, x, y, z) と x 軸に沿って相対速度 vで運動する慣性系 S の時空座標 (t, x, y, z ) との関係性 ( t vx / c ) γ=/( v /c ) / t=t 0 でのつの同時の出来事 ct ct v=c t (x, ct )=(0,) (x, ct)=(γv/c, γ) ) (x, ct )=(,0) v / c (x, ct)=(γ, γv/c) x t ' = ( x vt) x ' = v / c y' = y z' = z 時間依存シュレーディンガー方程式 + + V i + = m x y z t ローレンツ変換に対して不変でない x

3 相対論の原子に与える影響 水素様原子のs 軌道電子 軌道エネルギー E= Z Z / (Z は核電荷 ) 運動エネルギー T = mv / ビリアル定理 (E= T=V/) より v = Z ( 原子単位 ) 光速 c= Z 38 で s 軌道電子の速度は光速を越える 存在しない 各軌道への相対論の影響重原子で s 電子が重くなる s 軌道の大きさが収縮 直交性でs 以上のs 軌道も収縮 核電荷がより遮蔽され 高角運動量軌道の大きさが拡大 p 軌道はスピン軌道相互作用でs 軌道と混ざり さほど拡大しない d, f 軌道は拡大し分散 相対論効果の大きさ Z>0 相関エネルギーより大 Z>50 交換 ~3 列 構造や物性に無効果 4 列 構造や物性に少し効く 5, 6 列 再現に必要

4 ディラック方程式 相対論的シュレーディンガー方程式 =ディラック方程式 P. A. M. Dirac cα p + βmc = i p = i は空間に対して 次 t 導関数なのでローレンツ不変ディラック方程式は4 次 0 σ xyz,, I 0 0 α xyz,, =, β=, I = 波動関数 ψは4 成分 σ xyz,, 0 0 I 0 α arge 成分 0 0 i 0 電子 (α, β) β = σx =, σy =, σz = 0 i 0 0 Sα Small 成分 陽電子 (α, β) Sβ 静止エネルギー 非相対論的相対論的 ev H の結合 (3.6 ev) はβをβ で置き換えればなくなる連続状態 0 電子状態 0 0 離散状態 β ' = 0 I E mc に陽電子の連続状態が詰まっていると考える -mc 離散状態エネルギー陽 連続状態 陽電子状態

5 パウリ方程式とスカラー補正 束縛電子のディラック方程式光速 c 極限 =0 c ' mc V α p + β + = E K =, ( σ p )( σ p ) = p p + iσ ( p p ) 成分波動関数 ψ ψ S を使って分解 p V + = E c( σ p) S + V = E m c( ) + ( mc + V 非相対論的シュレーディンガー σ p ) S = ES 方程式 を変形 パウリ方程式 S = ( E+ mc V ) c( σ p ) E V E V K = E V + mc mc + = ( mc ) + c ( σ p ) mc パウリ方程式ダーウィン項 4 Zπδ σ p p p Zs l Z () r K + V mc m 8m c m c r m c 成分ディラック方程式質量速度スピン- 軌道 = E ( W. Pauli 補正項相互作用項 σ p K σ p + V E) = 0 m 質量速度 +ダーウィン=スカラー補正

6 一般化運動量演算子 磁場中の非相対論的固有方程式 π π = p A+ A p p A+ A p = i B π = p + A 磁場 B= A 外部磁場がかかったときのベクトルポテンシャル A = B ( G ) r R ゲージ中心 ( ベクトルポテンシャルの中心 ): 通常 質量中心に置く 時間非依存のディラック方程式 m + = c i ( ) V π π+ σ π π + = E m ( σ π ) K ( σ π ) + ( V E ) = 0 π σ B + V + = E m m ゼーマン相互作用項 σ= スピン演算子 s σ B m = s B( 原子単位 ) 実際には 量子場ゆらぎにより σ B ge e hsb g 因子 (.003) = = g e μ BsB m m ボーア磁子 ( 原子単位 /) 相対論的運動エネルギー π = p + p A+ A p + A ( p A) = ia ( ) i( A) A p = B ( r R G ) = B G A = B ( r RG) B r R 4 ( G)

7 一電子演算子項 二電子演算子項 核 - 電子項 摂動論的な相対論補正項 Zeeman ゼーマン項 : He = g eμb si Bi s i Bi πi i= mc elec mv N = 4 質量速度項 : H e 3 i π 8 mc i= SO geμb スピン 軌道相互作用項 : He = [ s i πi Fi si Fi πi] 4mc i= N elec Darwin ダーウィン項 : He = i F 8 mc i= ( ) ( SO g ) eμ B i ij i i ij j スピン 軌道相互作用項 : Hee = s r p + s r p 3 3 mc i= j i rij r ij s s s r r s SS g e μb i j i ij ij j 8π スピン スピン相互作用項 : Hee = ( si s j) δ ( rij) c i= j i rij rij 3 OO π ( )( i π πi rij rij π j j) 軌道 軌道相互作用項 : Hee = + 3 4mc i= j i rij r ij Darwin π ダーウィン項 :Hee = δ r ij mc V ( r ) = + i= j i α α Nnuc SO geμ B G. Breit ブライト演算子 ( α r )( α r ) ee r r r i ia i スピン 軌道相互作用項 :H H = s r π ne Z A 3 mc i= A= ria Nnuc PSO N ( μ IA ria pi) 常磁性スピン 軌道相互作用項 : Hne = ga 3 mc i= A= ria SS geμμ B N si IA ( si ria)( ria IA) 8π 核スピン 電子スピン相互作用項 :HHne = 3 ga s 3 5 i IA δ ria c i= j i rij rij 3 Darwin π ダーウィン項 :Hne = Z Aδ ria mc i= j i

8 4 成分計算法と化学への相対論効果 ディラック フォック法 4 成分単行列式 スピノル による波動関数 ψ 相対論的時間非依存ハートリー フォック方程式 =ディラック フォック方程式 c ' mc V α p + β + = E FC = SCε 陽電子状態を含むので 最安定状態は出せない 変分法が非成立 arge 成分の基底関数 χ とSmall 成分の基底関数 χ S でバランスをとる χs = σ p 運動 ( エネルギー ) large-smallの 電子積分が8 倍 χ c バランス条件 small-smallの が6 倍全体として積分数は5 倍に化学への相対論的効果 相対論的効果を考慮したことによる違い. 電子の速度依存質量による効果 s, p 軌道を収縮 d, f 軌道を拡張. 電子スピンによるハミルトニアン演算子への新しい ( 磁気的 ) 相互作用 スピン 軌道相互作用によるスピン軌道モデル (α β) の崩壊 3. 陽電子状態の導入による効果 波動関数に small 成分をもたらし 軌道の形を変える 4. 光速の有限性によるポテンシャルの修正 クーロン演算子へのブライト演算子の追加

Microsoft PowerPoint - qchem3-12

Microsoft PowerPoint - qchem3-12 8 年度冬学期 量子化学 Ⅲ 3 章全体のまとめ 9 年 月 日 担当 : 常田貴夫准教授 主要テーマの変遷 年主要テーマ理論化学のトピック科学技術のトピック 196 1937 量子力学の基礎理論構築 HF 法 経験法 V 法 摂動法 固体論 反応論など 1938 1949 原子爆弾関連反応速度論など 195-196 1961-1968 1969-1984 1985-1995 1996 5 量子論

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は /7 平成 9 年 月 5 日 ( 土 ) 午前 時 7 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は 素粒子を質量 とすると ì x : ( ct, x, y, z) :,,, ì c ct ç + y (, t) ç å

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

ハートリー・フォック(HF)法とは?

ハートリー・フォック(HF)法とは? 大学院講義 電子相関編 阿部穣里 目的 電子相関法はハートリー フォック (F) 法に対してより良い電子状態の記述を行う理論です 主に量子化学で用いられるのが 配置換相互作用 (CI) 法多体摂動論 (PT) 法クラスター展開 (CC) 法です 電子相関法に慣れるために 最小基底を用いた 分子の Full CI 法と MP 法について 自ら導出を行い エクセルでポテンシャル曲線を求めます アウトライン

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

多体系の量子力学 ー同種の多体系ー

多体系の量子力学 ー同種の多体系ー スピンに依存する有効相互作用の発現と化学結合のしくみ 巨視的な物体の構造にとって 基本的な単位になるのは原子または分子であり 物性の基礎にあるのは原子または分子の性質である. ボルン オッペンハイマー近似. He 原子中の 電子状態 ( 中心 電子系 ) 外場の中の同種 粒子系ー. 電子間相互作用のない場合. 電子間相互作用がある場合.3 電子系の波動関数は全反対称.4 電子系のスピン演算子の固有関数と対称性.5

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

Microsoft Word - 量子化学概論v1c.doc

Microsoft Word - 量子化学概論v1c.doc この講義ノートは以下の URL から入手できます http://www.sbchem.kyoto-u.ac.p/matsuda-lab/hase_fles/educaton_jh.html 量子化学概論講義ノート 3 正準 HF(Canoncal HF) 方程式 制限 HF(RHF) 方程式 HF-Roothaan(HFR) 方程式 京都大学工学研究科合成 生物化学専攻長谷川淳也 HF 解の任意性について式

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

Microsoft PowerPoint - qchem3-11

Microsoft PowerPoint - qchem3-11 8 年度冬学期 量子化学 Ⅲ 章量子化学の応用.6. 溶液反応 9 年 1 月 6 日 担当 : 常田貴夫准教授 溶液中の反応 溶液反応の特徴は 反応する分子の周囲に常に溶媒分子が存在していること 反応過程が遅い 反応自体の化学的効果が重要 遷移状態理論の熱力学表示が適用できる反応過程が速い 反応物が相互に接近したり 生成物が離れていく拡散過程が律速 溶媒効果は拡散現象 溶液中の反応では 分子は周囲の溶媒分子のケージ内で衝突を繰り返す可能性が高い

More information

1/17 第 13 章電子とディラック方程式 第 13 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ

1/17 第 13 章電子とディラック方程式 第 13 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ /7 第 章電子とディラック方程式 第 章電子とディラック方程式 Ⅰ. 量子力学と素粒子の運動方程式 素粒子は 寿命を持ち光速近くで運動するので ミュー中間子という素粒子を 用いて 第 4 章時間の遅れと長さの収縮 -Ⅲ. 素粒子の寿命の伸びで時間の 遅れの検証に持ちいた このミュウ粒子は 電子と同じ仲間で 質量のみ異な る素粒子であり ディラック (Dirac 方程式 ( ディラック :Paul

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

超伝導状態の輸送方程式におけるゲージ不変性とホール効果

超伝導状態の輸送方程式におけるゲージ不変性とホール効果 超伝導状態の輸送方程式におけるゲージ不変性とホール項 輸送方程式について 研究の歴史 微視的導出法 問題点 - 項 超伝導体の 効果の実験 北大 理 物理北孝文 非平衡状態の摂動論 の方法 輸送方程式の微視的導出と問題点 ゲージ不変性とホール項 まとめ バイロイト 月 - 月 カールスルーエ 月 - 月 カールスルーエのお城 モーゼル渓谷 ザルツカンマ - グート ( オーストリア ) バイロイト近郊

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

Microsoft PowerPoint - many-particle-quantum-summary090611c

Microsoft PowerPoint - many-particle-quantum-summary090611c 多体系の量子力学的記述 目次. 量子力学的多粒子系の種類. 粒子系の量子力学 3. 異種の粒子から構成される有限多粒子系 4. 同種粒子の不可識別性 5. スピン自由度をもつ同種の多粒子系の波動関数の ( 位置 スピン ) 交換に対する対称性 6. フェルミ粒子に対するパウリの排他原理 6. 電子の量子状態の占有の仕方 6. スレーター行列式 6.3 どのような場合に 反対称化が重要になるか? 7.

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc)

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc) 宇宙工学基礎講義資料摂動 ( 松永担当分 ) ベクトル行列演算 ) 微分演算の定義 [ ] ) 微分公式 ( ベクトル記法と行列記法 ) E E ここで E は単位行列 チルダ演算は外積演算と等価の反対称行列を生成する演算 : ( ) ) 恒等演算式 : 次元列ベクトル ( ) ( ) ( ) ( ) ( ) E E ) ( ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

More information

粒子と反粒子

粒子と反粒子 対称性の破れをめぐる 50 年の歩み 小林誠 1956 T.D.Lee and C.N.Yang パリティ対称性の破れ 反粒子とは? 粒子には対応する反粒子が存在する 粒子と反粒子の質量は等しい粒子と反粒子の電荷は符号が反対 電子 e - 陽電子 e 反粒子が実際に使われている例 PET( 陽電子放射断層写真 ) 脳研究やがん診断で活躍 ディラック方程式 反粒子発見のきっかけ 近代物理学の 本の柱

More information

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ = 1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)

More information

Microsoft PowerPoint - 東大講義09-13.ppt [互換モード]

Microsoft PowerPoint - 東大講義09-13.ppt [互換モード] 物性物理学 IA 平成 21 年度前期東京大学大学院講義 東京大学物性研究所高田康民 2009 年 4 月 10 日 -7 月 17 日 (15 回 ) 金曜日 2 時限 (10:15-11:45) 15 11 理学部 1 号館 207 号室 講義は自己充足的 量子力学 ( 第 2 量子化を含む ) 統計力学 場の量子論のごく初歩を仮定 最後の約 10 分間は関連する最先端の研究テーマを雑談風に紹介する

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

スライド 1

スライド 1 相対論的プラズマにおける PIC シミュレーションに伴う数値チェレンコフ不安定の特性ついて 宇宙物理学研究室 4 年池谷直樹 研究背景と目的 0 年 Ie Cube 国際共同実験において超高エネルギーニュートリノを検出 780Tev-5.6PeV 890TeV-8.5PeV 相互作用が殆んど起こらないため銀河磁場による軌道の湾曲が無く 正確な到来方向の情報 を得られる可能性がある ニュートリノから高エネルギー宇宙線の起源を追う

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重

H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重 半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc . 序論本講義は高エネルギー物理学 素粒子実験物理学 の観点から 素粒子物理学の概要 特に電磁相互作用 QD の基礎と現象論的観点からの弱い相互作用 強い相互作用及び電弱統一理論について講義します 小林さん要チェック 後期は理論的な発展を中心に クォークモデル 量子色力学 大統一理論について講義されます. 素粒子とは世界を構成する最小の基本単位 つまり世界は何からできているかという 素朴な疑問に答える学問が素粒子物理学です

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D>

<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D> 前回の復習 医用生体計測磁気共鳴イメージング :2 回目 数理物質科学研究科電子 物理工学専攻巨瀬勝美 203-7-8 NMRとMRI:( 強い ) 静磁場と高周波 ( 磁場 ) を必要とする NMRとMRIの歴史 :952 年と2003 年にノーベル賞 ( 他に2 回 ) 数学的準備 : フーリエ変換 ( 信号の中に, どのような周波数成分が, どれだけ含まれているか ( スペクトル ) を求める方法

More information

Microsoft PowerPoint - 11JUN03

Microsoft PowerPoint - 11JUN03 基礎量子化学 年 4 月 ~8 月 6 月 3 日第 7 回 章分子構造 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 -ail:saea@u-fukui.a.p URL:http://abio.abio.u-fukui.a.p/phyhe/aea/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人 章原子構造と原子スペクトル 章分子構造 分子軌道法

More information

原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構

原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構 原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構造 原子核の Shell 構造と魔法数 元素合成 太陽系の元素組成 様々な元素合成過程 元素合成における核構造の役割まとめ資料は

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電子スピン共鳴 :Electron pin Reonance (ER) 1. 歳差運動 (preceion). スピン角運動量 : 電子 3. ゼーマン効果 : スピン 4. 平行 反平行状態 5. ラーモア歳差運動 6. 電子スピン共鳴 7. 緩和過程 注意 1. 本付録 : 電子スピン共鳴 について 原理 概略を説明. 但し 電子スピン共鳴装置 の特徴や使用法の説明はしません

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

2_分子軌道法解説

2_分子軌道法解説 2. 分子軌道法解説 分子軌道法計算を行ってその結果を正しく理解するには, 計算の背景となる理論を勉強 する必要がある この演習では詳細を講義する時間的な余裕がないので, それはいろいろ な講義を通しておいおい学んで頂くこととして, ここではその概要をごく簡単に説明しよう 2.1 原子軌道原子はその質量のほとんどすべてを占める原子核と, その周囲をまわっている何個かの電子からなっている 原子核は最も軽い水素の場合でも電子の約

More information

<4D F736F F F696E74202D2091E688EA8CB4979D8C768E5A B8CDD8AB B83685D>

<4D F736F F F696E74202D2091E688EA8CB4979D8C768E5A B8CDD8AB B83685D> 第一原理計算法の基礎 固体物理からのアプローチを中心に 第一原理計算法とは 原子レベルやナノスケールレベルにおける物質の基本法則である量子力学 ( 第一原理 ) に基づいて, 原子番号だけを入力パラメーターとして, 非経験的に物理機構の解明や物性予測を行う計算手法である. 計算可能な物性値 第一原理計算により, 計算セル ( 原子番号と空間座標既知の原子を含むモデル ) の全エネルギーと電子のエネルギーバンド構造が求まる.

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1 重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1) で 加速された大質量による非ニュートン的な重力効果を利用した 図 1に示す重力マシンの可能性について検討している

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

磁気光学の基礎と最近の展開(3)

磁気光学の基礎と最近の展開(3) 千葉大学理学部物理学科特別講義 7.6.4-6.5 磁気光学の基礎と最近の展開 3 佐藤勝昭 東京農工大学特任教授 3. 磁気光学効果の電子論 3. 磁気光学効果の古典電子論 3. 磁気光学効果の量子論 3. 磁気光学効果の古典電子論 電子を古典的な粒子として扱い 磁場中の古典的運動方程式を解いて電子の変位を求め 分極や誘電率を計算します 次回は量子論にもとづく扱いをお話しします 光と磁気第 4 章

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索 τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

物性物理学I_2.pptx

物性物理学I_2.pptx The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

スライド 1

スライド 1 第 4 講 QCD (Quantum ChromoDynamics) 量子色力学 1. はじめに 2. 不安定粒子の質量スペクトル 3. 長距離力と短距離力 4. ハドロンのクォーク構造 5. クォークの紐モデルと閉じ込め 6. ジェット現象 7. ゲージ理論とは? 2009.02.09-10 島根大学集中講義 1 1. はじめに 素粒子標準理論の公理 1. 物質はクォークとレプトンでできている 2.

More information

Microsoft PowerPoint Aug30-Sept1基研研究会熱場の量子論.ppt

Microsoft PowerPoint Aug30-Sept1基研研究会熱場の量子論.ppt 原子核における α 粒子の Bose-Einstein 凝縮 大久保茂男 S. Ohkubo ( 高知女子大 環境理学科 ) @ 1999 クラスター模型軽い領域だけでなく重い領域 40 Ca- 44 Ti 領域での成立理論 実験 1998 PTP Supplement 132 ( 山屋尭追悼記念 ) 重い核の領域へのクラスター研究 44 Ti fp 殻領域 40 Ca α の道が切り開かれた クラスター模型の歴史と展開

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

第 3 章二相流の圧力損失

第 3 章二相流の圧力損失 第 3 章二相流の圧力損失 単相流の圧力損失 圧力損失 (/) 壁面せん断応力 τ W 力のバランス P+ u m πd 4 τ w 4 τ D u τ w m w πd : 摩擦係数 λ : 円管の摩擦係数 λ D u m D P τ W 摩擦係数 層流 16/Re 乱流 0.079 Re -1/4 0.046 Re -0.0 (Blasius) (Colburn) 大まかには 0.005 二相流の圧力損失液相のみが流れた場合の単相流の圧力損失

More information

固体物理学固体物理学固体物理学固体物理学 B ここではフェルミ球内における電子の総和を考えているから 次元極形式の積分により si (.) となるから は以下のようになる 8 (.) 単位体積当たりの電子数 つまり電子密度 / を用いると フェルミ波数 は以下のように求められる. / (.) が求め

固体物理学固体物理学固体物理学固体物理学 B ここではフェルミ球内における電子の総和を考えているから 次元極形式の積分により si (.) となるから は以下のようになる 8 (.) 単位体積当たりの電子数 つまり電子密度 / を用いると フェルミ波数 は以下のように求められる. / (.) が求め 固体物理学 B. 金属の Sorfl 理論 [] 金属の 次元 Sorfl モデル金属中の電子を量子力学的に扱う. 最初に絶対零度 (TK) における場合を考える. 金属を その中に電子が閉じこめられている体積 の箱と考える. 電子は箱の中では自由に運動できるが 箱の外には出られない ( 箱の外に電子は存在しない ). このようなモデルを金属の Sorfl モデルという. 箱の中の電子のシュレーディンガー方程式は以下のようになる.

More information

基礎から学ぶ光物性 第8回 物質と光の相互作用(3)  電子分極の量子論

基礎から学ぶ光物性 第8回 物質と光の相互作用(3)   電子分極の量子論 基礎から学ぶ光物性第 8 回物質と光の相互作用 (3-1) 第 1 部 : 光スペクトルを量子論で考える 東京農工大学特任教授 佐藤勝昭 第 8 回のはじめに これまでは 光学現象を古典力学の運動方程式で説明してきました この場合 束縛電子系の光学現象は古典的な振動子モデルで扱っていました しかし それでは 光吸収スペクトルの選択則などが説明できません また 半導体や金属のバンド間遷移も扱うことができません

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

Microsoft PowerPoint - †y„»‚ã›»−w−TŸ_†z2015flNflÅPDFŠp

Microsoft PowerPoint - †y„»‚ã›»−w−TŸ_†z2015flNflÅPDFŠp コンピューターで探る分子 原子の世界 慶應義塾大学理工学部化学科菅原道彦 016/1/1 1 量子力学とは 早分かり系 量子力学 エネルギーが飛び飛び ( 離散的 ) 電子や光は粒子性と波動性を持つ ( 二重性 ) 波動関数の 乗 = 粒子の存在確率 粒子の位置と運動量は同時に確定できない ( 不確定性原理 ) 古典論ではエネルギー的に到達できないところに粒子が存在できる ( トンネル効果 ) 016/1/1

More information

Microsoft Word - Sato2007修正.doc

Microsoft Word - Sato2007修正.doc ローレンツ力と磁場 佐藤憲史 * Lornt For and Magnti Fild Knji Sato * Abstrat Lornt for plas important rols in ltromagnti dnamis. It an b drid from Lornt transformation of ltrial filds. ltrial urrnts in wirs ar ltrons

More information

第9章

第9章 第 9 章光の量子化これまでは光を古典的電磁波として扱い 原子を量子力学システムとして与え 電磁波と原子に束縛された電子との相互作用ポテンシャルを演算子で表現した この表現の中で電磁波の電場はあくまでも古典的パラメータとして振舞う ここでは この電磁波も量子力学的システム ; 電場と磁場をエルミート演算子で与える として表現する その結果 電磁波のエネルギー密度や運動量密度なども演算子として表せれる

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

Microsoft PowerPoint - 小路田俊子 [互換モード]

Microsoft PowerPoint - 小路田俊子 [互換モード] Wining number in String fiel theory @ 名古屋大学 京大理小路田俊子 畑氏との共同研究 bae on arxiv:.89 内容 開弦の場の理論 Cubic SFT と Chern-Simon 理論の類似性に着目し 位相的不変量である Wining 数を CSFT において実現できるのか調べる S CS k M Wining 数 S N [ g] gg 4 M M

More information

Microsoft Word - kogi10ex_main.docx

Microsoft Word - kogi10ex_main.docx 機能創造理工学 Ⅱ 期末試験 追試験問題 ( 病欠等による ) 途中の計算を必ず書こう 答えのみでは採点できない 問. 二次元面内を運動する調和振動子のラグランジアン L ( ) ( ) を 極座標, に変換し 極座標でのオイラーラグランジュ方程式を書こう ( 解く必要はない ) 但し, は定数であり また 極座標の定義は cos, sin である 問. 前問において極座標, に共役な一般化運動量,

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson

Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson 量子情報基礎 阿部英介 慶應義塾大学先導研究センター 応用物理情報特別講義 A 216 年度春学期後半金曜 4 限 @14-22 Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson

More information

×××××××××× ×××××××××××××××

×××××××××× ××××××××××××××× Hoizon-penetating Tansonic Accetion Disks aound Rotating Black Holes with Causal Viscosity 高橋労太 ( 東大総合文化 ) ホライズンの内側まで解かれた ADAF の遷音速流のサンプル解 (4 元速度の 成分 ) 要旨 ブラックホール周りの定常降着流の遷音速解を外側の領域からホライズンの中まで計算できるようになった

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その5 6 ポテンシャルエネルギー面と反応経路最も簡単な反応 X + Y X + Y 反応物 ( 生成物 (P X 結合が切断反応系全体のエネルギーは X と Y の Y 結合が形成原子間距離によって変化 r(x と r( Y に対してエネルギーを等高線で表す赤矢印 P:X 結合の切断と Y 結合の形成が同時進行青矢印 P: まず X 結合が切断し次いで Y 結合が形成 谷 X +

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

有機4-有機分析03回配布用

有機4-有機分析03回配布用 NMR( 核磁気共鳴 ) の基本原理核スピンと磁気モーメント有機分析化学特論 + 有機化学 4 原子核は正の電荷を持ち その回転 ( スピン ) により磁石としての性質を持つ 外部磁場によって核スピンのエネルギー準位は変わる :Zeeman 分裂 核スピンのエネルギー準位 第 3 回 (2015/04/24) m : 磁気量子数 [+I,, I ] I: スピン量子数 ( 整数 or 半整数 )]

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

三重大学工学部

三重大学工学部 量子化学 : 量子力学を化学の問題に適用分子に対する Schödige 方程式を解く ˆ Ψ x, x, x,, x EΨ x, x, x,, x 3 N 3 Ĥ :milto 演算子 Ψ x, x, x,, x : 多電子波動関数, 3 N 反応理論化学 ( その ) E : エネルギー一般の多原子分子に対して厳密に解くことはできない N x : 電子の座標 ( 空間座標とスピン座標 ) Schödige

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

PowerPoint Presentation

PowerPoint Presentation 原子核反応論 八尋正信 九州大学 九大 目次. 散乱の量子論 基礎 Ekonal 近似 Glaube 近似 多重散乱理論.CDCC 理論 3. 天体核反応 太陽ニュートリノ問題 漸近係数 Ekonal-CDCC 4. ビッグバン元素合成と宇宙論への応用 5. 最先端の核反応とハドロン物理 散乱の量子論 目次. 散乱の基礎論.Bon 近似と Ekonal 近似 3.Glaube 近似 4.Glaube

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information