1 1 [1] ( 2,625 [2] ( 2, ( ) /

Size: px
Start display at page:

Download "1 1 [1] ( 2,625 [2] ( 2, ( ) /"

Transcription

1 [] (,65 [] (,3 ( ) /=45 /= /=36 4/= /=38 /= /=364 9/= /=45 /= /=9 /= ( ) ( ) ( ) ( ) ( )

2 (mean value) {x, x, x 3,, x n } x = x + x + x x n n = n i= x i c n f c n f c k n k f k x = n c i n i = i= c i f i i= (median) ( ) (n ) n + (n ) n n + (mode) 3

3 3 3 (sample variance) s x = n (x i x) = n i= s x = n k (c i x) n i = x i x i= i= i= (unbiased variance) k (c i x) f i = n k c i n i x = i= k c i f i x i= u x = n i= (x i x) = n k (c i x) n i i= ( ) ((sample) standard deviation) s x = s x x i x s x + 5 (mean deviation) n 4 () n () n x i x i= (x i x) i= (x i x) = n i= (3) u x n x i x i= x i x i= 5 () () ()

4 4 4 (skewness) n ( ) 3 xi x = i= s x n s 3 x (x i x) 3 i= (kurtosis) n ( ) 4 xi x 3 = i= s x n s 4 x (x i x) 4 3 i= (coefficient of variation) c v = s x x 5 ( ) n (x, y ), (x, y ),, (x n, y n ) (sample covariance) s xy = n (x i x)(y i y) i= 6

5 5 s xy = n x i y i xy i= 7 (sample correlation coefficient) r xy = s xy s x s y 8 9 r xy < = n (x, y ), (x, y ),, (x n, y n ) y i = ax i + b (i =,, 3,, n, a > ) r xy a < = d d j d s c f f j f s f c i f i f ij f is f i c r f r f rj f rs f r f f j f s n 6 s xy = x i y i xy n i= x i y i x i = a + bu i, y i = c + dv i x i x y i y x i s x y i

6 6 s y (x i, y i ) s xy r xy u i u v i v u i s u v i s v (u i, v i ) s uv r uv

7 7 6 n (x, y ), (x, y ),, (x n, y n ) y x y x (y = ax + b) x y L a, b ( ) L = ê i = {y i (ax i + b)} = nb b i= i= (y i ax i ) + i= (y i ax i ) = nb nb(y ax) + n(s y + y ) an(s xy + x y) + na (s x + x ) = n [ ] {b (y ax)} + a s x as xy + s y [ ( = n {b (y ax)} + s x a s ) ] xy + s xs y s xy s x s x a = s xy s y = r s xy, b = y ax = y x s xy s y = y xr x s x s xy x s x i= 3 S e a, b L a = x i {y i (ax i + b)} = n [ (s xy + x y) a(s x + x ) bx ] = i= L b = {y i (ax i + b)} = n{y (ax + b)} = i= a, b a, b ê i = y i (ax i + b) S e = ê i = {y i (ax i + b)} R = i= i= n i= (ax i + b y) n i= (y i y) 4 S e R () S e = ns xy( r xy) () R = r xy 5 n 3 (x, y, z ), (x, y, z ),, (x n, y n, z n )

8 8 z x y

9 9 7 n 3 (x, y, z ), (x, y, z ),, (x n, y n, z n ) z x y z x y (z = ax + by + c) x, y z L a, b, c ( ) L = {z i (ax i + by i + c)} i= L a = x i {z i (ax i + by i + c)} = i= L b = y i {z i (ax i + by i + c)} = i= L c = {z i (ax i + by i + c)} = i= a = s zxs y s zy s xy s xs y s xy, b = s zys x s zx s xy s xs y s xy, c = z ax by ẑ i = ax i + by i + c z i ẑ i R r zx + rzy r zx r zy r xy R = rxy R = r zx + rzy r zx r zy r xy rxy 6 a, b, c 7 z i ẑ i R

10 3 n k p k = n C k ( 3 ) k ( ) n k 3 3 p n k p k = n C k p k q n k ( p + q = ) B(n, p) 8 EXCEL n =, p = 3, q = 3 p, p, p,, p µ = kp k k= σ = (k µ) p k k= σ = σ µ = np, σ = npq 9

11 Poisson n n np = λ λ λk p k = e k! (k =,,, ) e e = 788 λ Poisson P o(λ) Poisson Poisson µ = kp k σ = (k µ) p k µ = λ, σ = λ k= k= Poisson 4 % k B(, ) np = Poisson p + p 3 + p 4 + = p p = e e = 64 4 EXCEL Poisson 64 EXCEL λ = Poisson p, p, p,, p

12 3 X (, ) f(x) > =, f(x) dx = X (a, b) P (a < X < b) P (a < X < b) = b a f(x) dx f(x) (probability density function) P (X < x) = F (x) = µ = x f(t) dt (distribution function) xf(x) dx µ = (x µ) f(x) dx 3 (a, b) = {x a < x < b} f(x) = F (x) = for x < a b a for a < = x < = b for b < x for x < a x a b a for a < = x < = b for b < x (a, b) (uniform distribution) U(ab) y b a a b x 3 (a, b) U(ab) µ σ

13 3 3 3 f(x) = πσ exp { } (x µ) σ exp x = e x µ σ (normal distribution) N(µ, σ ) µ =, σ = (standard normal distribution) N(, ) F (x) = x } (t µ) exp { dt πσ σ y y = e x π x 4 e x dx = π exp { πσ } (x µ) dx = σ 5 N(µ, σ ) µ σ 6 EXCEL N(, )

14 4 33 Γ ( ) B( ) Γ (s) = B(p, q) = Γ B e x x s dx (s > ) x p ( x) q dx (p >, q > ) () Γ (s + ) = sγ (s) ( Γ () =, n Γ (n + ) = n! ) () Γ (s) = (3) B(p, q) = (4) Γ ( ) = π, e t t s dt Γ (p)γ (q) Γ (p + q) = (5) Γ (p) = p π Γ (p)γ π cos p θ sin q θ dθ ( e t dt = ( ) π Γ = ( p + ) ( ) ) n x + x + x x < n = r r n x + x + x x n = r r n n { }} { n V n (r) = dx dx dx n x +x +x 3 + +x n < = r (n ) { }} { n S n (r) = x +x +x 3 + +x n =r ds () S n (r) = π n r ( n n ) Γ () dv n(r) dr (3) V n (r) = = S n (r) r S n (t) dt = π n r ( n n ) nγ

15 3 5 7 n =,, 3, 4, 5 n

16 6 Γ B () Γ (s + ) = e x x s dx = { e x } x s dx = [ ( e x )x s] + e x (sx s ) dx = + sγ (s) Γ () = e x x dx = [ e x] = ( ) = Γ (n + ) = nγ (n) = n(n )Γ (n ) = = n!γ () = n! () Γ (s) = = (3) B(p, q) = e x x s dx (x = t, dx = t dt, x : t : ) e t t s (t) dt = x p ( x) q dx e t t s dt (x = cos θ, dx = cos θ sin θ dθ, x : θ : π ) = π Γ (p)γ (q) = 4 = 4 cos p θ sin q θ( cos θ sin θ) dθ = D D e x x p e y y q dxdy e (x +y ) x p y q dxdy π cos p θ sin q θ dθ (D = {(x, y) < = x, < = y}) { π } x = r cos θ, y = r sin θ, D = (r, θ) < = r, < = θ < = x y J = r r cos θ sin θ = x y r sin θ r cos θ = r θ θ dxdy = J drdθ = rdrdθ Γ (p)γ (q) = 4 e r r p+q cos p θ sin q θ drdθ = 4 D e r r p+q dr = Γ (p + q)b(p, q) B(p, q) = Γ (p)γ (q) Γ (p + q) (4) ( Γ ( )) = Γ ( + )B(, ) = π Γ ( ) > Γ ( ) = π π cos p θ sin q θ dθ

17 3 7 Γ (5) B(p, q) = ( ) = x p ( x) q dx e t dt e t dt = π B(p, q) = B(p, p) = x = t, x = t dt, dx = dt, x : t : t p ( t ) q tdt = x p ( x) p dx = t = x, x = t + B(p, p) = p t p ( t ) q dt {x( x)} p dx, dx = dt, x : t : ( t ) p dt = p = p B(, p) = p B(, p) B(p, p) = B(, p) p Γ (p) Γ (p) = Γ ( )Γ (p) p Γ(p + ) Γ (p) = p Γ ( ) Γ (p)γ (p + ) = p π Γ (p)γ (p + ) ( t ) p dt = p ( t ) p β α β α β α (x α) p (β x) q dx x = (β α)t + α, dx = (β α)dt, x : α β t : x α = (β α)t, (β x) = (β α)( t) (x α) p (β x) q dx = (β α) p+q t p ( t) q dt = (β α) p+q B(p, (x α) p (β x) q dx = (β α) p+q B(p, q)

18 8 n (3) V n (r) = π n r ( n n ) nγ n = ( )= V (r) = r, ( )= π r ( ) = r Γ n = k V k (a) = π k a ( k ) k kγ n = k + V k+ (r) = dx dx dx k dx k+ D k+ (r) D k+ (r) = {(x, x,, x k, x k+ ) x + x + + x k + x < k+ = r } ( ) V k+ (r) = = r r r r π k D k( r x k+) dx dx dx k ( r x k+ kγ ( k ) ) k dx k+ dx k+ = π k r ( ) k kγ ( k) r x dx r = π k kγ ( k ) r r (x + r) k (r x) k dx = π k k kγ ( k)(r) ++ k + B( k +, k + ) = k+ π k Γ ( k + ) kγ ( k) Γ (k + ) rk+ = k+ k π ( k ) Γ ( k ) kγ ( k) (k + )kγ (k) rk+ = k π k Γ ( k ) (k + )Γ (k) rk+ Γ (k) = k Γ ( k)γ ( ) k+ π = k π k Γ ( k) (k + ) k Γ ( k)γ ( ) rk+ = k+ π π k+ (k + )Γ ( k+ )r k+

19 ) f(x) = B(a, b) xa ( x) b ( < x < ) (x <, < x) (a >, b > para-meter a, b (beta distribution) Be(a, b) µ = a a + b, σ = ab (a + b) (a + b + ) 8 35 f(x) = { λe λx (x > ) (x < ) (λ > ) para-meter λ (exponential distribution) Ex(λ) µ = λ, σ = λ F (x) = x λe λt dt = [ e λt] x = e λx 9 36 f(x) = c ( x ) c { ( x c } exp a a a) (x > ) (x < ) (a >, c > ) para-meter (a, c) (Weibull distribution) W e(a, c) c = Ex( a ) F (x) = x c a ( t a ) c exp { ( ) c } t { ( x c } dt = exp a a) 3

20 37 f(x) = Γ (α)β α xα exp( x ) (x > ) β (x < ) (α >, β > ) Ga(α, β) µ = αβ, σ = αβ α = Ex( ) β 3 f(x) dx = 38 (χ n) X, X, X 3,, X n N(, ) X = X + X + X3 + + Xn = n χ n ( n ) x n e x (x > ) f n (x) = Γ n (x < ) k= n χ n Ga(α, β) α = n, β = χ n = Ga( n, ) X k F (x) F (x) = = ( π) n e x e x e x n dx dx dx n x +x + +x n < = x π π π x +x + +x n < = x exp{ (x + x + + x n)} dx dx dx n

21 3 x = rω, x = rω,, x n = rω n r = x + x + + x n, ω + ω + + ω n = dx dx dx n = r n drds ds n x F (x) = ( exp( r π) n ) rn drds = ( ds π) n S n S n x exp( r ) rn dr = n ( π ( π) n n ) Γ x exp( r ) rn dr f n (x) = F (x) = n ( π ( π) n n ) exp( ( x) )( x) n { x} = Γ ( n ) e x x n Γ n 39 t X, Y X N(, ) Y n χ n T = X Y/n n ( )t t n ( ) n + Γ ( ) n+ f(t) = ( n ) + t nπγ n n = f(t) = π( + t ) Cauchy 3 t Cauchy f(t) = Cauchy F (x) = x f(t) dt π( + t )

22 t F (t) F (t) = e x D t π Γ ( n ) n y n e y dxdy D t = {(x, y) < x <, < = y <, x y/n < = t } (x, y) (s, u) s = x u, u = y x = s y/n n, y = u D t = {(s, u) < s < = t, < = u < } x y u J = s s = n u u x y s u u nu = n, dxdy = n dsdu F (t) = e x ( D t π n ) y n e y dxdy Γ n = = πγ ( n ) n nπγ ( n ) n exp( Dt us n )u n e u u n dsdu t { } exp{ u s + n n } du ds u n f(t) = F (t) = v = u t + n n f(t) = nπγ ( n ) n u = nv t + n, du = nπγ ( n ) n u n ( n ) n+ t + n exp{ u t + n n } du n dv, u : v t + n v n e v du = nπγ ( n ) n ( ) n+ n Γ t + n ( ) n + = ( ) n + Γ ( n ) nπγ ( ) n+ + t n

23 3 BASIC ) download (Yahoo Google BASIC ) ) download BASIC734zip ( ) BASIC734setupexe (USB ) 3) BASIC BASICEXE BASIC ) END ) ( ) 3) ( ) $ 4) LET = (LET ) INPUT INPUT PROMPT " ": 5) + - * / ^ 5 ^5 () 6) PRINT ( ) PRINT, ( ) PRINT ; ( ) 7)

24 4 PRINT " " PRINT " " LET a= LET b=5 LET c$="university of Hyogo" LET d$="kobe University of Commerce" PRINT a+b,a-b,a*b,a/b PRINT c$ PRINT d$ END INPUT PROMPT "x=(x>)":x INPUT PROMPT "y=":y PRINT "x+y=";x+y,"x-y=";x-y,"x^y=";x^y END 3 ( ) (I) FOR NEXT FOR = TO [ STEP 3] NEXT 3 ( EXIT FOR) 3 FOR x= TO print x,"kobe" NEXT x END

25 BASIC 5 4( ) LET S= FOR x= TO LET S=S+x NEXT x PRINT S END INPUT n 4 () n () (3) n ( )n n (4) n! = 3 4 n (5) +! +! + 3! + + n! 3 a n+ = a n + a n a = a a 3,, a (II) DO WHILE LOOP ( ) DO WHILE LOOP ( EXIT DO)

26 6 () <> >< () >= => (3) <= =< (4) AND, OR (5) NOT 5( ) LET S= LET X= DO WHILE X<= LET S=S+X LET X=X+ LOOP PRINT S END (III) DO LOOP WHILE ( ) DO LOOP WHILE ( EXIT DO) (IV) DO LOOP UNTIL ( ) DO LOOP UNTIL ( )

27 BASIC 7 (V) DO UNTIL LOOP ( ) DO UNTIL LOOP ( ) 6( ) INPUT PROMPT " x=":x INPUT PROMPT " y=":y LET q= DO UNTIL x<y LET x=x-y LET q=q+ LOOP PRINT " =";q PRINT " =";x END DO UNTIL x<y DO WHILE x>=y 4 3%,,3, (DO LOOP WHILE ) () ABS(x) x x () SQR(x) x x (3) INT(x) x [x] (Gauss ) (4) sin x SIN(x) cos x COS(x) tan x TAN(x) sin x ASIN(x) cos x ACOS(x) tan x ATN(x) (5) e x EXP(x) log e x LOG(x) log x LOG(x) (6) RND < = RND < RANDOMIZE

28 8 5 3 (DO LOOP WHILE ) SQR(), an > a n ^(-) 4 (I) IF ( ) IF THEN IF THEN ELSE (II) IF THEN END IF ( ) IF THEN END IF END IF (III) IF THEN ELSE END IF ( ) IF THEN ELSE 3 END IF 3

29 BASIC 9 (IV) ELSEIF IF THEN ELSEIF THEN ELSE 3 END IF 3 7( ax = b ) INPUT PROMPT "a=":a INPUT PROMPT "b=":b IF a<> then LET x=b/a PRINT "x=";x ELSEIF b= THEN PRINT " ( )" ELSE PRINT " " END IF END 8( ) RANDOMIZE LET X=INT(RND*)+ DO INPUT Y LOOP WHILE X<>Y PRINT " " END

30 3 6 () () X > Y X < Y (3) (V) DO LOOP WHILE UNTIL DO LOOP WHILE UNTIL DO LOOP FOR NEXT EXIT DO EXIT FOR (VI) FOR NEXT DO LOOP 3 EXIT FOR EXIT DO GOTO GOTO (= ) GOTO 7 () 3% 5 () 3% 5 (6 ) (3) 3% (4) %

31 BASIC 3 5 (I) SET WINDOW,,, (II) PLOT POINTS: x, y SET POINT STYLE point style (III) PLOT LINES: x,y ; x,y (x, y ) (x, y ) SET LINE COLOR , SET LINE STYLE,, 3, 4 (IV) DRAW circle ( line color ) (x, y) r DRAW circle WITH SCALE(r)*SHIFT(x,y) (V) DRAW AXES (x y ) DRAW GRID (x y ) (VI) CLEAR (VII) FLOOD x,y ( (x, y) (x, y) area color ) PAINT x,y ( (x, y) line color area color )

32 3 SET AREA COLOR ( ) SET WINDOW -3,3,-3,3 PLOT LINES:-,-;,-;,;-,;-,- PLOT LINES:-,-;, PLOT LINES:-,;,- DRAW circle WITH SCALE() PLOT POINTS:,5 SET AREA COLOR 6 paint, END ( ) SET WINDOW -3,3,-3,3 PLOT LINES:-,-;,-;,;-,;-,- FOR x=- TO STEP 4 PLOT LINES:x,-;x, NEXT x FOR y=- TO STEP 4 PLOT LINES:-,y;,y NEXT y FOR x=-+ TO STEP 4 FOR y=-+ TO STEP 4 DRAW circle WITH SCALE()*SHIFT(x,y) NEXT y NEXT x END 8 () () ( 55) (3) (4) 6

33 BASIC 33 FOR y=-+ TO STEP 4 FOR y=-+ TO x STEP 4 (5) 55 (6) (5) 55 ( 55)

34 34 y = f(x) y = f(x) x p, y q y = f(x p) + q x a, y b y = bf( x a ) f(x, y) = x p, y q f(x p, y q) = x a, y b f ( x a, y b ) = y = f(x) 3(y = x ( 3 < = x < = 3) graph) SET WINDOW -3,3,-,5 DRAW AXES DEF f(x)=x^ LET h= FOR x=-5 TO 5-h STEP h PLOT LINES:x,f(x);x+h,f(x+h) NEXT x END BASIC DEF ( )= PLOT LINES PLOT LINES:x,y; ( ) PLOT LINES PLOT LINES:x,y ( ) PLOT LINES ( )

35 35 4(y = ( 5 < x = x < = 5) graph) SET WINDOW -5,5,-5,5 DRAW AXES DEF f(x)=/x LET h= FOR x=-5 TO 5-h STEP h PLOT LINES:x,f(x);x+h,f(x+h) NEXT x END 4 x = 4-(y = ( 5 < x = x < = 5) graph) SET WINDOW -5,5,-5,5 DRAW AXES DEF f(x)=/x LET h= FOR x=-5 TO 5-h STEP h WHEN EXCEPTION IN PLOT LINES:x,f(x);x+h,f(x+h) USE PLOT LINES END WHEN NEXT x END BASIC WHEN EXCEPTION IN USE END WHEN

36 36 9 (x ) y = f(x) y = g(x) y = h(x) () y = f(x) = x 3 x, y = g(x) = x 4 x ( < = x < = ) () y = f(x) = x x ( < = x < = ) (3) y = f(x) = x + x, y = g(x) = x x ( 7 < = x < = 7) (4) y = f(x) = x ( < = x < = 3) ( x = SQR(x)) (5) y = f(x) = x +, y = g(x) = x ( 5 < = x < = 5) (6) y = f(x) = sin x, y = g(x) = cos x ( 7 < = x < = 7) (7) y = f(x) = cos x + sin 4x ( 5 < = x < = 5) (8) y = f(x) = x cos x ( < = x < = ) (9) y = f(x) = sin x ( 7 < = x < = 7) (sin x = SIN(x), () y = f(x) = f(x) = sin x + sin x ( < = x < = ) cos x = COS(x)) () y = f(x) = tan x, y = g(x) = tan x ( 7 < = x < = 7) (tan x = TAN(x), tan x = ATN(x)) () y = f(x) = x, y = g(x) = x, y = h(x) = log x ( 7 < = x < = 7) (log a x = LOG(X)/LOG(a) log x = LOG(x), log x = LOG(x) (3) y = f(x) = cosh x = ex + e x, y = g(x) = sinh x = ex e x y = h(x) = tanh x = sinh x cosh x = ex e x e x + e x ( 5 < = x < = 5) (e x = EXP(x), cosh x = COSH(x), sinh x = SINH(x), tanh x = TANH(x)) (4) y = f(x) = [x], y = g(x) = x [x] ( 5 < = x < = 5) ([x] = INT(x))

37 37 { x = f(t) t : α β y = g(t) t α β (f(t), g(t)) P xy para-meter t (para-meter) (f(α), g(α)) (f(β), g(β)) (cycloid) a P (cycloid) { x = aθ a sin θ y = a a cos θ θ : β 5(cycloid) SET WINDOW -,7,-,7 DRAW AXES DEF f(t)=t-sin(t) DEF g(t)=-cos(t) LET h= FOR t= TO 8-h STEP h PLOT LINES:f(t),g(t);f(t+h),g(t+h) NEXT t END (epicycloid) b a P (epicycloid) x = (a + b) cos θ b cos a + b θ b y = (a + b) sin θ b sin a + b θ b θ : β

38 38 3(hypocycloid) b a P (hypocycloid) ( b < a) x = (a b) cos θ + b cos a b θ b y = (a b) sin θ b sin a b θ : β θ b 4( (Lissajous) ) { x = a cos(ω t + α ) y = a cos(ω t + α ) t : β { x = A cos(at) y = B sin(bt + δ) t : β 5( ) x a + y b = { x = a cos θ y = b sin θ x a y b = { x = a cos θ y = b tan θ θ : π θ : π x = a cosh t = a et + e t t : y = b sinh t = b et e t ( ) (trochoid) (epitrochoid) (hypotrochoid)

39 39 x = a cos θ, y = a sin θ (a, ) 3 P xy- O O OX OP = r, XOP = θ P (r, θ) θ r OP = r, XOP = θ P P O r θ f(r, θ) = OX x O y 6( ) { x = r cos θ y = r sin θ r = x + y tan y x tan y θ = + π x π (x > ) (x < ) (x =, y > ) π (x =, y < ) θ = α (α : ) (r, α) A OA r cos(θ α) = r 7( ) r r = r (r : ) (r, α) r r + r rr cos(θ α) r = 8( ( )) r = aθ (a > )

40 4 9( ) r = a θ (a > ) ( ) r = a sin nθ (a >, n ) (Pascal (limaçon= )) r = a cos θ + b (a >, b > ) a = b (cardioid) 8( ) 9( ) 3 ( ) n =,, 3, 4, 5 4 (Pascal ) a > b, a = b, b = a r = f(θ) { x = f(θ) cos θ y = f(θ) sin θ 5 4 6

41 f(x) = α ( ) a = a a + b = a a + b = b = b b x [a, b] f(x) f(x) [a, b] f(x) f(a) f(b) f(a)f(b) < f(x) = [a, b] α f(a) <, f(b) > ( ) () a = a, b = b () a b a + b f(x) f( a + b ) = α = a + b f( a + b ) < a = a + b, b = b f( a + b ) > a = a, b = a + b

42 4 () a b a + b α a b f(x) f( a + b ) = α = a + b f( a + b ) < a = a + b, b = b f( a + b ) > a = a, b = a + b α a b (k) a k b k a k + b k f(x) f( a k + b k ) = α = a k + b k f( a k + b k ) < a k = a k + b k, b k = b k f( a k + b k ) > a k = a k, b k = a k + b k α a k b k b = k a k ( ) a k + b k E E < = b k a k = (b a) k n n f(a) <, f(b) > ( ) () a = a, b = b () [a, b ] n f(x) a b f(x) () [a, b ] n f(x) a b f(x)

43 3 43 (k) [a k, b k ] n f(x) a k b k f(x) b = k a k ( ) a k + b k E E < = b k a k = (b a) nk Newton x x x x [a, b] f(x) f(x) [a, b] f (x) f(x) f(a) f(b) f(a)f(b) < a b α f (x) >, f(a) <, f(b) > ( ) () x = b () x y = f(x) y = f (x )(x x ) + f(x ) x x x = x f(x ) f (x ) () x y = f(x) y = f (x )(x x ) + f(x )

44 44 x x x = x f(x ) f (x ) (k) x k y = f(x) y = f (x k )(x x k ) + f(x k ) x x k x k = x k f(x k ) f (x k ) x k = x k f(x k ) f (x k ) x = b ( x = a) x a b f(a) f(b) f (x) f(x) x = x k Taylor (n = ) f(α) = f(x k ) + f (x k )(α x k ) + f (c)(α x k ) E k = x k α = x k α f(x k ) f(α) f (x k ) = f (c) f (x k ) x k α m = min f (x), M = max f (x) x [a,b] x [a,b] E k < = M m x k α = M m E k n E k < = ce k ( ) Newton ( ) (x k, f(x k )), (x k, f(x k )) y = f(x k), f(x k ) x k x k (x x k ) + f(x k ) x x = x k (x k x k )f(x k ) f(x k ) f(x k ) x k+ Newton x k+ = x k (x k x k )f(x k ) f(x k ) f(x k ) x, x

45 3 45 x 3 x x x x Newton x, x f(x) f (x) Newton 5 f(x) = x = Newton 3 b a f(x) dx ( ) [a, b] a = x < x < x < < x n < x n = b n [x k, x k ](k =,, 3,, n) ξ k Riemann S(, {ξ k }) = f(ξ k )(x k x k ) k= lim S(, {ξ k }) {ξ k } b a f(x) dx n {ξ k } x k

46 46 x k = a + (b a) k, ξ k = x k = a + n Riemann S n () S () n = k= f ( a + (b a) (k ) n ) b a n (b a) (k ) n {ξ k } x k Riemann S n () S () n = k= f ( a + b a ) (b a) b a k n n f(x) dx n S n () S n () S () n S () n x x x x n x n x x x x x n x n x x x x x n x n x

47 3 47 ( ) (x k, y k ) (x k, y k ) y = f(x) (y + y ) b a n + (y + y ) b a n + + (y n + y n ) b a n = b a n {y + y n + (y + y + + y n )} ( ) S () n S () n S() n + S n () E E < = (b a) 3 M n M = max f (x) xı[a,b] Simpson x x x x n x n x n x [a, b] n x k = a + b a k (k =,,,, n) n y y k = f(x k ) n [x k, x k ] 3 (x k, y k ), (x k, y k ), (x k, y k ) f(x) g(x) b a g(x) dx = b a 6 ( g(a) + 4g ( ) a + b ) + g(b)

48 48 (a = x k, b = x k ) xk x k g(x) dx = b a 6n (y k + y k + 4y k ) b a f(x) dx = x x f(x) dx + x4 x f(x) dx + + xn x n f(x) dx = = x x g(x) dx + x4 x g(x) dx + + xn x n g(x) dx b a 6n (y + y n + 4(y + y y n )+ +(y + y y n )) Simpson Simpson E E < = (b a) 5 88n 4 M 4, M 4 = max x [a,b] f (4) (x) n order Simpson n order ( Simpson ) n4 4 6 dx + x Simpson

49 4 ( ) 49 4 ( ) 4 ( ) 7 ( ) a n P n P n+ P n 8 (Fibonacci ) a 8 a Fibonacci a n+ = a n+ + a n, a =, a = 9 n 3 n a n a n+ a n ( ) C p a( p/c)p ( p C ) (a ) n n p n p n+ p n ( ) N x x n+ x n = kx n (N x n ) ( ) a b c % d % n n R n F n

50 5, R n+ F n+ R n, F n [ ] [ ] Rn+ Rn = A F n+ F n 3( R F ( + A( R/C))R DRF QDRF n n R n F n, R n+ F n+ R n, F n ( A: C: D: Q: ) ( ) n n Pn P n P n 3 Pn 3 ( ) 5( 4 ) A B r a b (n + ) x n+ a, b, x n b 6(Markov chain ) 3 7 5

51 4 ( ) n x n y n z n x n+, y n+, z n+ x n, y n, z n 7 n k f(n, k) f(n +, k) f(n, k) f(n, k ) ( ) f(n, ) =, f(n, n) = f(5, 3) 8 n p(n) n k p(n, k) p(n) = p(n, k) k= p(n, k) x + x + + x k = n (x x x k ) (x, x,, x k ) p(n, k) p(n k, k) p(n, k ) ( x k = x k ) p() 9(Mandelbrot Set) z n+ = zn + α, z = n z n α Mandelbrot Set Mandelbrot Set (Julia Set) z n+ = zn + β, z = α n z n α Julia Set Julia Set β

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

untitled

untitled Tylor 006 5 ..........5. -...... 5....5 5 - E. G. BASIC Tylor.. E./G. b δ BASIC.. b) b b b b δ b δ ) δ δ δ δ b b, b ) b δ v, b v v v v) ) v v )., 0 OPTION ARITHMETIC DECIMAL_HIGH INPUT FOR t TO 9 LET /*/)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x =

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x = 1 1 Octave GNU Octave Matlab John W. Eaton 1992 2.0.16 2.1.35 Octave Matlab gnuplot Matlab Octave MATLAB [1] Octave [1] 2.7 Octave Matlab Octave Octave 2.1.35 2.5 2.0.16 Octave 1.1 Octave octave Octave

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

1 1 Gnuplot gnuplot   Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang Gnuplot で微分積分 2011 年度前期 数学解析 I 講義資料 (2011.6.24) 矢崎成俊 ( 宮崎大学 ) 1 1 Gnuplot gnuplot http://www.gnuplot.info/ Windows gnuplot 2011 6 22 4.4.3 gp443win32.zip gnuplot binary, contrib, demo, docs, license 5

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

all.dvi

all.dvi fortran 1996 4 18 2007 6 11 2012 11 12 1 3 1.1..................................... 3 1.2.............................. 3 2 fortran I 5 2.1 write................................ 5 2.2.................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information