<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

Size: px
Start display at page:

Download "<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>"

Transcription

1 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味 ひずみテンソルの不変量 体積ひずみとせん断ひずみ ひずみ速度テンソル変形勾配テンソルの分解 ひずみテンソルと回転テンソル微小体積要素の変化率 Jacoban( ( ヤコビアン ) 微小変形理論と有限変形理論でのひずみの違い土の移動とひずみ 注意 ) 引張を正にとります 変形勾配テンソル +d 物体 Bが基準配置 B ( 時刻 t) から現在配置 B t ( 時刻 t) へと変位したときを考える 基準配置において位置 に存在していた物質点 が 現在時刻 tにおいて位置 を占めるものとする 物質点 が から に移動する関係式は 次のようにあらわすことができる d (,t) (,,, t ) t + d d tt 位置 の近傍 +d に存在する物質点 は 位置 +d に移動する 微小材料線素 d がd に変わるという関係式として d Fd で定義される 階のテンソル Fを変形勾配テンソルと呼ぶ

2 変形勾配テンソル +d 変形勾配テンソル F: がの関数,,, t 関数 を全微分すると次式を得る d d d + d + d d t +d d tt d Fd より F 微小材料線素 d がd に対応している関係式として 上の逆関係が存在する d F d ( F ) ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソル 線素の長さの変化が変形前の線素 dに参照される場合 ( d) ( d ) dd d d ( Fd) ( Fd) dd ( df ) ( Fd) dd + d df FddI d d d( F FI) d +d d d( E) d tt k k t E ( F F I) E δ Green-Lagrange のひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Alman のひずみテンソル 線素の長さの変化が変形後 dの線素に参照される場合 d d dd d d dd ( F d) ( F d) dd d ( F ) ( F d) +d d di dd( F F) d +d d d I ( F F) d tt d( A) d t A { I( F F) } k k A δ Alman のひずみテンソル +d ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 変位ベクトル d d t + d d tt + δ + δ

3 ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル Green-Lagrange のひずみテンソル k k E δ k k δ + δ + δ k k k k k k δ δ + δ + δ + δ k k k k k k δ δ k k + + k k E + + Alman のひずみテンソル k k A δ k k δ δ δ k k k k k k δ δ δ + δ δ + k k k k k k δ δ k k + k k A + ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル Green-Lagrange のひずみテンソル k k E + + 変形が微小であるとき : 変位勾配が k + k Alman のひずみテンソル k k A + とみなせる 基準配置と現在配置でも同じ かつ E A + ε k + k ひずみテンソル ( 微小ひずみテンソル ) ひずみテンソルの物理的な意味 ε +, のとき ε +, のとき ε +, のとき ε + d d 線素 の 方向の伸び率 線素 の y 方向の伸び率 線素 の回転角 θ 線素 の回転角 θ d + d θ θ d d + d d d + d d d d + d d d d tanθ d + d d tanθ d + d ひずみテンソルの物理的な意味 ε + のとき 垂直ひずみ のとき ε γ + γ : 工学せん断ひずみ ひずみテンソルの対称性 ε ε d d d + d d d + d d + + ε

4 の不変量 体積ひずみ ε ε tr ( ε ) せん断ひずみ γ 偏差ひずみテンソル ε ε ε + ε + ε ひずみテンソルの 次の不変量 e ε tr ε I e ε εδ 偏差ひずみテンソルの 次の不変量 J ε ee 4 γ ee J ε 三軸圧縮試験で用いられるせん断ひずみ γ ( ε ε a r) ε ε a ε J e e { e + e + e + e + e + e } { e + e } ε ε + ε ε ε ε ε + ε ε ε ε ε ( ε + ε ) ε ( ε + ε ) + ε ( ε + ε ) ( ε + ε ) + ( ε + ε ) ( ε + ε ) ( ε + ε ) ( ε + ε ) ( ε + 4ε ε + 4ε ) 4 ε ε ε + ε { ε ε ε + ε } ( ε ε ) ( ε ε a r ) 体積ひずみとせん断ひずみ ( 土 ) 要素の変形 変形する前 変形した後 変形 大きさの変化 + 体積ひずみ ε tr ε ε ( ε ) ひずみテンソルの 次の不変量 形の変化 せん断ひずみ γ γ ee J ε 偏差ひずみテンソルの 次の不変量 ひずみとひずみ速度 ひずみ速度テンソル ε ε + 体積ひずみ速度 ε tr ε 偏差ひずみ速度テンソル せん断ひずみ速度 ε ε ε + ε + ε ひずみ速度テンソルの 次の不変量 e ε tr ε I γ ee J ε t e ε εδ J ε ee : 変位速度 偏差ひずみ速度テンソルの 次の不変量 変形勾配テンソルの分解 変位勾配テンソル 変位勾配テンソルの分解 ε + 回転テンソル ω F F + + ε + ω ε ε ω ω 対称テンソル 反対称テンソル 変形速度勾配テンソルの分解 変位速度勾配テンソル F 変位速度勾配テンソルの分解 F + + ε + ω ひずみ速度テンソル ( ストレッチングテンソル ) ε + ε ε 対称テンソル 回転速度テンソル ( スピンテンソル ) ω ω ω 反対称テンソル 4

5 微小体積要素と Jacoban( ( ヤコビアン ) 微小体積要素 dc db d c db d A d a dv da db dc ( e AB eˆ ) ( C eˆ k k m m ) e AB C eˆ eˆ e AB C δ k m km e AB C k m k m k k dv J dv J det( F) Jacoban ( a b) c ( FdA) ( FdB) ( FdC) dv d d d e F A F B eˆ F C eˆ e F A F B F C eˆ eˆ k q q rm m k r e F A F B F C δ k q q rm m kr e F A F B F C k q q km m e F F F A B C k q km q m e A B C det F ( k q q k) ( rm m r) qm q m 微小変形理論と有限変形理論でのひずみの違い 線素の初期の長さを 変形後の長さを とする Cahy ひずみ ( 工学ひずみ ): 微小変形理論 C ε ひずみの重ね合わせができない Green-Lagrange ひずみ G ε + Alman ひずみ A ε Hencky ひずみ ( 対数ひずみ ): 有限変形理論 H ひずみの重ね合わせができる ε ln Hencky ひずみ Cachy ひずみ 土の移動と変位 ひずみ 土を構成する物質 土粒子と間隙流体 ( 水と空気 ) 変形する前 変形 土の移動と変位 ひずみ 土を構成する物質 土粒子と間隙流体 ( 水と空気 ) 土粒子部 ( 土骨格 ) の変位と変形 土粒子は変形しないと仮定 土粒子の配置の変化が土の変形となって現れる 地盤内の変位は土骨格部の変位と考える ひずみテンソル ε + + ひずみ速度テンソル ε + + 添え字 は土骨格部という意味 変形した後 大きさの変化 + 形の変化 間隙流体の移動 * *a 間隙水と間隙空気の ( 真の ) 移動速度を と とする 地盤内のある断面を横切る ( 見かけの ) 移動速度として 次の速度で表わす * a a * a θ θ 添え字 と a は間隙水と間隙空気という意味 a θ とθ はそれぞれ土要素体積に対する間隙水と間隙空気の体積の比 θ ns r n ( ) θ n S r : 間隙率 S : 飽和度 (のとき飽和 のとき乾燥 ) r このように定義される移動速度を地盤工学では間隙水あるいは間隙空気の流速と呼ぶ メリット : 地盤内の任意断面を横切る流量の計算が容易になる 等 間隙流体の非圧縮性 また 圧縮されない状態での地盤の挙動では 間隙流体の変形は考えなくてよい 間隙流体のひずみは定義しない 5

6 . 変位とひずみ < まとめ >. 力と応力 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソルが 微小変形状態では一致する そのテンソルをひずみテンソルと呼ぶ ひずみテンソルの物理的な意味 直ひずみとせん断ひずみ の不変量 ひずみテンソルの 次の不変量 : 体積ひずみ 偏差ひずみテンソルの 次の不変量 : せん断ひずみ ひずみ速度テンソル の時間微分で与えられる変形勾配テンソルの分解 ひずみテンソルと回転テンソル微小体積要素の変化率 Jacoban( ( ヤコビアン ) 微小変形理論と有限変形理論でのひずみの違い土の移動とひずみ 土を構成する物質 土粒子部の移動とひずみ 間隙流体の移動 力 物体力と表面力 応力ベクトル 応力テンソル 定義 応力テンソルの対称性 応力テンソルの不変量と主値 偏差応力テンソル 偏差応力テンソルの不変量と主値 注意 ) 引張を正にとります 力 外力 物体力 Δf b lm Δ V ρδv 例 ) 重力 ( 慣性力 ) 表面力 Δf t lm Δ S ΔS 例 ) 載荷重 水圧 内力 : 応力 Δf Δf ρ 密度 ΔS ΔV 応力ベクトル 物体内部の任意の点に作用している力 点を横切るような任意の面 ( 曲面でもよい ) を仮定仮定した面上の微小面に作用する力と定義 t t t t 点 Pで法線ベクトルが一致する仮想面であれば応力ベクトルは等しくなる 点 Pで法線ベクトルが一致しない仮想面では 異なる応力ベクトルとなる 点 P を横切るような仮想な面 ΔS t P 6

7 応力 応力ベクトル 応力 応力テンソル 軸方向の力の釣り合い tds ds + ds + ds nds+ nds+ nds ds C ds C t ( t t t) ds C ds t ( t t t) t n + n + n 同様に t n + n + n t n + n + n ds A OBC 面の面積 S ds nds OCA 面の面積 S ds nds OAB 面の面積 S ds nds B A n ds B ds A OBC 面の面積 S ds nds OCA 面の面積 S ds nds OAB 面の面積 S ds nds B t n t n t n t n t n 応力テンソル 応力 応力テンソル 応力の成分は 9 個 のとき 垂直応力 のとき せん断応力 応力の対称性 ( 静的状態 ) モーメントの釣合いより 同様に 対称性を考慮すると応力の独立な成分は6 個 作用方向 作用する面 地盤工学では圧縮を正にとる 7

8 応力テンソルの不変量 応力テンソル 以降は 対称性を考慮して上記のように書くことにする 最大主応力 中間主応力 最小主応力 平均応力 ( 静水圧 ) 次の不変量 ( ) I tr 次の不変量 I 次の不変量 I det I ( ) ( + + ) 主応力状態では 応力テンソルの不変量 主応力空間における平均応力 応力テンソルの不変量 eˆ ( ) q 静水圧軸 平均応力 ( ) ( 静水圧 ) + + ( ˆ ) e eˆ ( + + ) eˆ 主応力空間における応力点静水圧軸におろしたベクトル つの成分となる q から の 等方的な応力成分を除いた分 偏った応力成分 ( 偏差応力成分 ) 偏差応力テンソル 応力テンソルの偏った成分 偏差応力テンソル 応力テンソル 応力テンソルの等方成分 I ( ) δ q 静水圧軸 偏差応力テンソル 偏差応力テンソルの不変量 一次の不変量 ( ) 二次の不変量 J ( ) 三次の不変量 δ J tr δ J det よく使う関係式 δ eˆ 偏差応力テンソルの主値 ( ) ( ) 8

9 偏差応力テンソル 偏差応力テンソルの不変量 一次の不変量 ( ) 二次の不変量 J ( ) 三次の不変量 偏差応力テンソルの主値 δ J tr δ J det ( ) ( ) よく使う関係式 δ 応力テンソルの不変量 ( まとめ ) 応力テンソル 第一不変量 第二不変量 第三不変量 偏差応力テンソル 第一不変量 I tr J I I det ( ) δ 第二不変量 J 第三不変量 J det. 力と応力 < まとめ > 力 物体力と表面力 応力ベクトルから応力テンソルを規定 応力テンソル 定義 応力テンソルの対称性 応力テンソルの不変量と主値 偏差応力テンソル 偏差応力テンソルの不変量と主値. 地盤の変形と応力 地盤内応力と応力分担 全応力 有効応力 間隙水圧 間隙水圧 有効応力テンソル 有効応力の原理 ( 応力分担式 ) 有効応力テンソルの 次の不変量 偏差応力テンソル 偏差応力テンソルの 次の不変量 全応力と有効応力の速度表示 諸関係式 排水条件と応力速度の分担式 注意 ) 引張を正にとります 9

10 地盤内応力と応力分担 土要素の変形は土骨格の変形 土要素に作用する応力 : 全応力 土骨格の変形に寄与する応力 : 有効応力 土骨格の変形には関係しない応力 : 中立応力 飽和した土の場合 : 中立応力 間隙水圧 ' + 乾燥した土の場合 : 中立応力 間隙空気圧 ただし 大気と連続な場合は ゼロ ' 間隙水圧 ( 間隙水に作用する応力 ) せん断応力はなし 等方的に作用 I 成分表示 δ 注意 ) 引張を正にとっています 有効応力 ( 土骨格に作用する応力 ) 有効応力の原理 ( 応力分担式 ): 飽和土を対象 ' ' Ι δ ' ' ' ' ' ' ' ' ' ' 土要素の形を変える応力の成分 変形 大きさの変化 + 形の変化 力を受ける前 力を受けた後 + 等方的な応力による形の変化 偏った応力による形の変化 + 等方成分偏差成分

11 土要素の形を変える応力の成分 平均有効応力 ' tr( ' ) ' 有効応力テンソルの 次の不変量 ( ) 平均 ( 全 ) 応力 I tr ' tr( ) 有効応力の原理 ' + Ι より ( I) { ( ) ( I) } { } tr + tr + tr + + 等方的な応力による形の変化 等方成分 土要素の形を変える応力の成分 偏差応力テンソル ' ' ' I ' ' ' δ 偏差応力テンソルの 次の不変量 ( ') J tr ' + + 偏った応力による形の変化 ( ' ) ( ' ) ( ' ) + + ' ' ' 土要素の形を変える応力の成分 偏差応力テンソル 偏った応力による形の変化 有効応力でも全応力でも偏差応力テンソルは同じ 土要素の形を変える応力の成分 偏差応力テンソルの 次の不変量 J 偏差応力 地盤力学でよく用いられる q J r a 偏った応力による形の変化 q a a r r 軸圧縮試験条件では 偏差応力 q は 軸差応力 q a となる q q a

12 ( まとめ ) 地盤力学でよく用いられる応力変数 平均有効応力 ' tr ' 偏差応力 q I J 土を強くする 土を壊そうとする 平均有効応力と偏差応力で土の応力状態を把握 例 ) 有効応力経路 q 土を壊す 土を強くする ' 引張を正としているのでマイナスがついている 土要素の形を変える応力の成分 変形 大きさの変化 + 形の変化 変形 大きさの変化 + 形の変化 + + 等方的な応力偏った応力 q ( 平均有効応力 ) ( 偏差応力 ) ダイレイタンシーせん断変形に伴う体積変化体積膨張を正のダイレイタンシー体積収縮を負のダイレイタンシーと呼ぶ 体積ひずみ ε 平均有効応力 ダイレイタンシー せん断ひずみ γ 偏差応力 q

13 全応力と有効応力の速度表示 ( 全 ) 応力速度テンソル 有効応力速度テンソル 速度型の応力分担式 平均応力速度 平均有効応力速度 偏差応力速度テンソル + I + δ tr( ) tr( ) I I δ δ 全応力と有効応力の速度表示 土の排水条件と応力速度の分担式 + I 間隙水圧の増加速度がゼロの場合 飽和状態にある土の間隙水圧が増加しないように外力が作用したとき ( 間隙水の出入りが自由 ): 完全排水状態 乾燥状態にある土の間隙空気圧が増加しないように外力が作用したとき 偏差応力速度 Dq D q Dt Dt J ( ) ( ) D J J J J Dt q D qdt q 間隙水圧の増加速度がゼロでない場合 飽和状態にある土の間隙水が移動できないとき : 非排水状態 飽和状態にある土の間隙水の移動が瞬時に行われないとき : 部分排水状態. 地盤の変形と応力 < まとめ > 地盤内応力と応力分担 全応力 有効応力 間隙水圧 間隙水圧 有効応力テンソル 有効応力の原理 ( 応力分担式 ) 有効応力テンソルの 次の不変量 : 平均有効応力 偏差応力テンソル 偏差応力テンソルの 次の不変量 : 偏差応力 全応力と有効応力の速度表示 諸関係式 排水条件と応力速度の分担式

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63>

<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63> 7. 粘土のせん断強度 ( 続き ) 盛土 Y τ X 掘削 飽和粘土地盤 せん断応力 τ( 最大値はせん断強度 τ f ) 直応力 σ(σ) 一面せん断 図 強固な地盤 2 建物の建設 現在の水平な地表面 ( 建物が建設されている過程では 地下水面の位置は常に一定とする ) 堆積 Y 鉛直全応力 σ ( σ ) 水平全応力 σ ( σ ) 間隙水圧 図 2 鉛直全応力 σ ( σ ) 水平全応力

More information

Microsoft PowerPoint - suta.ppt [互換モード]

Microsoft PowerPoint - suta.ppt [互換モード] 弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D> 弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

土の三軸圧縮試験

土の三軸圧縮試験 J G S 5 土の三軸試験の供試体作製 設置 サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T- (8.~8.7m) 試験者藤代哲也 供試体を用いる試験の基準番号と名称 試料の状態 供試体の作製 土質名称 置 飽和過程圧密前(試験前供試体 No. 直径 平均直径 D i 初高さ 期平均高さ H i 状体積 V i 含水比 w i 質量 m i 態) 湿潤密度 ρ ti

More information

5-仮想仕事式と種々の応力.ppt

5-仮想仕事式と種々の応力.ppt 1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

Microsoft PowerPoint - 1.せん断(テキスト用)

Microsoft PowerPoint - 1.せん断(テキスト用) 応用地盤力学 同演習 ( 担当 : 佐藤 ) ~2 年生後期, 火曜, 木曜 1 限目 教育目標 : 1) 基礎地盤力学で修得した知識を用いて実際の問題を解く考え方と開放のテクニックを修得する. 2) 土構造物を設計 ( 土圧, 地盤内応力, 支持力, 斜面安定計算 ) できる基礎知識を習得する. 3) 地盤改良などの土の特性を用いた改良技術のメカニズムを修得する. 4) 地震による地盤災害と液状化のメカニズムを知る.

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

第1章 序論

第1章 序論 第 章 応力とその性質. 応力.. 垂直応力とせん断応力物体が外力 (external force) を受けているとき, 物体内部では断面に内力 (internal force) が働き, その断面で分離しないように抵抗している. つまり内力は断面を結合する力である. 断面に垂直な内力が働く場合, その単位面積当たりの値を垂直応力 (normal stress) という. 例えば図 -(a) に示すように,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ 3. 変位とひずみ 3.1 変位関数構造物は外力の作用の下で変形する いま この変形により構造物内の任意の点 P(,,z) が P (',',z') に移動したものとする ( 図 3.1 参照 ) (,,z) は変形前の点 Pの座標 (',', z') は変形後の座標である このとき 次式で示される変形前後の座標の差 u ='- u ='- u z =z'-z (3.1) を変位成分と呼ぶ 変位 (

More information

Microsoft Word - 09弾性01応力ひずみ.doc

Microsoft Word - 09弾性01応力ひずみ.doc 第 章応力とひずみ. 応力 ( 応力の定義 単位面積当りの内力を 応力 と呼び q 応力 :plm Δ0 ( F/ (. P F で定義される この Fを面に垂直 平行の 成分 ( F n, F t に分解すると 対応して F P 垂直応力 :lm Δ0 ( F n / せん断応力 :lm Δ0 ( F t / (. が定義される ( 図 -. せん断応力 は更に 面 R R 内の直交座標, 方向のせん断応力に分解できる

More information

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f 208 3 28. f fd f Df 関数 接線 D f f 0 f f f 2 f f f f f 3 f lim f f df 0 d 4 f df d 3 f d f df d 5 d c 208 2 f f t t f df d 6 d t dt 7 f df df d d df dt lim f 0 t df d d dt d t 8 dt 9.2 f,, f 0 f 0 lim 0 lim

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

<94F E4F8EB25F >

<94F E4F8EB25F > JGS 5 土の三軸試験の供試体作製 設置 初期状態% 設)炉容器 No. 後供試体を用いる試験の基準番号と名称 JGS 51-9 土の繰返し非排水三軸試験 試 料 の 状 態 1) 乱さない 土粒子の密度 ρ s g/cm 供 試 体 の 作 製 ) トリミング 液 性 限 界 w L ) % 土 質 名 称 礫まじり粘土質砂 塑 性 限 界 w P ) % 1 5.1.96.98 質量 m i

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx ~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

土の段階載荷による圧密試験

土の段階載荷による圧密試験 J I S A 1 1 7 土の段階載荷による圧密試験 ( 計算書 ) サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T1- (14.00~14.85m) 試験者藤代哲也初試験機 No. 1 直径 D cm 6.000 含水比 w0 % 5.3 供期最低 ~ 最高室温 0.5~1.0断面積 A cm 8.7 間隙比 e 0, 体積比 f 0 0.930 状土質名称粘性土まじり砂質礫

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで 長柱の座屈 断面寸法に対して非常に長い柱に圧縮荷重を加えると 初期段階においては一様圧縮変形を生ずるが ある荷重に達すると急に横方向にたわむことがある このように長柱が軸圧縮荷重を受けていて突然横方向にたわむ現象を座屈といい この現象を示す荷重を座屈荷重 cr このときの応力を座屈応力 s cr という 図 に示すように一端を鉛直な剛性壁に固定された長柱が自 図 曲げと圧縮を受けるはり + 由端に圧縮力

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

H23 基礎地盤力学演習 演習問題

H23 基礎地盤力学演習 演習問題 せん断応力 τ (kn/m ) H6 応用地盤力学及び演習演習問題 4 年月日. 強度定数の算定 ある試料について一面せん断試験 ( 供試体の直径 D=6.cm, 高さ H=.cm) を行い 表に示す データを得た この土の強度定数 c, φ を求めよ 垂直応力 P (N) 4 せん断力 S (N) 5 8 < 解答 > 供試体の断面積 A=πD /4 とすると 垂直応力 σ=p/a 最大せん断応力

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

6 6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

第3章 ひずみ

第3章 ひずみ 第 4 章 応力とひずみの関係 4. 単軸応力を受ける弾性体の応力とひずみの関係 温度一定の下で, 負荷による変形が徐荷によって完全に回復する場合を広義の弾性というが, 狭義の弾 性では, 負荷過程と徐荷過程で応力 - ひずみ関係が一致しない場合は含めず ( 図 - 参照 ), 与えられたひ ずみ状態に対して応力が一意に定まる, つまり応力がひずみの関数と して表される. このような物体を狭義の弾性体

More information

4.3 材料試験 材料試験とは材料の応力 -ひずみの関係や強度を明らかにするために その材料で作成した供試体( 試験体 ) に荷重を負荷し そのときのひずみ挙動や強度を調べる作業を材料試験という 材料試験では 供試体に一様な応力が発生することが望ましい 一様な応力 とは 至るところ ある

4.3 材料試験 材料試験とは材料の応力 -ひずみの関係や強度を明らかにするために その材料で作成した供試体( 試験体 ) に荷重を負荷し そのときのひずみ挙動や強度を調べる作業を材料試験という 材料試験では 供試体に一様な応力が発生することが望ましい 一様な応力 とは 至るところ ある 4. 均質 等方弾性体の応力とひずみの関係 ( 構成方程式 ) およびひずみエネルギ 4.1 はじめに材料が応力を受けると それに応じてひずみが発生する この応力とひずみの関係は 応力 -ひずみの関係または構成方程式と呼ばれ 一般に材料によって異なる しかも同一の材料でも 応力やひずみを負荷する速度によって発生するひずみ ( または応力 ) の大きさが異なる すなわち ゆっくりと負荷すれば 粘性的な性質が強く現れ

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63> 1/10 平成 23 年 6 月 1 日午後 4 時 33 分 07 ストークスの定理 : 線積分と面積分 07 ストークスの定理 : 線積分と面積分 ストークスの定理はガウスの定理とともに 非常に重要な定理であり 線積分と面積分の関係を表します つまり ガウスの定理 : 面積分と体積分 ( 体積を囲む閉じた面 = 表面 ) の関係 ストークスの定理 : 線積分と面積分 ( 面積を囲む外周の線 )

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成

More information

応用数学A

応用数学A 応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,

More information

2 (1) 軸応力 σが最大値 σ max に達する以前 : 応力 -ひずみ線図は ほぼ直線となる 軸応力- 軸ひずみ線図の傾きからヤング率 Eが dσ/dεとして求まり 同一の応力レベルにおける軸ひずみと周ひずみの比としてポアソン比 νが得られる E=dσ/dε ν= ε θ /ε z (3.1)

2 (1) 軸応力 σが最大値 σ max に達する以前 : 応力 -ひずみ線図は ほぼ直線となる 軸応力- 軸ひずみ線図の傾きからヤング率 Eが dσ/dεとして求まり 同一の応力レベルにおける軸ひずみと周ひずみの比としてポアソン比 νが得られる E=dσ/dε ν= ε θ /ε z (3.1) 1 3. 岩石の変形強度特性 3.1 緒言 2 章では 1 軸や3 軸圧縮試験などの岩石の標準的な試験によって供試体にどのような応力ひずみ状態が現れるかについて説明した 本章では これらの岩石の標準的な試験で得られる岩石の変形強度特性について述べる 岩盤を構成する基質部が岩石であるが 岩盤のもう一つの構成要素である不連続面の強度変形特性とそれらを調べる試験方法については4 章で述べる 基質部と不連続面から成る岩盤の強度変形特性については5

More information

Microsoft PowerPoint - 静定力学講義(6)

Microsoft PowerPoint - 静定力学講義(6) 静定力学講義 (6) 静定ラーメンの解き方 1 ここでは, 静定ラーメンの応力 ( 断面力 ) の求め方について学びます 1 単純ばり型ラーメン l まず, ピンとローラーで支持される単純支持ばり型のラーメン構造の断面力の求め方について説明します まず反力を求める H V l V H + = 0 H = Y V + V l = 0 V = l V Vl+ + + l l= 0 + l V = + l

More information

4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 )

4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 ) 4. 粘土の圧密 4. 圧密試験 沈下量 問 以下の問いに答えよ ) 図中の括弧内に入る適切な語句を答えよ ) ( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U9% の時間 9 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 ) と実験曲線を重ね合わせて圧密度 5% の 5 を決定する ( 6 ) 法がある ) 層厚 の粘土層がある この粘土層上の載荷重により粘土層の初期間隙比.

More information

Microsoft PowerPoint - H24 aragane.pptx

Microsoft PowerPoint - H24 aragane.pptx 海上人工島の経年品質変化 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー ( 埋土施工前に地盤改良を行う : 一面に海上 SD を打設 ) 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー

More information

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D> 単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

<4D F736F F D E682568FCD AB937982CC88EA8EB288B38F6B8E8E8CB12E646F63>

<4D F736F F D E682568FCD AB937982CC88EA8EB288B38F6B8E8E8CB12E646F63> 7.4.5 粘性土の一軸圧縮試験 利点 : 何と言っても 手軽に実施出来る ( 三軸圧縮試験と比較すると ) 従って 常に一軸圧縮強度 q u が原地盤内での非排水状態での圧縮強度 (σ 1 -σ 3 ) f と一致していれば こんなに便利なことはない しかし そうは問屋が卸さない 一軸圧縮試験に対する元々の考え方 : 次の条件が満たされていれば 一軸圧縮強度 q u = 原地盤内での非排水状態での圧縮強度

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

損傷力学による冷間鍛造における欠陥の発生 成長の予測 静岡大学工学部機械工学科助教授早川邦夫 ( 平成 16 年度研究開発助成 AF ) キーワード : 損傷力学, 鍛造, 有限要素法 1. 研究の目的と背景現在, 鍛造品は, より高強度な材料に対する加工や, より高精度な加工が求めら

損傷力学による冷間鍛造における欠陥の発生 成長の予測 静岡大学工学部機械工学科助教授早川邦夫 ( 平成 16 年度研究開発助成 AF ) キーワード : 損傷力学, 鍛造, 有限要素法 1. 研究の目的と背景現在, 鍛造品は, より高強度な材料に対する加工や, より高精度な加工が求めら 損傷力学による冷間鍛造における欠陥の発生 成長の予測 静岡大学工学部機械工学科助教授早川邦夫 ( 平成 16 年度研究開発助成 AF-004014 キーワード : 損傷力学, 鍛造, 有限要素法 1. 研究の目的と背景現在, 鍛造品は, より高強度な材料に対する加工や, より高精度な加工が求められている. このような工程では, 素材や工具に作用する応力はより高くなるため, 工具破壊や素材の損傷や破壊が無視できない.

More information

. 室内試験 本研究では, 著者らが実施した, 異なる拘束圧での排水 三軸圧縮試験結果 ) を用いて, 軟岩の構成式の修正および 検証を行った ここでは, 試験試料や試験概要, 試験結果 等について説明する. 試験概要 試験試料には, 大谷石を用いた 大谷石は, 比較的均一 で目立った空隙がなく,

. 室内試験 本研究では, 著者らが実施した, 異なる拘束圧での排水 三軸圧縮試験結果 ) を用いて, 軟岩の構成式の修正および 検証を行った ここでは, 試験試料や試験概要, 試験結果 等について説明する. 試験概要 試験試料には, 大谷石を用いた 大谷石は, 比較的均一 で目立った空隙がなく, 排水三軸圧縮試験結果に基づく軟岩の構成式の高度化 odification of constitutive model for soft rock based on drained triaxial comression test 岩田麻衣子, 林宏樹, 沢田和秀 3, 森口周二, 八嶋厚 5, 張鋒, 檜尾正也 7 岐阜大学 工学部 iwata_m@gifu-u.ac.j 東海旅客鉄道 3 岐阜大学

More information

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1 オープン CAE 勉強会 @ 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3 [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 ESI@ 新宿 1 数値流体力学 輪講に関して 目的 数値流体力学の知識 ( 特に理論ベース を深め OpenFOAM の利用に役立てること 本輪講で学ぶもの 数値流体力学の理論や計算手法の概要

More information

Taro-2012RC課題.jtd

Taro-2012RC課題.jtd 2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63> 8-1 第 8 章梁の微分方程式 ポイント : ベルヌーイ オイラー梁による梁の微分方程式 平面保持と法線保持の仮定 本章では 梁理論の基本となるベルヌーイ オイラー梁に従い 3 次元物体である梁を 1 次元の線材に置換し その挙動を支配する梁の微分方程式を誘導する このベルヌーイ オイラー梁は 平面保持と法線保持の両仮定で成立しており この 種の仮定を用いることで 梁内の応力やひずみを容易に求めることができる

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る 格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています

More information

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動 2. 浅水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である. 連続する n 個のデータを平均して, 中央のデータの値に置き換える平滑化が,

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

Microsoft Word - 力学12.doc

Microsoft Word - 力学12.doc 慣性モーメント. 復習 角運動量と角速度 L p υ, L 質点の角運動量 : ( ) ( ) 剛体の角運動量 L ( ) ρ ( ) ( ) d 注 ) この積分は普通の三重積分 d d d ( ) ( ) A B C A C B A B より ベクトル三重積の公式 ( ) ( ) ( )C ( ) L ( ) ( ) R 但し 慣性モーメント (oent of net): I R( ) ρ ;

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

< B795FB8C6094C28F6F97CD97E12E786477>

< B795FB8C6094C28F6F97CD97E12E786477> 長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)

More information

専門科目 ( 一 ) 数学 [ 数学 ]. 行列 A 0 A 0.5 について, 次の (),() に答えなさい () 固有方程式を示して, 固有値を求めなさい. ただし, 固有値は, 固有ベクトルは としなさい. () 固有ベクトルを求めなさい., そうでない

専門科目 ( 一 ) 数学 [ 数学 ]. 行列 A 0 A 0.5 について, 次の (),() に答えなさい () 固有方程式を示して, 固有値を求めなさい. ただし, 固有値は, 固有ベクトルは としなさい. () 固有ベクトルを求めなさい., そうでない 平成 30 年度 神戸大学大学院工学研究科博士課程前期課程入学試験 市民工学専攻 専門科目 ( 一 ): 数学 問題用紙の枚数 ページ番号 数学 枚, 数学 解答用紙の枚数 4 枚 ただし, 計算用紙を 枚配付 試験日時 : 平成 9 年 8 月 8 日 ( 月 ) 3:00 4:00 専門科目 ( 一 ) 数学 [ 数学 ]. 行列 A 0 A 0.5 について, 次の (),() に答えなさい.

More information

PowerPoint Presentation

PowerPoint Presentation 1. 力のつりあい 力学の復習と準備 ベクトル (vector) B C A A B C この講義の資料では大抵の専門書や大学の教科書 論文等と同じくベクトル (vector) を太字のイタリックで書きます 矢印や縦線を追加した字で書いてもかまいません A 質点 (partcle, ass pont, ateral pont) 質点? 大きさは無視できるが 質量を無視できない仮想の物体 パチンコ玉

More information

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D> 力のつり合い反力 ( 集中荷重 ) V 8 V 4 X H Y V V V 8 トラス部材に生じる力 トラスの解法 4k Y 4k 4k 4k ' 4k X ' 30 E ' 30 H' 節点を引張る力節点を押す力部材に生じる力を表す矢印の向きに注意 V 0k 反力の算定 V' 0k 力のつり合いによる解法 リッターの切断法 部材 の軸力を求める k k k 引張側に仮定 3 X cos30 Y 04

More information

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A No.1/2 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A,B,C の座標はそれぞれ A (,6,-2), B (4,-5,3),C (-5.1,4.9,.9) である. 次の問いに答えよ. (1) を求めよ. (2) および の向きを解答用紙の図 1 に描け. (3) 図 1 の平行六面体の体積

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

Microsoft PowerPoint - cm121204mat.ppt

Microsoft PowerPoint - cm121204mat.ppt いまさらいまさら聞けない計算力学の常識常識 講習会 構造解析に入る前に知っておきたい 常識 5 話知ってそうで知らない境界条件処理のいろいろ 7 話固体の非線形解析って何? 9 話固体の非線形解析における 2 つの論点 10 話破壊現象の数値解析の罠 東北大学斉木功 いまさらいまさら聞けない計算力学の常識常識 講習会 5 話知ってそうで知らない境界条件処理のいろいろ 5.1 等分布荷重は均等にした集中荷重と同じでいいの?

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

44_417

44_417 * ** 福岡俊道 4. 力と変位のつり合い - 不静定問題とは - 図 10(a) に示した断面積がA の真直棒の中央部に引張荷重 を与える問題を考える. 荷重点より上の部分には /A の引張応力が作用し, 下の部分の応力は零である. つぎに, 図 10() のように棒の下端を固定した場合に各部に作用する力を求める. 上下固定端に作用する反力を R,S とすると, 力の釣り合いより ( R + S

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information