<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>

Size: px
Start display at page:

Download "<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>"

Transcription

1 弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分 du d, d d dt 0 としたときのひずみ, 応力の増加率 ひずみ速度, 応力速度 u& &, & & 弾性変形では, なぜ増分 ( 速度 ) か?. 塑性変形の非線形性 d 塑性変形では, なぜ増分 ( 速度 ) か?. 塑性変形の非線形性 d d H H d d d d d d d d d d d 時々刻々変化する応力増分 ひずみ増分関係を考慮する必要がある. H d d なぜ増分 ( 速度 ) か?. 塑性変形の履歴依存性 薄肉円筒の引張 ねじりを考える. A: 一定の割合で引張りながらねじる B: まず引張り, その後ねじる 弾性変形の場合,A,B とも同じ応力状態になる., G 塑性変形の場合,A と B で応力状態が異なる.( 履歴依存性 ) 後述 変形中のひずみ経路 ( どのようなひずみ増分が積算されて最終状態に至ったか ) を考える必要がある. 次元弾塑性体において, 時刻 t から t +dt の変形を考える物体中のある点 A(, y) の変位ベクトル u { u uy} その微小変化 du { du du } 時刻 t における変位 uuuur AA' u { u u } 時刻 t +dt までの変位増分 uuuuur A' A'' du { du du } y y y

2 dt 時間中のひずみ増分 ひずみ増分 (strain increment) ( du ) ( duy ) ( ) ( y ) du du d, d, d y + y y 物体中の微小線素の単位長さあたりの伸び 縮み 次元問題の場合のひずみ増分 互いに直交していた 本の微小線素の変形による角度変化 ( du ) ( du ) i di + i 物体中のある点 A(, y) の速度 ( 単位時間当たりの変位 ) ひずみ速度 (strain rate) ひずみ速度 次元問題の場合のひずみ速度 i & i + i du du du y { u& u& y} dt dt dt y y &, &, & y + y y ( ドット ) は時間微分をあらわす ( 弾塑性分解 ) 弾性部分 塑性部分 ひずみ増分 ( あるいはひずみ速度 ) は弾性部分と塑性部分に分けられる d d + d e i i i e (& & + & ) i i i t t t t+dt d d d e d 応力増分 単軸引張りにおけるひずみ増分の弾性部分 塑性部分 物体要素の回転速度 次元問題の場合の回転速度 物体回転速度 y & ωy y i & ωi i スピンテンソル (sin tensor) 一般に空間座標系で定義されたひずみ増分 ( du ) ( du ) i di + i をそのまま積分した量は物理的な意味を持たない 応力増分 応力速度 時刻 t における応力時刻 t +dt における応力 i + d i i 物体中の微小線素は変形に伴って回転する ( 材料固定座標が回転し, 座標軸のなす角度も変わる ) ため. 応力増分 応力速度 (stress increment) (stress rate) d i d i & i dt

3 と全ひずみ理論 (strain increment theory) d λ i sid ( dλ: 正のスカラー値 ) 塑性ひずみ増分 d i の方向は偏差応力 s i の方向に一致するとした塑性構成式 (Reuss, 90) 流れ理論 (fow theory) とも呼ばれる ; 各方向の塑性ひずみ増分 d i と偏差応力 s i の比は同じ値 dλ になる. di d d d d y d d dλ s s s s s s s i y z z 塑性体積一定条件の成立 d i s dλ ; この式は塑性体積一定条件を満足している i d + d + d ( s + s + s ) dλ 0 Q ( + + ) / m ( dλ: 正のスカラー値 ) s + s + s ( ) + ( ) + ( ) m m m m 弾性のフックの法則との比較 () di sidλ + + d ( m) dλ dλ dλ ( + ) フックの法則 e d { d ν ( d + d d i 弾性のフックの法則との比較 () s dλ i フックの法則 d dλ d d y y e y y dλ d G y y プラントル - ロイス (Prandt-Reuss) の式 d { d ν ( d + d + dλ{ ( + 弾性ひずみ増分 塑性ひずみ増分 d { d ν ( d + d + dλ{ ( + ( フックの法則 ) ( ) d { d ν ( d + d + dλ{ ( + d y d d z d y + ydλ, d + dλ, d z + zdλ G G G 弾性ひずみ増分 d e i も考慮した弾塑性構成式の具体形 レヴィー - ミーゼス (Levy-Mises) の式 d dλ{ ( + d dλ{ ( + d dλ{ ( + d dλ, d dλ, d dλ y y z z 弾性ひずみ増分 d e i を無視した剛塑性体 ( di di ) の構成式の具体形

4 と全ひずみ理論 全ひずみ理論 (tota strain theory) 全ひずみ理論 全ひずみ理論の一般的表現 比例変形 (roortiona deformation) の場合を考える 変形中, 各ひずみ成分間の比が常に一定 Λ i si ( Λ: 正のスカラー値 ) 簡単のため, 垂直応力 とせん断応力 y のみが作用する場合を考えると d Ad, A また, 増分理論から s y y s y y y As Λ s ( Λ: 正のスカラー値 ) 全塑性ひずみ i の方向は偏差応力 s i の方向に一致するとした塑性構成式 (Hencky, 94) 変形理論 (deformation theory) とも呼ばれる より取り扱いが簡単 比例変形, あるいは比例変形に近い場合に限り適用可能 非比例変形の場合は適用不可 ( この場合は ) 比例変形と非比例変形 比例変形 : ひずみ ( 増分 ) の各成分の間の比が常に一定 ひずみ経路が直線非比例変形 : ひずみ ( 増分 ) の各成分の間の比が変形中に変化 ひずみ経路が非直線 d d 比例変形 ひずみ経路 constant, 全ひずみ理論の双方が適用可能. d d 非比例変形 ひずみ経路 constant のみ適用可能. 加工硬化の表現 () 相当応力 (equivaent stress) 多軸応力状態 ( i ) における降伏条件を単軸引張り降伏応力 によって表現する. ( ) こような応力成分 ( i ) のスカラー関数 を相当応力という. 多軸応力状態 ( i ) における応力レベルを単軸応力状態に相当する応力値に換算する関数ともいえる. 有効応力 (effective stress) とも呼ばれる. i 相当応力が になったら降伏する ミーゼスの降伏条件の場合 ミーゼスの降伏条件 { ( ) + ( ) + ( ) } + ( + + ) 0 y z ( i ) 相当応力をこのように定義すれば, ( ) 相当応力が になったら降伏 i ( ) 相当応力 ミーゼスの降伏条件に基づく相当応力 s s i i i {( ) ( ) ( ) } ( y z ) 一般に広く使われる代表的な相当応力 降伏条件がミーゼスの条件と異なる場合には, 相当応力の 定義も上記の式とは異なるものになる. 4

5 加工硬化の表現 () 相当塑性ひずみ増分 (equivaent astic strain increment) 相当塑性ひずみ増分 d は, 塑性仕事増分を用いて次のように定義される. 塑性仕事増分 (astic work increment) dw d s d d i i i i 各応力成分 塑性ひずみ増分によってなされる塑性仕事増分 相当応力 相当塑性ひずみ増分によってなされる塑性仕事増分 d ( s + δ ) d s d + ( δ d ) s d i i i i m i i i m i i i i 塑性体積一定条件 : δ i d i 0 定義 : より : 相当塑性ひずみ増分 に基づく表現 () dw d s d d i i i i λ λ dw sid i sisid d d d d dλ d 加工硬化係数 d の係数 dλ (strainhardening coefficient) または塑性接線係数 (tangent moduus of asticity) 相当塑性ひずみ増分 に基づく表現 () および前出の式より : d di di d di di sisidλ d d {( d ) ( d ) ( d ) } {( d y ) ( d ) ( d z) } 相当塑性ひずみ (equivaent astic strain) d 相当塑性ひずみ増分を積分したもの 相当塑性ひずみ 全ひずみ理論に基づく表現 () 全ひずみ理論における相当塑性ひずみ ( D) i i {( ) ( ) ( ) } {( y ) ( ) ( z) } 比例変形のもとで相当塑性ひずみ増分を積分したものに等しい 相当塑性ひずみ 全ひずみ理論に基づく表現 () 全ひずみ理論 Λ の係数 Λ 塑性セカント係数 (secant moduus of asticity) i si Λ S S 加工硬化の表現 () 加工硬化に関する仮説 塑性変形における ( 降伏時の ) 相当応力 は相当塑性ひずみ の一義的関数となる. または相当応力 は塑性仕事 w の一義的関数となる. ( w ) ( ) w dw d 多軸応力状態 ( i ) における加工硬化の程度は相当応力 の大きさで表すことができる. 5

6 加工硬化に関する仮説の実験的検証 塑性変形における ( 降伏時の ) 相当応力 は相当塑性ひずみ の一義的関数となる. 軟鋼に種々の比例的多軸応力を作用させた場合の, 相当応力 - 相当塑性ひずみの関係 変形様式に関わらず, 相当応力 - 相当塑性ひずみ関係は単一の曲線になっている 方向の単軸引張りにおける相当応力 ミーゼスの降伏条件の場合, 相当応力は次式となる. ( ) ( ) ( ) ( y z ) { } 方向単軸引張りにおいては, 応力 以外は存在しないので, y z 0 よって, { ( ) + ( ) } 方向の単軸引張りにおける相当塑性ひずみ 比例変形なので, 相当塑性ひずみは次式で与えられる { ( ) ( ) ( ) } {( ) ( ) ( ) y z } せん断ひずみは存在しないので, 0 塑性体積一定条件と等方性より, よって, y z ( ) ( ) ( ) + + y 方向の単純せん断における相当応力, 相当塑性ひずみ 応力 y ( y ) 以外は存在しないので, 0 z よって, ひずみの y, y 成分以外は存在しないので, 0 z よって, y y 相当応力 - 相当塑性ひずみ曲線 単軸引張試験の応力 - 塑性ひずみ曲線 相当応力 - 相当塑性ひずみ曲線 単純せん断の相当応力 - 相当塑性ひずみ曲線 単軸引張試験の相当応力 - 相当塑性ひずみ曲線 (, ) (, ) 加工硬化に関する仮説の意義 () ミーゼスの降伏条件にしたがう線形硬化塑性体 ( 単軸引 張において + ) の変形について考える 単軸引張では, よって, + H 0 y (, ) y, 相当応力は相当塑性ひずみ の一義的関数となる この関係は一種類の実験 ( 通常, 単軸引張試験 ) のみ によって決定できる. 6

7 単軸引張では, 加工硬化に関する仮説の意義 () + H 単純せん断では, + ' + H + 単軸引張の 曲線と単純せん断の 曲線の間には定まった関係が成立 加工硬化に関する仮説の意義 () 相当応力は相当塑性ひずみの一義的関数. ( ) この関数 は単軸引張試験で決定できる. 単軸引張の 曲線と単純せん断の 曲線の間には, この関数に基づいた, ある定まった関係が成立する. 単軸引張 + ( ) ( ) + H 単純せん断 単軸引張における応力 - ひずみ関係さえわかれば, 任意の変形における応力 ひずみが計算できる. + 0 (0) 加工硬化の表現 (4) 加工硬化と降伏曲面 { ( ) + ( ) + ( ) } + ( y + + z ) 0 初期 { ( ) ( ) ( ) 降伏曲面 + + } ( ) ( y z ) ( ) 0 後続降伏曲面 ( ) 与えられた応力経路に対するひずみ経路 () ミーゼスの降伏条件にしたがう弾線形硬化塑性体を仮定 + 作用する応力は と y のみ 応力経路 I A D 応力経路 II B C D 比例負荷 非比例負荷 それぞれの経路に沿う負荷を受けたとき, 最終点 D におけるひずみ ( D, D ) を求める 与えられた応力経路に対するひずみ経路 () 偏差応力 : ミーゼスの降伏条件に基づく相当応力 : 相当応力増分 : s, s y y + y d d + d y y ( d + yd y ) 与えられた応力経路に対するひずみ経路 () から, 各塑性ひずみ増分は以下のようになる. ( ) d d + yd y d sdλ ( ) d d + yd y d y sydλ y これらを応力経路に沿って積分すれば, 最終点 D の塑性ひずみ ( D, D ) が求められる. 7

8 応力経路 I ( 比例負荷 ) の場合 経路 I A D ( 積分範囲 A D) / y D / D α D d D[I] d A D A 0.49 D d y D[I] d y A ( D A) D[I] 0.85 応力経路 II ( 非比例負荷 ) の場合 経路 II B C D ( 積分範囲 B C + C D) D[II] D[II] 積分を行うのは降伏曲面の外側 ( 塑性域 ) だけであることに注意 得られた塑性ひずみ経路 全ひずみ理論の場合 D[Deformation] D[Deformation] 塑性ひずみは負荷履歴 ( 応力経路 ) に依存する 全ひずみ理論の場合, 応力経路 I( 比例経路 ) と同じ解になる. 非比例負荷の場合 ( 経路 II) には, 全ひずみ理論の結果との結果は異なる 8

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D> 単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

第3章 ひずみ

第3章 ひずみ 第 4 章 応力とひずみの関係 4. 単軸応力を受ける弾性体の応力とひずみの関係 温度一定の下で, 負荷による変形が徐荷によって完全に回復する場合を広義の弾性というが, 狭義の弾 性では, 負荷過程と徐荷過程で応力 - ひずみ関係が一致しない場合は含めず ( 図 - 参照 ), 与えられたひ ずみ状態に対して応力が一意に定まる, つまり応力がひずみの関数と して表される. このような物体を狭義の弾性体

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

Microsoft PowerPoint - suta.ppt [互換モード]

Microsoft PowerPoint - suta.ppt [互換モード] 弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加

More information

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有 材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体

More information

PowerPoint Presentation

PowerPoint Presentation H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

材料の力学解答集

材料の力学解答集 材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /

More information

5-仮想仕事式と種々の応力.ppt

5-仮想仕事式と種々の応力.ppt 1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

Microsoft PowerPoint - cm121204mat.ppt

Microsoft PowerPoint - cm121204mat.ppt いまさらいまさら聞けない計算力学の常識常識 講習会 構造解析に入る前に知っておきたい 常識 5 話知ってそうで知らない境界条件処理のいろいろ 7 話固体の非線形解析って何? 9 話固体の非線形解析における 2 つの論点 10 話破壊現象の数値解析の罠 東北大学斉木功 いまさらいまさら聞けない計算力学の常識常識 講習会 5 話知ってそうで知らない境界条件処理のいろいろ 5.1 等分布荷重は均等にした集中荷重と同じでいいの?

More information

座標系.rtf

座標系.rtf 2 章座標系 場 空間は3 次元なので, ベクトルを表現するには少なくとも3 成分を指定する必要がある. そのために座標系が必要となる. 座標系として最も一般的なものは,,, 成分を使った直角座標系である. しかし, 他にも円柱座標, 球座標, だ円座標, 放物線座標など様々なものがある. 現在までに3 成分で変数分離可能な座標系は11 個あるといわれている (Moon & Spencer, Field

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Microsoft PowerPoint - Engmat111Y03V1pdf.ppt

Microsoft PowerPoint - Engmat111Y03V1pdf.ppt 第三回目結晶の塑性変形と破壊 生命医科学部医工学科バイオメカニクス研究室 ( 片山 田中研 ) IN116N 田中和人 E-ail: 内線 : 6408 通常の引張試験引張変位速度 ( 引張試験機のクロスヘッド速度 ) 一定 伸び標点距離 (gage length) の変化伸び計 機械材料学 74 図 1.1 材料工学 Ⅰ Bioechanics aboratory 引張り特性 公称応力 (noinal

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

損傷力学による冷間鍛造における欠陥の発生 成長の予測 静岡大学工学部機械工学科助教授早川邦夫 ( 平成 16 年度研究開発助成 AF ) キーワード : 損傷力学, 鍛造, 有限要素法 1. 研究の目的と背景現在, 鍛造品は, より高強度な材料に対する加工や, より高精度な加工が求めら

損傷力学による冷間鍛造における欠陥の発生 成長の予測 静岡大学工学部機械工学科助教授早川邦夫 ( 平成 16 年度研究開発助成 AF ) キーワード : 損傷力学, 鍛造, 有限要素法 1. 研究の目的と背景現在, 鍛造品は, より高強度な材料に対する加工や, より高精度な加工が求めら 損傷力学による冷間鍛造における欠陥の発生 成長の予測 静岡大学工学部機械工学科助教授早川邦夫 ( 平成 16 年度研究開発助成 AF-004014 キーワード : 損傷力学, 鍛造, 有限要素法 1. 研究の目的と背景現在, 鍛造品は, より高強度な材料に対する加工や, より高精度な加工が求められている. このような工程では, 素材や工具に作用する応力はより高くなるため, 工具破壊や素材の損傷や破壊が無視できない.

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

Microsoft PowerPoint - H24 aragane.pptx

Microsoft PowerPoint - H24 aragane.pptx 海上人工島の経年品質変化 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー ( 埋土施工前に地盤改良を行う : 一面に海上 SD を打設 ) 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

Microsoft PowerPoint - ‚æ2‘Í.ppt

Microsoft PowerPoint - ‚æ2‘Í.ppt 第 2 章力学的挙動と静的強度 目的 荷重が作用した際の金属材料の力学的挙動について理解する. 2.1 応力 - ひずみ曲線 2.1.1 公称応力 / ひずみと真応力 / ひずみ 2.1.2 応力 - ひずみ曲線 2.1.3 力学的性質 ( 機械的性質 ) 2.1.4 加工硬化 2.1.5 じん性 2.1.6 指標の意味 2.2 力学的性質を求める異なる方法 2.2.1 ヤング率の測定方法 2.2.2

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ 3. 変位とひずみ 3.1 変位関数構造物は外力の作用の下で変形する いま この変形により構造物内の任意の点 P(,,z) が P (',',z') に移動したものとする ( 図 3.1 参照 ) (,,z) は変形前の点 Pの座標 (',', z') は変形後の座標である このとき 次式で示される変形前後の座標の差 u ='- u ='- u z =z'-z (3.1) を変位成分と呼ぶ 変位 (

More information

本日話す内容

本日話す内容 6CAE 材料モデルの VV 山梨大学工学部土木環境工学科吉田純司 本日話す内容 1. ゴム材料の免震構造への応用 積層ゴム支承とは ゴムと鋼板を積層状に剛結 ゴム層の体積変形を制限 水平方向 鉛直方向 柔 剛 加速度の低減 構造物の支持 土木における免震 2. 高減衰積層ゴム支承の 力学特性の概要 高減衰ゴムを用いた支承の復元力特性 荷重 [kn] 15 1 5-5 -1-15 -3-2 -1 1

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h]

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h] 第 3 章変形と理論強度 目的 弾性変形および塑性変形に関し, 原子レベルからの理解を深める. 3. 弾性変形 (elastic defomation) 3.. 原子間に作用する力 3.. ポテンシャルエネルギー 33 3..3 フックの法則 3..4 弾性率の温度依存性 3..5 弾性変形時のポアソン比 3..6 理論強度 3. 塑性変形 (plastic defomation) 3.. すべり

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

AnalysisOfMechProp

AnalysisOfMechProp < 演習 > 材料の機械的性質の解析 0. 材料の力学的性質を学ぶ理由 : 金属材料は 比較的大きな強度を有しながら 展延性に富んでいる そのため 単に強度が高いというだけでなく 様々な形に加工することが可能であり また衝撃力等に対して脆く破壊する危険性も少ない 靭性が高い ) このことが 安全性と信頼性が必要な構造材料としての金属材料の有用性を際立たせており 多量に使われている理由となっている 金属材料は

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63>

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63> 7. 粘土のせん断強度 ( 続き ) 盛土 Y τ X 掘削 飽和粘土地盤 せん断応力 τ( 最大値はせん断強度 τ f ) 直応力 σ(σ) 一面せん断 図 強固な地盤 2 建物の建設 現在の水平な地表面 ( 建物が建設されている過程では 地下水面の位置は常に一定とする ) 堆積 Y 鉛直全応力 σ ( σ ) 水平全応力 σ ( σ ) 間隙水圧 図 2 鉛直全応力 σ ( σ ) 水平全応力

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

20年度一次基礎略解

20年度一次基礎略解 年度一次機械問題略解 計算問題中心 orih c 0 宮田明則技術士事務所 正解番号 Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ-6 Ⅳ-7 Ⅳ-8 Ⅳ-9 Ⅳ-0 Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ-6 Ⅳ-7 Ⅳ-8 orih c 0 宮田明則技術士事務所 Ⅳ-9 Ⅳ-0 Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ-6 Ⅳ-7 Ⅳ-8 Ⅳ-9 Ⅳ-0 Ⅳ- Ⅳ- Ⅳ- Ⅳ- Ⅳ- 特定入力関数と応答の対応の組み合わせフィードバック制御に関する記述の正誤正弦波入力に対する定常出力の計算フィードバック系の特性根を求める計算比熱等に関する

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

ベクトルの基礎.rtf

ベクトルの基礎.rtf 章ベクトルの表現方法 ベクトルは大きさと方向を持つ量である. 図.に示すように始点 Pから終点 Qに向かう有向線分として で表現する. 大きさは矢印の長さに対応している. Q P 図. ベクトルの表現方法 文字を使ったベクトルの表記方法として, あるいは の表記が用いられるが, このテキストでは太字表示 を採用する. 専門書では太字で書く の表記が一般的であり, 矢印を付ける表記は用いない. なお,

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

Phys1_03.key

Phys1_03.key 物理学1/物理学A 第3回 速度と加速度 速度 加速度 関数の話 やりたいこと : 物体の運動を調べる 物体の位置と速度を調べる これらを時間の関数として表したい 関数とは? ある された変数に対して, 出 の値が決まる対応関係のこと inpu 関数 ( 函数 ) oupu 例 : y(x)=x 2 x=2 を inpu すると y=4 が得られる 時々刻々と変化していく物体の位置 をその時刻とともに記録する

More information

Microsoft PowerPoint - Engmat110Y03V1pdf.ppt

Microsoft PowerPoint - Engmat110Y03V1pdf.ppt 第三回目結晶の塑性変形と破壊 生命医科学部医工学科バイオメカニクス研究室 ( 片山 田中研 ) IN116N 田中和人 E-mail: 内線 : 6408 材料工学 Ⅰ Biomechanics aboratory 丸棒の引張試験 通常の引張試験引張変位速度 ( 引張試験機のクロスヘッド速度 ) 一定 公称応力 (nominal stress) σ n =/ 0 ( 0 : 初期断面積 ) 真応力

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

FrontISTR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 2014 年 10 月 31 日第 15 回 FrontISTR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 >

FrontISTR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 2014 年 10 月 31 日第 15 回 FrontISTR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 > FronISR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 214 年 1 月 31 日第 15 回 FronISR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 > FronISR に実装されている定式化を十分に理解し, 解きたい問題に対してソースコードを自由にカスタマイズ ( 要素タイプを追加, 材料の種類を追加, ユーザサブルーチンを追加

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63>

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63> 1/1 平成 3 年 6 月 11 日午前 1 時 3 分 4 ベクトルの線積分 4 ベクトルの線積分 Ⅰ. 積分の種類 通常の物理で使う積分には 3 種類あります 積分変数の数に応じて 線積分 ( 記号 横(1 重 d, dy, dz d ( ine: 面積分 ( 記号 縦 横 ( 重 線 4 ベクトルの線積分 重積分記号 ddy, dydz, dzdz ds ( Surface: 1 重積分記号

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

4.3 材料試験 材料試験とは材料の応力 -ひずみの関係や強度を明らかにするために その材料で作成した供試体( 試験体 ) に荷重を負荷し そのときのひずみ挙動や強度を調べる作業を材料試験という 材料試験では 供試体に一様な応力が発生することが望ましい 一様な応力 とは 至るところ ある

4.3 材料試験 材料試験とは材料の応力 -ひずみの関係や強度を明らかにするために その材料で作成した供試体( 試験体 ) に荷重を負荷し そのときのひずみ挙動や強度を調べる作業を材料試験という 材料試験では 供試体に一様な応力が発生することが望ましい 一様な応力 とは 至るところ ある 4. 均質 等方弾性体の応力とひずみの関係 ( 構成方程式 ) およびひずみエネルギ 4.1 はじめに材料が応力を受けると それに応じてひずみが発生する この応力とひずみの関係は 応力 -ひずみの関係または構成方程式と呼ばれ 一般に材料によって異なる しかも同一の材料でも 応力やひずみを負荷する速度によって発生するひずみ ( または応力 ) の大きさが異なる すなわち ゆっくりと負荷すれば 粘性的な性質が強く現れ

More information

Microsoft Word - 09弾性01応力ひずみ.doc

Microsoft Word - 09弾性01応力ひずみ.doc 第 章応力とひずみ. 応力 ( 応力の定義 単位面積当りの内力を 応力 と呼び q 応力 :plm Δ0 ( F/ (. P F で定義される この Fを面に垂直 平行の 成分 ( F n, F t に分解すると 対応して F P 垂直応力 :lm Δ0 ( F n / せん断応力 :lm Δ0 ( F t / (. が定義される ( 図 -. せん断応力 は更に 面 R R 内の直交座標, 方向のせん断応力に分解できる

More information

...Y..FEM.pm5

...Y..FEM.pm5 . 剛塑性有限要素法 名古屋大学大学院工学研究科. はじめに. 剛塑性体の構成式.. 降伏条件.. 構成方程式 ([D] マトリックス ). 節点速度 ひずみ速度関係..[B] マトリックス.. 四角形一次要素の [B] マトリックス.4 4 仮想仕事の原理 ( 剛性マトリックス ([K] マトリックス )).5 非線形方程式の解法.5. 直接代入法.5.wto-Raphso 法.6 非圧縮性の拘束と数値積分.7

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード]

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード] ロボットの運動学 順運動学とは 座標系の回転と並進 同次座標変換行列 Denavit-Hartenberg の表記法 多関節ロボットの順運動学 レポート課題 & 中間試験について 逆運動学とは ヤコビアン行列 運動方程式 ( 微分方程式 ) ロボットの運動学 動力学 Equation of motion f ( ( t), ( t), ( t)) τ( t) 姿勢 ( 関節角の組合せ ) Posture

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 (008 年度版 ) 008/5/6 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数指南書第七の巻 直交行列, 実対称行列とその対角化, 次曲線池田勉龍谷大学理工学部数理情報学科 実行列, 正方行列, 実対称行列, 直交行列 a a N A am a MN 実行列 : すべての成分 a が実数である行列 ij ji ij 正方行列 : 行の数と列の数が等しい (

More information

応用数学A

応用数学A 応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度

More information

まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元 二次元なら 簡単な式にまとめられ

まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元 二次元なら 簡単な式にまとめられ 技術士だぁーちゃんの 材料力学基礎講座 http://www.eonet.ne.jp/~northriver/gijutsushi/ まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元

More information

第1章 序論

第1章 序論 第 章 応力とその性質. 応力.. 垂直応力とせん断応力物体が外力 (external force) を受けているとき, 物体内部では断面に内力 (internal force) が働き, その断面で分離しないように抵抗している. つまり内力は断面を結合する力である. 断面に垂直な内力が働く場合, その単位面積当たりの値を垂直応力 (normal stress) という. 例えば図 -(a) に示すように,

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc 第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の

More information

Microsoft PowerPoint - ‚æ5‘Í.ppt

Microsoft PowerPoint - ‚æ5‘Í.ppt 第 5 章転位 dislocation 目的 転位の概念の説明および転位に基づく塑性変形の検討 転位の概念と基礎 刃状転位 パイエルス ナバロウ応力 刃状転位の応力場 刃状転位の上昇運動 らせん転位 らせん転位の応力場 らせん転位の交差すべり らせん転位と刃状転位の相違 複合転位 転位に基づく塑性変形 転位のエネルギー ピーチ ケラー力 転位の増殖 塑性変形の不可逆性 転位移動と塑性変形量 5. 転位の概念と基礎

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information