fa-problem.dvi

Size: px
Start display at page:

Download "fa-problem.dvi"

Transcription

1 6//4 by. : : : : : : : : : : : : : : :. : : : : : : : : : : : : : : 3. : : : : : : : : : 4. : : : : : : : : : 3 5. : : : : : : : : : : : : : : : : : : : 3 6. : : : : : : : : : : : : 3 7. : : : : : : : : : : : 3 8. : : : : : : : : : : : : 3 9. : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : 4. : : : : : : : : : : : : : : : : : : : : : 4. : : : : : : : : : : : : : : : 4 3. : : : : : : : : : : : : : : 4 4. : : : : : : : : : : : : : : : : : : : : : : 5 5. : : : : : : : : : : : : : : : : : : : : 5 6. : : : : : : : : : : : : : : : : : : : : : : : : 5 7. : : : : : : : : : : : : : : : : : : : : : : : : 5 8. LCR : : : : : : : : : : : : : : : : : : : : : : : 6 9. LCR : : : : : : : : : : : : : : : : : : : 6 7. (A): (B): (C):

2 ... () at + b () at + bt + c (3) e at+b (4) co(t + ) (5) in(t + ) (6) co t (7) in t ( 8 a (» < at t<b) (» t<b) (8) f (t) (9) f (t) b (b» t) : (b» t) 8 8 < a at (» >< (» t<b) t<b) () f 3 (t) b () f : 4 (t) a (b» t<c) (b» t) >: (c» t) () (8) a h ; b h. () () h? (3) () a ; b d h; c d + h. h (3) (3) h? (3) (3)' d? ( (» t<b) (4) f 5 (t) a (b» t) f(t) (8) f(t) (9) f(t) () f(t) () a a a a b t b t b t b c t.. b b a b c d () () (3) (4) + a + a a (5) (6) (a 6 b) (7) ( +) ( a)( b) L[f L[f (t)]() +f () (t)]() () t + a () (t + b) (3) (t + c) 3

3 4. 4. L[f L[f (t)]() +f () (t)]() ; L[f (t)]() L[f (t)]() f () f () () co t () t in t (3) t co t (4) e at in t (5) e at co t (6) te at () y (t) + y(t) ; y() y ; y () v () y (t) (ff + fi)y (t) +fffiy(t) ; y() y ; y () v (ff 6 fi) (3) y (t) ffy (t) +ff y(t) ; y() y ; y () v (4) y (t) ffy (t) +(ff + fi )y(t) ; y() y ; y () v (fi>) (5) y (t) 3y (t) +3y (t) y(t) e t ; y() y () y () () t in t () t co t (3) t n (4) t coh at (5) t inh at (6) t e t 7. L[f (t)] F () L[tf (t)] F () F () F () tf (t) L [ F ()] f (t) 7. ()()(3) 6.()() (4)(5) () () (3) (4) log + (5) log ( + ) ( + ) ( + ) () t m e at () e at in t (3) e at co t (4) te at in t () () ( +) + ( +) + (3) + +5 (4)

4 .. (i) (ii) () ( + ) () ( + ). Λ convolution f Λ g(t) f (t fi )g(fi ) dfi: f (t) Λ g(t). () f Λ g(t) g Λ f (t) () f Λ (g + h)(t) f Λ g(t) +f Λ h(t) (3) (f Λ g) Λ h(t) f Λ (g Λ h)(t).. U () L[u(t)]() () (3) (t fi ) n u(fi ) dfi () co(t fi )u(fi ) dfi (4) in(t fi )u(fi ) dfi e t fi u(fi ) dfi 3. H() F ()G(), F () L[f (t)], G() L[g(t)] L [H()] L [F ()G()] L [L[f (t)]l[g(t)]] L [L[f Λ g(t)]] f Λ g(t) H() 3. () ( a) () ( a) (3) ( + ) (4) ( + ) (5) ( + ) (6) ( + ) (7) ( + ) 4

5 4. 4. () y(t) t ++ () y(t) + (3) y(t) +t + (4) y(t) int + (5) y(t) int + in(t fi )y(fi ) dfi co(t fi )y(fi ) dfi e t fi y(fi ) dfi in (t fi )y(fi ) dfi in(t fi )y(fi ) dfi () y (t) y(t) ++ e t fi y(fi ) dfi; y(). () y (t) t + (t fi )y(fi ) dfi; y() y () Mu (t) Ku(t) μu (t); t> u() u ; u () v M;μ;K Mu (t) Ku(t) μu (t) +K in pt; t> u() ; u () M;K;K ;μ;p 5

6 8. LCR 8. LCR I R (t) + L I (t) + I(t) ; t> LC I(t) I() I ; I () I R;L fl R L p LC q () >fl ( fl J I +fli ) q () <fl ( fl J I +fli ) (3) fl (J I + fli ) 9. LCR 9. LCR E(t) I (t) + R L I(t) + LC I(t) I() I I(fi ) dfi E(t); t> R;L fl R L p LC E(t) E ;p;a;b 8 >< (» t<a) () E(t) E () E(t) E in pt (3) E(t) E (a» t<b) >: (b» t) ( 8 E (» < E t<a) (4) E(t) (5) E(t) a t (» t<a) (a» t) : (a» t) E(t) (3) E(t) (4) E(t) (5) E E E a b t a t a t (6) E(t) ffi(t) : ( (» t<a) (7) E(t) : E (a» t) 8 < E (8) E(t) a t (» t<a) : (5)(7) : E (a» t) 6 (3): () (4): (8) (5): (9) (6): ()'(3)"

7 . () L[at + b] al[t] +bl[] a + b. () L[at + bt + c] al[t ]+bl[t] +cl[] a 3 + b + c. (3) L[e at+b ]L[e b e at ]e b L[e at ] eb a. (4) L[co(t + )] L[co t co in t in ] co L[co t] in L[in t] (5) L[in(t + )] L[in t co + co t in ] co L[in t] +in L[co t]» co t + (6) L[co t]l (L[co t] +L[]) + ( +4). (7) L[in t]l[ co t]l[] L[co t] (8) L[f (t)] (9) L[f (t)] Z b Z b ae t dt a( e b ). a b te t dt a( ( + b)e b ) b. ( +4). () (8) f (t), (9) f (t) f 3 (t) f (t) f (t) L[f 3 (t)] L[f (t)] L[f (t)] a(b +e b ) b : () L[f 4 (t)] Z c b ae t dt a(e b e c ). () e h : () e h lim h h h (3) e d e h e h (4) L[f 5 (t)] h Z b : : (3) e d e h e h lim h h ae t dt ae b. e d : (3) lim e d : d co in + : co + in + : (4)(5). L[e i(t+ ) ]e i L[e it ]. ei i (co + i in )( + i) + () (3). L[ffi(t)]. (3). L[ffi(t d)] e d L[ffi(t)] e d. 7

8 .»» b () L bl be at. + a ( a)» () L a» a + a L in at. + a a»»» b (3) L L bl a a a coh at b» a a L coh at b inh at. a a» a (4) L b c d h a i» b h» c d L +L +L i+l» 3 4» 3 4 al + bl + c» L + d» L a + 4 bt + c t + d 6 t3.»» (5) L L ( +) co t. +»» (6) L ( a)( b) a b L a b e bt ).» (7) L 4 e t co + +4 (5). A; B; C ( +) A + B + C + a b (eat p 3t p 5 p in 3t. 3 ( ) ( A) ( +) (B + C) (6) 3 ( +) 3 ( +) A + B + C D + + E 3 ( +) A + B + C 3 + D + E A ( +) + B + C D( +)+E D + 3 ( +) A B C D E ( : +) ( E E D ) 8

9 (7). 4 ( +) ( +) +3 + ( 5 +) +3 ( +) +3 ψ F p () p 5 3 p +( 3) 3 p +( 3) (?) (Π) (?) F ( +) F () F ( +) ( 9.(4) ) + +4 ± ± p 3i p 3i ( + )( ) (6)»» " L 4 L L 5 p # 3i + +4 ( + )( ) e t 5 p 3i e +t e t +» L 4 e t co p3t 5 p p in 3t (Π) x8. x9. 3. () () (3) () () L[t + a] L[] + a () L[(t + b) ] a +. L[(t + b)] + b (3) L[(t + c) 3 ] L[3(t + c) ]+c 3 6c b + L[t b + b] b c3 + 3 L[(t + c) ] c3 + 3c +. L[t + a] L[t] + L[a] L[(t + b) ]L[t ]+L[bt] +L[b ] L[(t + c) 3 ]L[t 3 ]+L[3ct ]+L[3c t]+l[c 3 ] 9

10 4. L[f (t)] L[f (t)] () L[co t] L[ cot in t] + L[ in t] + + ( +4). () L[(t in t) ] L[t in t] L[co t] L[t in t] L[t in t] + L[co t] ( + ). (3) () L[(t co t) ]L[co t] L[t in t] ( ) ( + ) L[t co t] L[(t co t) ]+ ( + ). (4) F 4 () L[e at in t], F 5 () L[e at co t] L[(e at in t) ]af 4 ()+F 5 () F 4 (). ( a)f 4 F 5. (5) (4) F 4 ;F 5 L[(e at co t) ]af 5 () F 4 () F 4 (). F 4 +( a)f 5 (). (4)(5) Fψ 4 ;F 5 ψ ψ ψ a F 4 a F 5 F 4 F 5 ψ. ( a) + a (6) F 6 () L[te at ] L[(te at ) ] L[e at + ate at ] a + af 6 (). F 6 () L[(teat ) ]+ a + af 6() F 6 () ( a). (). ) L[co t]l[] L[in t] L[in t].(7) ) co t (co t +).(6) ()(3). L[t in t] d L[in t]; d L[t co t] d L[co t] d 6.()()

11 (4)(5). ) L[e at e it ]L[e (a+i)t ] ) L[e at in t]() L[in t]( a); L[e at co t]() L[co t]( a).(7) 8.()(3) 5. L[y(t)] Y () () L[y (t)] + L[y(t)] Y () y() y () + Y () ( + )Y () y v. Y y + v () + y v y(t) L [Y ()] y co t v + in t. () L[y (t)] (ff + fi)l[y (t)] + fffil[y(t)] Y () y() y () (ff + fi)y () +(ff + fi)y() + fffiy () ( (ff + fi) + fffi)y () y v +(ff + fi)y. Y () y + v (ff + fi)y ( ff)( fi) c v fiy ff fi, c ffy v ff fi. y(t) L [Y ()] c e fft + c e fit. (3) L[y (t)] ffl[y (t)] + ff L[y(t)] c ff + c fi. ( ff + ff )Y () y() y () + ffy() ( ff) Y () y +ffy v. Y y ffy + v c c () ( ff) ff + ( ff). c y, c v ffy. y(t) L [Y ()] (c + c t)e fft. (4) L[y (t)] ffl[y (t)] + (ff + fi )L[y(t)] ( ff + ff + fi )Y () y() y () + ffy() (( ff) + fi )Y () y +ffy v. Y y ffy + v c ( ff) c () ( ff) + fi ( ff) + fi + fi ( ff) + fi. c y, c v ffy. fi y(t) L [Y ()] e fft (c co fit + c in fit). (5) L[y (t)] 3L[y (t)] + 3L[y (t)] L[y(t)] ( )Y () y() y () y () + 3(y() + y ()) 3y() ( ) 3 Y () L[e t ]. Y () ( ) ( ). 4 y(t) L [Y ()] 6 et t 3.

12 (3). 4.(6) (4)..(7) 9. (5). 8.(). y (t) +ay (t) +by(t) f (t) (Λ) dm dt m m Y () ( + a + b)y () +( ) L[f (t)]() (ΛΛ) ( ). (Λ) 3 D d dt (D + ad + b)y(t) y (t) (Λ) y Λ (t) 3 (Λ) y (t) +y Λ (t) y (t) +y Λ (t) 6. () L[t in t] d d L[in t] d d + ( + ). () L[t co t] d d L[co t] d d + ( + ). (3) L[t n ] d n d n L[] ( ) n d d ( )n ( ) n n n n+ : n+ (4) L[t coh at] d d L[coh at] d d a + a ( a ). (5) L[t inh at] d d L[inh at] d a d a (6) L[t e t ] d d L[e t ] d d ()(). 4.()(3) (6). 8.() a ( a ). ( ) () 6.() () 6.() (3) () 6.() (4)(5) d L[f (t)] L[tf (t)], d» f (t) t L d d L[f (t)]

13 () ( + ) + ( ) ( + ) + ( + ) 6.()»»» L ( + ) L L + ( + ) in t t co t (in t t co t). 3»» () L ( + ) L t in t. ( + )»»» (3) L L + L ( + ) ( + ) ( + ) t co t + (in t t co t) (in t + t co t). (4) d d log + +» L»log + t L ( co t). + t (5) d d log» L»log t L t (et ). 8. () L[t m e at ]() L[t m ]( a) () L[e at in t]() L[in t]( a) m ( a) m+. (3) L[e at co t]() L[co t]( a) ( a) +. a ( a) +. (4) L[te at in t]() d d L[eat in t]() d L[in t]( a) d d d ( a) + ( a) (( a) + ). (). 4.(6) 5.(5) 6.(6) (4). 6.() L[te at in t]() L[t in t]( a) 9. ( a) (( a) + ) : () F () F ( +). + L [F ()] co t L [F ( +)]e t co t. () F () F ( +). + L [F ()] in t L [F ( + )] e t in t. 3

14 ( +) (3) + +5 ( +) + F () F ( +). + + L [F ()] co t in t L [F ( + )] e t ( co t in t). (4) F () ( +) 5 ( +) L [F ()] co F ( +). +3 p 3t p 5 in 3 p 3t L [F (+)] e co p3t t p 5 p in 3t 3. (4)..(7). (i) (ii) () (i) L[in t] +» L» ( + ) L L[in t]»» (ii) L ( + ) L + () (i) ()» L ( co t) ( + )» L ( + ) ( co t): L» L» ( co t) in fi dfi (co t ): Z t ( co fi) dfi (t in t) (t in t): 3»» (ii) L L ( + ) + (t in t) (t in t): 3 ()(ii). A + B + C + D + : (ii) (i) 4

15 . () (f Λ g)(t) Z (?) t f (t fi )g(fi ) dfi f (r)g(t r)( dr) g(t fi )f (fi ) dfi (g Λ f )(t). (?) r t fi (dr dfi ) () (f Λ (g + h))(t) (3) ((f Λ g) Λ h)(t) f (t fi )g(fi ) dfi + fi (f Λ(gΛh))(t) r)h(r) dr dfi Z fi ρ fi f (t fi )(g(fi )+h(fi )) dfi f (t fi )h(fi ) dfi (f Λg)(t)+(f Λh)(t). (f Λ g)(t fi )h(fi ) dfi f (t fi r)g(r) dr h(fi ) dfi f (t fi )(gλh)(fi ) dfi f (t fi )g(fi r)h(r) dr dfi (i) f (t fi ) (ii) (i) (ii) ff (i) f (t fi r)g(r) dr h(fi ) dfi (ffl) (Π) (Λ) Z t Z fi t Z fi t Z ρ Z fi (.) (ii) f (t ρ)g(ρ fi ) dρ h(fi ) dfi f (t ρ)g(ρ fi )h(fi ) dρ dfi f (t ρ)g(ρ fi )h(fi ) dfi dρ f (t fi )g(fi r )h(r ) dr dfi Z fi g(fi (ffl) ρ fi + r (dρ dr) (Π) ρ fi (Λ) fi r ;ρ fi (.) r r;fi fi. (Λ) (.) (Λ) fi r;ρ fi. () () (3) (f Λ )(t) (Λ f )(t) 5

16 ? ( Λ g)(t) (g Λ )(t) 6 g(t); (f Λ f )(t) 6 (ffi). (ffi) g(t) f (t). g(t) t, f (t) co t ( Λ g)(t) (f Λ f )(t) (t fi ) dfi t 6 g(t). co fi co(t fi ) dfi (t co t + in t) t ß (f Λ f )(t) <.. () (t fi ) n u(fi ) dfi t n Λ u(t) L[t n Λ u(t)] L[t n ]L[u(t)] n U (): n+ () in(t fi )u(fi ) dfi int Λ u(t) L[in t Λ u(t)] L[in t]l[u(t)] + U (): (3) (4) co(t fi )u(fi ) dfi cot Λ u(t) L[co t Λ u(t)] L[co t]l[u(t)] e t fi u(fi ) dfi e t Λ u(t) + U (): L[e t Λ u(t)] L[e t ]L[u(t)] U (): 3.»» () L L ( a) L L [t] L e atλλ L L t Λ e atλλ a () L» ( a) (t fi )e afi dfi a (eat at ):» L a L L e atλ L e atλλ L L e at Λ e atλλ a e a(t fi ) e afi dfi te at : 6

17 . 4.(6), 5.(3) (3).()»»»» L L ( + ) in t L L [] L +» L»L Λ in t in fi dfi ( co t): (4).() (3)»»»» L L ( + ) co t L L [] L ( + )» L»L Λ co t (5) 7.() ( co fi) dfi (t in t): 3»»»»» L L ( + ) + in t in t L L L +» in t L»L in t Λ in (t fi ) in fi dfi (in t t co t): 3. in ff in fi (co(ff+fi) co(ff fi)) (6) 7.()»» L L ( + ) +» in t L»L Λ co t» L L +» in t L [co t] in (t fi )cofi dfi t in t:. in ff co fi (in(ff +fi) + in(ff fi)) 7

18 (7) 7.(3)»» L L ( + ) + L [L [co t] L [co t]] + L [L [co t Λ co t]] co (t fi )cofi dfi (t co t + in t):. co ff co fi (co(ff+fi)+co(ff fi)) 4. L[y(t)] Y () Y () Y () y(t) () Y () L[t +]+L[in t Λ y(t)] L[t] +L[] + L[in t]y () + + Y () + Y () ( + )( +) y(t) L [Y ()] + t + t + t3 6. () Y () L[]+L[co tλy(t)] L[]+L[co t]y () + Y + () Y () + ( ) + (?) ( ) y(t) L [Y ()] + te t.. (?) 4.(6) (3) Y () L[ + t]+l[e t Λ y(t)] L[] + L[t]+L[e t ]Y () + + Y () Y () ( ) + ( ) ( ) y(t) L [Y ()] e t 4 (et t ) 4 + t et.. ( ) 3.() (4) Y () L[in t] +L[in t Λ y(t)] L[in t] p +L[in t]y () L[in t] p Y () L[in t] + p +. y(t) p p L [Y ()] in t. (5) Y () L[in t]+l[in tλy(t)] L[in t]+l[in t]y () Y () L[in t] L[in t]. y(t) L [Y ()] t. 8

19 . () y(t) t++in t co fiy(fi ) dfi co t in fiy(fi ) dfi ( ) y (t) +co t co t in ty(t) y (t) in t in ty(t) t + y(t) +y(t) t +. co fiy(fi ) dfi +in t co ty(t)+in t co fiy(fi ) dfi + co ty(t) +cot in fiy(fi ) dfi ( ) in fiy(fi ) dfi + ( ) y (t) t + t + C. y(t) 6 t3 + t + C t + C. ( ) y(), ( ) y () C C. y(t) +t + t + 6 t3. 5. L[y(t)] Y () 4. () Y () y() L[y(t)] + L[] + L[e t Λ y(t)] Y ()+ + Y () y() Y () ( ) + (~) ( ) y(t) L [Y ()] t + 4 (et t ) 4 + t + 4 et.. (~) 3.() () Y () y() y () L[t] +L[t Λ y(t)] L[t] +L[t]Y () + Y () Y () 4. y(t) L [Y ()] + (inh t in t). r K 6. M, k μ M u (t) +ku (t) + u(t). U () L[u(t)] U () u v +k(u () u )+ U () ( +k+ )U () u v ku. U u + v +ku () (~). +k + k ± p k 3 9

20 (k > ). ff (k p k ) > fi (k + p k ) 5.() u(t) c e fft +c e fit. c v p +(k + k )u p ; c v +(k p k )u p. k k fi <ff< μ > 4KM, k> u (k ). ff k 5.(3) u(t) (c + c t)e fft. c u ; c v + ku. ff < μ K μ 4KM, k u c c < p 3(k <). ff ± ifi (ff k; fi k ) 5.(4) u(t) (c co fit + c in fit)e fft. c u ; c v + ku p k. ff < μ < 4KM, k< u μ k ff, fi c co t + c in t

di-problem.dvi

di-problem.dvi 2005/04/4 by. : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2. : : : : : : : : : : : : : : : : : : : : : : 3 3. : : : : : : : : : : : : : : : : : : : : : : : : : 4 4. : : : : : : : : : : : : :

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

取扱説明書[N906i]

取扱説明書[N906i] 237 1 dt 2 238 1 i 1 p 2 1 ty 239 240 o p 1 i 2 1 u 1 i 2 241 1 p v 1 d d o p 242 1 o o 1 o 2 p 243 1 o 2 p 1 o 2 3 4 244 q p 245 p p 246 p 1 i 1 u c 2 o c o 3 o 247 1 i 1 u 2 co 1 1 248 1 o o 1 t 1 t

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

laplace.dvi

laplace.dvi Λ 2.1 2004.2.20 1 Λ 1 2 Ay = u 2 2 A 2 u " # a 11 a 12 A = ; u = a 21 a 22 " # u 1 u 2 y Ay = u (1) A (1) y = A 1 u y A 2 x i i i =1; 2 Ax 1 = 1 x 1 ; Ax 2 = 2 x 2 (2) x 1 x 2 =0 (3) (3) (2) x 1 x 2 x

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

.. p.2/5

.. p.2/5 IV. p./5 .. p.2/5 .. 8 >< >: d dt y = a, y + a,2 y 2 + + a,n y n + f (t) d dt y 2 = a 2, y + a 2,2 y 2 + + a 2,n y n + f 2 (t). d dt y n = a n, y + a n,2 y 2 + + a n,n y n + f n (t) (a i,j ) p.2/5 .. 8

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

arma dvi

arma dvi ARMA 007/05/0 Rev.0 007/05/ Rev.0 007/07/7 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 : : : :

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

ds2.dvi

ds2.dvi 1 Fourier 2 : Fourier s(t) Fourier S(!) = s(t) = 1 s(t)e j!t dt (1) S(!)e j!t d! (2) 1 1 s(t) S(!) S(!) =S Λ (!) Λ js T (!)j 2 P (!) = lim T!1 T S T (!) = T=2 T=2 (3) s(t)e j!t dt (4) T P (!) Fourier P

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

C-1 210C f f f f f f f f f f f f f f f f f f f f r f f f f f f f f f f f f f R R

C-1 210C f f f f f f f f f f f f f f f f f f f f r f f f f f f f f f f f f f R R 4 5 ff f f f f f f f f f f f f ff ff ff r f ff ff ff ff ff ff R R 7 b b ï φφ φφ φφ φ φ φφ φφφφφφφφ φφφφ φφφφ ù û û Æ φ ñ ó ò ô ö õ φφ! b ü ú ù û ü ß μ f f f f f f f f f f b b b z x c n 9 f φ φ φ φ φ φ

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

K 1 mk(

K 1 mk( R&D ATN K 1 mk(0.01 0.05 = ( ) (ITS-90)-59.3467 961.78 (T.J.Seebeck) A(+ T 1 I T 0 B - T 1 T 0 E (Thermoelectromotive force) AB =d E(AB) /dt=a+bt----------------- E(AB) T1 = = + + E( AB) α AB a b ( T0

More information

取扱説明書 [N-03A]

取扱説明書 [N-03A] 235 1 d dt 2 1 i 236 1 p 2 1 ty 237 o p 238 1 i 2 1 i 2 1 u 239 1 p o p b d 1 2 3 0 w 240 241 242 o d p f g p b t w 0 q f g h j d 1 2 d b 5 4 6 o p f g p 1 2 3 4 5 6 7 243 244 1 2 1 q p 245 p 246 p p 1

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

/i 1,,._ /\YF*r$-/t, /.:/ lrfi-/l ty)t- /:V-fi-)v '+l'y)t * /;v--t:--l.'>l la- ' i>rtv /iv-i.-,v /r/tv /, / 'v1 -;l- /v F;:*#(2) A^*f *#(3) t45.5i *7v>/tvz

More information

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1 . ( + + 5 d ( + + 5 ( + + + 5 + + + 5 + + 5 y + + 5 dy ( + + dy + + 5 y log y + C log( + + 5 + C. ++5 (+ +4 y (+/ + + 5 (y + 4 4(y + dy + + 5 dy Arctany+C Arctan + y ( + +C. + + 5 ( + log( + + 5 Arctan

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 2 2 2 2.1 IS-LM 1 2.2 1 1 (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 1. 2. 1 1 ( ) 2.3. 3 2.3 1 (yield to maturity) (rate of return)

More information

LGBZ3107-T3A1

LGBZ3107-T3A1 LGBZ3107 - T3B LGBZ3107 - T3D LGBZ3107 - T3F LGBZ3107 - T3H LGBZ3107 - T3J LGBZ3107 - T3L LGBZ3107 - T3K LGBZ3107 - T3I LGBZ3107 - T3G1 LGBZ3107 - T3E1 LGBZ3107 - T3C1 LGBZ3107 - T3A1 N0215-010615

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information

油圧1.indd

油圧1.indd 4 2 ff f f f f f f f f f f f f ff ff ff r f ff ff ff ff ff ff R R 6 7 φφ φφ φφ φ φ φφ φφφφφφφφ φφφφ φφφφ φφ! φ f f f f f f f f f f 9 f φ φ φ φ φ φ φ φ φφ φφ φ φ φ φ SD f f f KK MM S SL VD W Y KK MM S SL

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

38

38 3 37 38 3.1. 3.1.1. 3.1-1 2005 12 5 7 2006 5 31 6 2 2006 8 10 11 14 2006 10 18 20 3.1-1 9 00 17 3 3.1.2. 3.1-2 3.1-1 9 9 3.1-2 M- M-2 M-3 N- N-2 N-3 S- S-2 S-3 3.1.2.1. 25 26 3.1.2.2. 3.1-3 25 26 39 3.1-1

More information

A A3

A A3 818 A3 A3 8 A3 0100 0.Ma 1.5Ma 700s 70 IS 6g/6 1.0 1.5.0 01000100 0 0 0 SLBABCA CBCCCTATC 1 T Y S LB A B CA CC CB C TA TC CB TA/TC 63 0 1 0 1 0 0. 4. 8.14 1. 17.. 41.59 47.79 9.87 0.00779 0.009 0.05 0.01

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography) B 1) B.1 B.1.1 ( ) B.1 1 50 100 m B.1.2 (nondestructive testing:ndt) (nondestructive inspection:ndi) (nondestructive evaluation:nde) 175 176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a + 6 ( ) 6 5 ( ) 4 I II III A B C ( ) ( ), 5 7 I II III A B C ( ) () x π y π sin x sin y =, cos x + cos y = () b c + b + c = + b + = b c c () 4 5 6 n ( ) ( ) ( ) n ( ) n m n + m = 555 n OAB P k m n k PO +

More information

SAR: Synthetic Aperture Radar 0.52 Radarsat SAR 2004 ALOS i

SAR: Synthetic Aperture Radar 0.52 Radarsat SAR 2004 ALOS i 2002 Noise Reduction and Application of Ocean Images Using Synthetic Aperture Radar Slide-Look Processing 2003 2 21 1055147 SAR: Synthetic Aperture Radar 0.52 Radarsat SAR 2004 ALOS i 1 1 1.1 : : : : :

More information

ARspec_decomp.dvi

ARspec_decomp.dvi February 8, 0 auto-regresive mode AR ) AR.. t N fx t);x t);x3 t); ;xn t)g Burg AR xt) a m xt m t)+fft) AR M Fina Prediction Error,FPE) FPEM) ^ff M +MN MN ^ff M P f) P f) ff t M a m e ißfm t AR [,,3]. AR

More information