II I Riemann 2003

Size: px
Start display at page:

Download "II I Riemann 2003"

Transcription

1 II I Remann 2003

2 Dfferental Geometry II Dfferental Geometry II I Dfferental Geometry I

3 Remann Remann Remann Smons

4 V V R V V V R v V v(f) = f(v) (f V ) v : V R v (V ) (V ) V δ j δ j = { 1, = j 0, j V {u 1,..., u n } f (u j ) = δ j V {f } V dm V = dm V {f } {u j } {}}{{}}{ V V V V V p+q V (p, q) T (p,q) (V ) T (p,q) (V ) (p, q) T (p,q) (V ) T (p,q) (V ) A T (r,s) (V ) B (A B)(g 1,..., g p+r, v 1,..., v q+s ) = A(g 1,..., g p, v 1,..., v q )B(g p+1,..., g p+r, v q+1,..., v q+s ) (g 1,..., g p+r V, v 1,..., v q+s V ) p q p+r q+s {}}{{}}{ A B : V V V V R A B V (p + r, q + s) A B A B T (1,0) (V ) = (V ) = V T (0,1) (V ) = V

5 2 1 V u 1,..., u p V f 1,..., f q (u 1 u p f 1 f q )(g 1,..., g p, v 1,..., v q ) = g 1 (u 1 ) g p (u p )f 1 (v 1 ) f q (v q ) (g 1,..., g p V, v 1,..., v q V ) p q {}}{{}}{ u 1 u p f 1 f q : V V V V R u 1 u p f 1 f q V (p, q) V T (p,q) (V ) T (r,s) (V ) T (p+r,q+s) (V ) (A, B) A B q p {}}{{}}{ V V V V T (p,q) (V ) (u 1,..., u p, f 1,..., f q ) u 1 u p f 1 f q A B A B u 1 u p f 1 f q u f j V T (V ) = T (p,q) (V ) p,q=0 T (0,0) (V ) = R T (p,q) (V ) T (r,s) (V ) T (p+r,q+s) (V ) (A, B) A B T (V ) T (V ) T (V ) T (V ) V V n u 1,..., u n V f 1,..., f n u 1 u p f j 1 f j q (1 1,..., p, j 1,..., j q n) T (p,q) (V ) T (p,q) (V ) n p+q

6 u 1 u p f j 1 f jq (1 1,..., p, j 1,..., j q n) 1,...,p=1 j 1,...,jq=1 a 1 p j 1 j q u 1 u p f j 1 f j q = 0 (a 1 p j 1 j q R) 1 k 1,..., k p, l 1,..., l q n k 1,..., k p, l 1,..., l q (f k 1,..., f kp, u l1,..., u lq ) a k 1 k p l 1 l q = 0 u 1 u p f j 1 f jq u 1 u p f j 1 f jq (1 1,..., p, j 1,..., j q n) T (p,q) (V ) T (p,q) (V ) A V v v = f j (v)u j j=1 V g g = g(u )f g 1,..., g p V v 1,..., v q V 1 =1 =1 A(g 1,..., g p, v 1,..., v q ) = A g 1 (u 1 )f 1,..., g p (u p )f p, = = 1,...,p=1 j 1,...,jq=1 1,...,p=1 j 1,...,jq=1 p =1 f j 1 (v 1 )u j1,..., j 1 =1 f jq (v q )u jq j q =1 g 1 (u 1 ) g p (u p )f j 1 (v 1 ) f j q (v q )A(f 1,..., f p, u j1,..., u jq ) A(f 1,..., f p, u j1,..., u jq ) (u 1 u p f j 1 f jq )(g 1,..., g p, v 1,..., v q ). A = 1,...,p=1 j 1,...,jq=1 A(f 1,..., f p, u j1,..., u jq )u 1 u p f j 1 f j q u 1 u p f j 1 f j q T (p,q) (V )

7 4 1 u 1 u p f j 1 f j q (1 1,..., p, j 1,..., j q n) T (p,q) (V ) T (p,q) (V ) n p+q T (p,q) V A A = A(f 1,..., f p, u j1,..., u jq )u 1 u p f j 1 f j q 1,...,p=1 j 1,...,jq=1 A A(f 1,..., f p, u j1,..., u jq ) A A = A(f 1,..., f p, u j1,..., u jq )u 1 u p f j 1 f j q Ensten A 1 p j 1 j q = A(f 1,..., f p, u j1,..., u jq ) A A = A 1 p j 1 j q u 1 u p f j 1 f j q A = (A 1 p j 1 j q ) V n u 1,..., u n V f 1,..., f n T (p,q) (V ) A A = A 1 p j 1 j q u 1 u p f j 1 f jq V ū 1,..., ū n f 1,..., f n A = Āk 1 k p l 1 l q ū k1 ū kp f l 1 f l q u 1,..., u n ū 1,..., ū n g = (g k ) ḡ = (ḡ l j) ū k = g ku, ḡ kg k j = δ j. Ā k 1 k p l 1 l q = A 1 p j 1 j q ḡ k 1 1 ḡ kp p g j 1 l 1 g jq l q

8 f l = h l jf j δk l = f l (ū k ) = h l jf j (gku ) = h l jgkf j (u ) = h l jgkδ j = hl gk. h = (h l j) g f l = ḡjf l j. ū k = gk u ḡa k k ḡaū k k = ḡag k ku = δau = u a. f l = ḡ l jf j g b l l g b l f l = g b l ḡ l jf j = δ b jf j = f b. u = ḡ k ū k, f j = g j l f l V A A = A 1 p j 1 j q u 1 u p f j 1 f jq = A 1 p j 1 j q ḡ k 1 1 ū k1 ḡ k p p ū kp g j 1 l 1 f l 1 g j q l q = A 1 p j 1 j q ḡ k 1 1 ḡ k p p g j 1 l 1 g j q l q ū k1 ū kp f l 1 f l q. f l q Ā k 1 k p l 1 l q = A 1 p j 1 j q ḡ k 1 1 ḡ k p p g j 1 l 1 g j q l q V V u 1,..., u n f 1,..., f n T (p,q) (V ) A = (A 1 p j 1 j q ) T (r,s) (V ) B = (B k 1 k r l 1 l s ) A B (A B) 1 pk 1 k r j 1 j q l 1 l s = A 1 p j 1 j q B k 1 k r l 1 l s

9 6 1 A = A 1 p j 1 j q u 1 u p f j 1 f jq B = B k 1 k r l 1 l s u k1 u kr f l 1 f l s A B = (A 1 p j 1 j q u 1 u p f j 1 f j q ) (B k 1 k r l 1 l s u k1 u kr f l 1 f ls ) = A 1 p j 1 j q B k 1 k r l 1 l s u 1 u p u k1 u kr f j 1 f j q f l 1 f l s (A B) 1 p k 1 k r j 1 j ql 1 l s = A 1 p j 1 j q B k 1 k r l 1 l s V u 1,..., u n f 1,..., f n A T (p,q) (V ) 1 r p, 1 s q r, s p 1 q 1 {}}{{}}{ C (r,s) A : V V V V R (C (r,s) A)(g 1,..., g p 1, v 1,..., v q 1 ) = A(g 1,..., g r 1, f, g r,..., g p 1, v 1,..., v s 1, u, v s,..., v q 1 ) C (r,s) A T (p 1,q 1) (V ) C (r,s) A A V V u 1,..., u n f 1,..., f n (C (r,s) A) 1 p 1 j 1 j q 1 = A 1 r 1 r p 1 j 1 j s 1 j s j q 1 ū k = gk u f l = ḡjf l j A(g 1,..., g r 1, f k, g r,..., g p 1, v 1,..., v s 1, ū k, v s,..., v q 1 ) = A(g 1,..., g r 1, ḡ k j f j, g r,..., g p 1, v 1,..., v s 1, g ku, v s,..., v q 1 ) = ḡ k j g ka(g 1,..., g r 1, f j, g r,..., g p 1, v 1,..., v s 1, u, v s,..., v q 1 ) = δ ja(g 1,..., g r 1, f j, g r,..., g p 1, v 1,..., v s 1, u, v s,..., v q 1 ) = A(g 1,..., g r 1, f, g r,..., g p 1, v 1,..., v s 1, u, v s,..., v q 1 ).

10 C (r,s) A (C (r,s) A) 1 p 1 j 1 j q 1 = (C (r,s) A)(f 1,..., f p 1, u j1,..., u jq 1 ) = A(f 1,..., f r 1, f, f r,..., f p 1, u j1,..., u js 1, u, u js,..., u jq 1 ) = A 1 r 1 r p 1 j 1 j s 1 j s j q V W p {}}{{}}{ φ : V V V V W Φ(v 1 v p g 1 g q ) = φ(v 1,..., v p, g 1,..., g q ) (v V, g j V ) q Φ : T (p,q) (V ) W u 1,..., u n V f 1,..., f n u 1 u p f j 1 f j q (1 1,..., p, j 1,..., j q n) T (p,q) (V ) Φ(u 1 u p f 1 f q ) = φ(u 1,..., u p, f 1,..., f q ) Φ T (p,q) (V ) v V, g j V Φ(v 1 v p g 1 g q ) = Φ ( f 1 (v 1 )u 1 f p (v p )u p g 1 (u j1 )f j 1 g q (u jq )f j q ) = Φ ( f 1 (v 1 ) f p (v p )g 1 (u j1 ) g q (u jq )u 1 u p f j 1 f j q ) = f 1 (v 1 ) f p (v p )g 1 (u j1 ) g q (u jq )Φ(u 1 u p f j 1 f j q ) = f 1 (v 1 ) f p (v p )g 1 (u j1 ) g q (u jq )φ(u 1,..., u p, f j 1,..., f jq ) = φ ( f 1 (v 1 )u 1,..., f p (v p )u p, g 1 (u j1 )f j 1,..., g q (u jq )f j q ) = φ(v 1,..., v p, g 1,..., g q ) Φ Φ T (p,q) (V ) Φ Φ V

11 V V V End(V ) φ : V V End(V ) φ(u, f)(v) = f(v)u (u, v V, f V ) φ Φ(u f) = φ(u, f) (u V, f V ) Φ : T (1,1) (V ) End(V ) V u 1,..., u n f 1,..., f n Φ(u f j )(u k ) = φ(u, f j )(u k ) = f j (u k )u = δ j k u Φ(u f j ) u j u u k 0 {Φ(u f j ) 1, j n} End(V ) Φ T (1,1) (V ) End(V ) T (1,1) (V ) End(V ) A T (1,1) (V ) A j A = A ju f j Φ(A) = A jφ(u f j ). Φ(A)u k = A jφ(u f j )u k = A jδ j k u = A ku (A j) Φ(A) u 1,..., u n C (1,1) A = A = tr(φ(a)) C (1,1) A = tr(φ(a)) T (1,1) (V ) End(V ) T (1,1) (V ) V W F : V W F (p,0) : T (p,0) (V ) T (p,0) (W )

12 v 1,..., v p V F (p,0) (v 1 v p ) = F (v 1 ) F (v p ) F (0,q) : T (0,q) (W ) T (0,q) (V ) f 1,..., f p W F (0,q) (f 1 f q ) = (f 1 F ) (f q F ) T (p,0) V A F (p,0) (A)(f 1,..., f p ) = A(f 1 F,..., f p F ) (f 1,..., f p W ) F (p,0) (A) T (p,0) (W ) F (p,0) f 1,..., f p W F (p,0) (v 1 v p )(f 1,..., f p ) = (v 1 v p )(f 1 F,..., f p F ) = (f 1 F )(v 1 ) (f p F )(v p ) = (F (v 1 ) F (v p ))(f 1,..., f p ) F (p,0) (v 1 v p ) = F (v 1 ) F (v p ) T (p,0) (V ) F (p,0) T (0,q) W B F (0,q) (B)(v 1,..., v q ) = B(F (v 1 ),..., F (v q )) (v 1,..., v q V ) F (0,q) (B) T (0,q) (V ) F (0,q) v 1,..., v q V F (0,q) (f 1 f q )(v 1,..., v q ) = (f 1 f q )(F (v 1 ),..., F (v q )) = f 1 (F (v 1 )) f q (F (v q )) = ((f 1 F ) (f q F ))(v 1,..., v q ) F (0,q) (f 1 f q ) = (f 1 F ) (f q F ) T (0,q) (W ) F (0,q)

13 V T (p,0) (V ) A 1 < j p (t,j A)(f 1,..., f p ) = A(f 1,..., f j,..., f,..., f p ) (f 1,..., f p V ) t,j : T (p,0) (V ) T (p,0) (V ) p V = {A T (p,0) (V ) t,j A = A (1 < j p)} p {1,..., p} S p p V A q V B (A B)(g 1,..., g p+q ) = 1 p!q! j σ S p+q sgn(σ)(a B)(g σ(1),..., g σ(p+q) ) (g 1,..., g p+q V ) A B T p+q,0 (V ) A B p+q V A B A B V (r, 0) T T (g 1,..., g r ) = σ Sr sgn(σ)t (g σ(1),..., g σ(r) ) (g 1,..., g r V ) T T r,0 (V ) T r V A B p+q V p V q V p+q V (A, B) A B C r V V u 1,..., u p (A B) C = A (B C) u 1 u p = σ S p sgn(σ)u σ(1) u σ(p)

14 T r V 1 < j r j τ S r (t,j T )(g 1,..., g r ) = T (g 1,..., g j,..., g,..., g r ) = T (g τ(1),..., g τ(r) ) j = σ S r sgn(σ)t (g τσ(1),..., g τσ(r) ) = sgn(τ) σ S r sgn(τσ)t (g τσ(1),..., g τσ(r) ) = σ S r sgn(σ)t (g σ(1),..., g σ(r) ) = T (g 1,..., g r ). t,j T = T T r V A T (p,0) (V ) B T (q,0) (V ) A B T (p+q,0) (V ) A B p+q V p V q V p+q V (A, B) A B (A, B) A B ( 1.1.3) T T A p V, B q V, C r V (A B) C = A (B C) S p+q = {τ S p+q+r τ() = (p + q + 1 p + q + r)} = = ((A B) C)(g 1,..., g p+q+r ) 1 sgn(σ)(a B)(g σ(1),..., g σ(p+q) ) C(g σ(p+q+1),..., g σ(p+q+r) )) (p + q)!r! σ S p+q+r 1 sgn(σ) (p + q)!r! σ S p+q+r 1 sgn(τ)a(g στ(1),..., g στ(p) ) B(g στ(p+1),..., g στ(p+q) ) p!q! τ S p+q C(g σ(p+q+1),..., g σ(p+q+r) )

15 12 1 = = 1 1 p!q!r! (p + q)! σ S p+q+r τ S p+q sgn(στ) (A(g στ(1),..., g στ(p) ) B(g στ(p+1),..., g στ(p+q) )) C(g στ(p+q+1),..., g στ(p+q+r) ) 1 sgn(σ) p!q!r! σ S p+q+r (A(g σ(1),..., g σ(p) ) B(g σ(p+1),..., g σ(p+q) )) C(g σ(p+q+1),..., g σ(p+q+r) ) = (A (B C))(g 1,..., g p+q+r ) 1 sgn(σ) p!q!r! σ S p+q+r A(g σ(1),..., g σ(p) ) (B(g σ(p+1),..., g σ(p+q) ) C(g σ(p+q+1),..., g σ(p+q+r) )) (A B) C = A (B C) σ S p sgn(σ 1 ) = sgn(σ) V u 1,..., u p (u 1 u p )(g 1,..., g p ) = σ S p sgn(σ)u 1 (g σ(1) ) u p (g σ(p) ) = σ S p sgn(σ)u σ 1 (1)(g 1 ) u σ 1 (p)(g p ) = σ S p sgn(σ 1 )u σ 1 (1)(g 1 ) u σ 1 (p)(g p ) = σ S p sgn(σ)u σ(1) (g 1 ) u σ(p) (g p ) = σ S p sgn(σ)(u σ(1) u σ(p) )(g 1,..., g p ). u 1 u p = σ S p sgn(σ)u σ(1) u σ(p)

16 V V = p V p=0 0 V = R p V q V p+q V (A, B) A B V V V V V V p {}}{ V V p V (u 1,..., u p ) u 1 u p u 1,..., u p V 1 < j p u 1 j u j u u p = u 1 u p p A = (A j) v j = A ju v 1 v p = (det A)u 1 u p (u 1,..., u p ) u 1 u p u 1,..., u p V 1 < j p u 1 j u j u u p = u 1 u p j τ S p u 1 j u j u u p = σ S p sgn(σ)u τσ(1) u τσ(p) = sgn(τ) σ S p sgn(τσ)u τσ(1) u τσ(p) = σ S p sgn(σ)u σ(1) u σ(p) = u 1 u p.

17 14 1 u 1 j u j u u p = u 1 u p u 1,..., u p u 1 u p = 0 S p σ S p u σ(1) u σ(p) = sgn(σ)u 1 u p p A = (A j) v j = A ju v 1 v p = ( ) ( A 1 1 u 1 A p ) p u p = σ S p A σ(1) 1 u σ(1) A σ(p) p u σ(p) ( 0 ) = sgn(σ)a σ(1) 1 A σ(p) u 1 u p σ S p p = (det A)u 1 u p u 1,..., u n V u 1 u p (1 1 < < p n) ( ) n p V dm( p V ) = p u 1 u p (1 1 < < p n) 1 < < p a 1 p u 1 u p = 0 (a 1 p R) 1 k 1 < < k p n k 1,..., k p (f k 1,..., f k p ) a k1 k p = 0 u 1 u p u 1 u p (1 1 < < p n) p V p V A V g g 1,..., g p V g = g(u j )f j A(g 1,..., g p ) = A ( g 1 (u j1 )f j 1,..., g p (u jp )f jp)

18 = g 1 (u j1 ) g p (u jp )A(f j 1,..., f jp ) = A(f j 1,..., f j p )(u j1 u jp )(g 1,..., g p ) = A(f jσ(1),..., f jσ(p) )(u jσ(1) u jσ(p) )(g 1,..., g p ) j 1 < <j p σ S p = sgn(σ)a(f j1,..., f jp )(u jσ(1) u jσ(p) )(g 1,..., g p ) j 1 < <j p σ S p = A(f j1,..., f jp )(u j1 u jp )(g 1,..., g p ). j 1 < <j p A = j 1 < <j p A(f j1,..., f jp )u j1 u jp u 1 u p p V u 1 u p (1 1 < < p n) p V p V ( ) n p V W F : V W F (p,0) : T (p,0) (V ) T (p,0) (W ) F (p,0) ( p V ) p W F (p,0) : p V p W 1.2.1t V,j : T (p,0) (V ) T (p,0) (V ), t W,j : T (p,0) (W ) T (p,0) (W ) F (p,0) F (p,0) t V,j = t W,j F (p,0) F (p,0) F (p,0) ( p V ) p W F (p,0) : p V p W

19 V W A : p {}}{ V V W u 1,..., u p V 1 < j p j A(u 1,..., u j,..., u,..., u p ) = A(u 1,..., u p ) A p W = R p V W φ : p {}}{ V V W Φ(v 1 v p ) = φ(v 1,..., v p ) (v V ) Φ : p V W Φ : p V W φ(v 1,..., v p ) = Φ(v 1 v p ) (v V ) φ : p {}}{ V V W φ {φ : p {}}{ V V W φ } p V W Hom( p V, W ) u 1,..., u n V p V u 1 u p (1 1 < < p n) Φ(u 1 u p ) = φ(u 1,..., u p )

20 Φ p V u 1,..., u n f 1,..., f n v V Φ(v 1 v p ) = Φ ( f 1 (v 1 )u 1 f p (v p )u p ) = Φ ( f 1 (v 1 ) f p (v p )u 1 u p ) = f 1 (v 1 ) f p (v p )Φ(u 1 u p ) = f 1 (v 1 ) f p (v p )φ(u 1,..., u p ) = φ ( f 1 (v 1 )u 1,..., f p (v p )u p ) = φ(v 1,..., v p ) Φ Φ T (p,q) (V ) Φ Φ V Φ Hom( p V, W ) φ(v 1,..., v p ) = Φ(v 1 v p ) (v V ) φ : {φ : p {}}{ V V W p {}}{ V V W φ } Hom( p V, W ) V p V V p ( p V ) V T (0,2) (V ) A V V α A(x, y) = (α(x))(y) (x, y V ) T (0,2) (V ) V V Hom(V, V ) α Hom(V, V ) T (0,2) (V ) A 0 x V (α(x))(x) > 0 A V

21 18 1 α Hom(V, V ) A(x, y) = (α(x))(y) (x, y V ) A T (0,2) (V ) A T (0,2) (V ) α Hom(V, V ) T (0,2) (V ) Hom(V, V ) A 0 x V (α(x))(x) > 0 A(x, x) > 0 A V V,, Hom(V, V ) α p V ( p V ) α : V V α (p,0) : p V p V = ( p V ) T (0,2) ( p V ) p V p V ( p V ) p V φ ( p V ) Φ φ(v 1,..., v p ) = Φ(v 1... v p ) (v 1,..., v p V ) α (p,0) T (0,2) ( p V ) A V u 1,..., u p v 1,..., v p A(u 1 u p, v 1 v p ) = (α (p,0) (u 1 u p ))(v 1 v p ) = (α(u 1 ) α(u p ))(v 1 v p ) = (α(u 1 ) α(u p ))(v 1,..., v p ) = σ S p sgn(σ)(α(u σ(1) ) α(u σ(p) ))(v 1,..., v p ) = σ S p sgn(σ)(α(u σ(1) ))(v 1 ) (α(u σ(p) ))(v p ) = sgn(σ) u σ(1), v 1 u σ(p), v p σ S p = det( u, v j ) 1,j p. u 1,..., u n V u 1 u p (1 1 < < p n)

22 p V 1 1 < < p n 1 j 1 < < j p n A(u 1 u p, u j1 u jp ) = δ 1 j 1 δ pj p A p V 1.4.3, V p V A A, u = u, u V u 1,..., u p v 1,..., v p u 1 u p, v 1 v p = det[ u, v j ] 1,j p V e 1,..., e n p V e 1 e p (1 1 < < p n) V u 1, u 2 u 1 u 2 2 u 1, u 1 u 1, u 2 = u 1 u 2, u 1 u 2 = u 2, u 1 u 2, u 2 = u 1 2 u 2 2 u 1, u 2 2 u 1 u 2 θ u 1, u 2 = u 1 u 2 cos θ u 1 u 2 u 1 2 u 2 2 sn 2 θ = u 1 2 u 2 2 (1 cos 2 θ) = u 1 2 u 2 2 u 1, u 2 2 = u 1 u 2 2 u 1 u 2 u 1 u 2 2 V V R n u u m n R n u 1,..., u m, v 1,..., v m u = [u j ], v = [v j ] u 11 u 1n.. v 11 v m1.. = u 1. [v 1 v m] = [u v j ] = [ u, v j ]. u m1 u mn v 1n v mn u m

23 20 1 m u 11 u 1n v 11 v m1 det.... = det[ u, v j ] u m1 u mn v 1n v mn = u 1 u m, v 1 v m. R n e 1,..., e n u = [u 1... u n ] = u j e j. ( 1.2.4) ( ) ( ) u 1 u m = u 1j1 e j1 u 1jm e jm = = v 1 v m = j 1 =1 #{j 1,...,j m }=m j 1 < <j m j 1 < <j m u 1 u m, v 1 v m = j 1 < <j m u 11 u 1n det.. j=1 j m =1 u 1j1 u mjm e j1 e jm u 1j1 u 1jm.. u mj1 u mjm v 1j1 v 1jm.. v mj1 v mjm u 1j1 u 1jm.. u mj1 u mjm e j1 e jm e j1 e jm v 11 v m1.. v 1j1 v 1jm.. v mj1 v mjm = = j 1 < <j m j 1 < <j m u m1 u mn u 1j1 u 1jm.. u mj1 u mjm u 1j1 u 1jm.. u mj1 u mjm v 1n v mn v 1j1 v 1jm.. v mj1 v mjm v 1j1 v mj1.. v 1jm v mjm

24 m = n V, V u 1,..., u p p u 1 u p u u 1,..., u p u v w v 1 = 0, w 1 = u 1 v 1, w 1 v w =1 u = v + w, v span{u 1,..., u 1 }, w span{u 1,..., u 1 } v w w 2 u 2 u 1 u = w 1 w (1 p) u 1 u p = w 1 w p < j u, w j = u 1 u p 2 = w 1 w p 2 = w 1 w p, w 1 w p = det( w, w j ) w 1, w = det w p, w p p p p = w, w u, u = u 2. =1 u 1 u p =1 p u w, w = u, u v = 0 u 1,..., u p =1 =1

25 V W m n (m n) F : V W JF = sup{ F (u 1 ) F (u n ) u 1,..., u n V } F JF = 0 F (kerf ) v 1,..., v n JF = F (n,0) (v 1 v n ) v 1 v n = F (v 1) F (v n ) v 1 v n F dm(mf ) < n V u 1,..., u n F (u 1 ),..., F (u n ) F (u 1 ) F (u n ) = 0 JF = 0 F (kerf ) v 1,..., v n (kerf ) u 1,..., u n (a j ) v j = a j u =1 v 1 v n = det(a j )u 1 u n, F (n,0) (v 1 v n ) = det(a j )F (n,0) (u 1 u n ). F (n,0) (v 1 v n ) v 1 v n = det(a j) F (n,0) (u 1 u n ) det(a j ) u 1 u n = F (n,0) (u 1 u n ) u 1 u n = F (n,0) (u 1 u n ) u 1 u n = 1 JF F (n,0) (u 1 u n ) = F (n,0) (v 1 v n ). v 1 v n V w 1..., w n w = w 1 + w 2, w 1 (kerf ), w 2 kerf

26 w 1 w = 1 F (n,0) (w 1 w n ) = F (w 1 ) F (w n ) = F (w 1 1) F (w 1 n) = F (n,0) (w 1 1 w 1 n). w1, 1..., wn F (n,0) (w 1 1 w 1 n) = 0 (kerf ) F (n,0) (w1 1 wn) 1 = F (n,0) (u w1 1 wn 1 1 u n ) F (n,0) (w 1 w n ) = F (n,0) (w 1 1 w 1 n) = w 1 1 w 1 n F (n,0) (u 1 u n ) w 1 1 w 1 n F (n,0) (u 1 u n ) F (n,0) (u 1 u n ). JF F (n,0) (u 1 u n ) = F (n,0) (v 1 v n ). v 1 v n JF F (n,0) (v 1 v n ) v 1 v n JF = F (n,0) (v 1 v n ) v 1 v n JF.

27 π E : E M M (1) E, M π E : E M C (2) k M p p U Φ U : π 1 E (U) U Rk u π E (U) Φ U (u) U π E (u) Φ U (u) = (π E (u), φ U (u)) (u π 1 E (U)) x U π 1 E (x) φ U π 1 E (x) : π 1 E (x) Rk E M π E π 1 E (x) x k ranke π : E M π : E M M φ : E E π = π φ x M φ Ex : E x E x φ E E V M V M M V M M E M V E M T M M

28 M x M M T x M T M = T x M x M u T M u T x M x M π(u) = x π : T M M M p p (U; x 1,..., x n ) U x x 1,..., x x n T x M π 1 (U) u u = ξ x π(u) x Φ U (u) = (π(u), ξ 1,..., ξ n ) (u π 1 (U)) Φ U : π 1 (U) U R n π 1 (U) (x 1,..., x n, ξ 1,..., ξ n ) (V ; y 1,..., y n ) v π 1 (V ) v = η y π(v) π 1 (V ) (y 1,..., y n, η 1,..., η n ) (x 1,..., x n, ξ 1,..., ξ n ) η = ξ j y x j. ) (y 1,..., y n, ξ j y1 yn,..., ξj xj x j C T M π π(x 1,..., x n, ξ 1,..., ξ n ) = (x 1,..., x n )

29 26 2 π : T M M C Φ U Φ U (u) U π(u) ( ) φ U ξ = (ξ 1,..., ξ n ) x x U φ U π 1 (x) : π 1 (x) R n π : T M M M π E : E M M C σ : M E π E σ = 1 M E E Γ(M, E) Γ(E) M p M T p M, p M C X, Y X, Y M C, M Remann (M,, ) Remann Remann Remann Eucld ι : M M M Remann ( M, g) M x ι dι x : T x M T ι(x) M M Remann g dι g = ι g M Remann (M, g) ( M, g) Remann M Remann M Remann M Remann Remann (M, g) ( M, g) C ι M x dι x : T x M T ι(x) M ι (M, g) ( M, g) Remann ι : M ( M, g) Remann ( M, g) Remann x M T x M = {u T ι(x) M u, dιx (T x M) = 0} T M = x M T x M T M u T M u T x M x M π(u) = x π : T M M π : T M M π : T M M Remann M T M M

30 E M, E E s, t s, t (x) = s(x), t(x) (x M) M s, t C, E (E,, ) Remann Remann Remann Remann M x M T x M (p, q) T (p,q) (T x M) T x (p,q) M T (p,q) M = T x (p,q) M x M T (p,q) M M ( 2.2.2) T (p,q) M C (p, q) T (p,q) M M u T (p,q) M u T x (p,q) M x M π(u) = x π : T (p,q) M M M x x (U; x 1,..., x n ) π 1 (U) u u = u 1 p j 1 j q x 1 π(u) x dx j 1 p π(u) dxj q π(u) π(u) Φ U (u) = (π(u), u 1 p j 1 j q ) (u π 1 (U)) Φ U : π 1 (U) U R np+q

31 28 2 π 1 (U) (x 1,..., x n, u 1 p j 1 j q ) (V ; y 1,..., y n ) v π 1 (V ) v = v 1 p j 1 j q y 1 π(v) y p dy j 1 π(u) dyj q π(v) π 1 (V ) (y 1,..., y n, v 1 p j 1 j q ) π(v) v k 1 k p l 1 l q = u 1 p y k 1 j 1 j q x ykp x j 1 1 x p y xjq l 1 y. l q (x 1,..., x n, u 1 p j 1 j q ) ( ) y 1,..., y n, u 1 p y k 1 j 1 j q x ykp x j1 1 x p y xjq l 1 y lq C T (p,q) M π π(x 1,..., x n, u 1 p j 1 j q ) = (x 1,..., x n ) π : T (p,q) M M C Φ U Φ U (u) U π(u) ( φ U u 1 p j 1 j q x ) 1 x dxj 1 dx j q = (u 1 p p j 1 j q ) x U φ U π 1 (x) : π 1 (x) R np+q π : T (p,q) M M Remann (0, 2) M n M x p Tx (M) ω x ω ω M p ( )M (U; x 1,..., x n ) ( ) x ω x x 1,, x x p x 1,..., p U C M 0 M C

32 f M C f df M 1 n = dm M M (U; x 1,..., x n ) f C ( ) x df x x = f x x (x) U C df M ω V n M p M (U; x 1,..., x n ) x U x x (1 n) T x (M) (dx ) x (1 n) x U ω x p Tx (M) ω x = ( ) x j 1,, x x j p (dx j 1 ) x (dx j p ) x x j 1 < <j p ω x ω x (dx j 1 ) x (dx jp ) x C () ω (dx j 1 ) x (dx j p ) x M p Ω p (M) f, g C (M), ω, η Ω p (M) x M (fω + gη) x = f(x)ω x + g(x)η x ( p (T x (M)) ) Ω p (M) C (M) C (M) φ Ω p (M), ψ Ω q (M) x M φ ψ x = φ x ψ x ( p (Tx (M)) q (Tx (M)) ) φ ψ Ω p+q (M) : Ω p (M) Ω q (M) Ω p+q (M) C (M) Ω p (M) C (M) f, g C (M), ω, η Ω p (M) fω + gη Ω p (M) p (Tx (M))

33 30 2 (U; x 1,..., x n ) M x U ω x = a 1 p (x)(dx 1 ) x (dx p ) x, 1 < < p η x = b 1 p (x)(dx 1 ) x (dx p ) x 1 < < p a 1 p, b 1 p U C (fω + gη) x = (f(x)a 1 p (x) + g(x)b 1 p (x))(dx 1 ) x (dx p ) x. 1 < < p fa 1 p + gb 1 p U C fω + gη φ Ω p (M), ψ Ω q (M) φ ψ Ω p+q (M) C (M) x U φ x = c 1 p (x)(dx 1 ) x (dx p ) x, 1 < < p ψ x = d j1 j q (x)(dx j1 ) x (dx jq ) x j 1 < <j q c 1 p d j1 j q U C x U = = (φ ψ) x 1 < < p 1 < < p j 1 < <j q (c 1 p (x)(dx 1 ) x (dx p ) x ) (d j1 j q (x)(dx j 1 ) x (dx j q ) x ) j 1 < <j q c 1 p (x)d j1 j q (x) (dx 1 ) x (dx p ) x (dx j 1 ) x (dx jq ) x (φ ψ) x (dx k 1 ) x (dx k p+q ) x c 1 p (x)d j1 j q (x) U C φ ψ M p + q F M N C x M F df x : T x (M) T F (x) (N) df x (0,p) ω Ω p (N) (F ω) x = (df x ) (0,p) ω F (x) (F ω) x p (T x (M)) F ω Ω p (M)

34 m = dm M, n = dm N F ω Ω p (M) F (U) U M N (U; x 1,..., x m ) (U ; y 1,..., y n ) ( ) x (F ω) x x 1,, x x p x 1,..., p U C x U ( ) df x (y j F ) x = (x) x x y j j=1 F (x) ( ) (F ω) x x 1,, x x ( ( ) p x ( )) = ω F (x) df x x 1,, df x x x p x ( (y j 1 F ) = (x) (yj p F ) (x) ω x 1 x p F (x) y j 1,, F (x) y j p j 1,,j p =1 F (x) U C F ω Ω p (M) F ω ω F V F : M M, G : M M C ω Ω p (M ) (G F ) ω = F (G ω) ) d(g F ) x = dg F (x) df x v T x (M) ((G F ) ω) x (v) = ω G F (x) (d(g F ) x (v)) = ω G(F (x)) (dg F (x) df x (v)) = (G ω) F (x) (df x (v)) = (F (G ω)) x (v) (G F ) ω = F (G ω) F M N C φ Ω p (N), ψ Ω q (N) F (φ ψ) = (F φ) (F ψ)

35 32 2 x M F (φ ψ) x = (df x ) ((φ ψ) F (x) ) = (df x ) (φ F (x) ψ F (x) ) = (df x ) φ F (x) (df x ) ψ F (x) = (F φ) x (F ψ) x = ((F φ) (F ψ)) x F (φ ψ) = (F φ) (F ψ) M n ω Ω p (M) dω Ω p+1 (M) () M (U; x 1,..., x n ) ω ω x = a 1 p (x)(dx 1 ) x (dx p ) x 1 < < p (dω) x = 1 < < p =1 a 1 p (x)(dx ) x x (dx 1 ) x (dx p ) x 1 < < p =1 a 1 p (x)(dx ) x x (dx 1 ) x (dx p ) x p+1 (Tx (M)) a 1 p (x) ω x ( ) a 1 p (x) = ω x x 1,, x x p (1 1 < < p n) x 1,..., p a 1 p (x) (V ; y 1,..., y n ) M 1 ( ) b 1 p (x) = ω x y 1,, x y p x

36 ω x = 1 < < p b 1 p (x)(dy 1 ) x (dy p ) x x U V T x (M) 2 x x y x x j y = x y (x) x j j=1 (dy y ) x = x j (x)(dxj ) x j=1 x b 1 p (x) = j 1,,j p=1 x j 1 xjp (x) y 1 y (x)a p j 1 j p (x) ( ) = 1 p! = 1 p! = 1 p! 1 < < p =1, 1,..., p=1, 1,..., p =1 1,..., p =1 =1 x j y (x) y x (x) = δ k jk b 1 p (x)(dy ) y x (dy 1 ) x (dy p ) x b 1 p (x)(dy ) y x (dy 1 ) x (dy p ) x j,j 1,...,jp=1 k,k 1,...,kp=1 x j y (x) { x j 1 } xjp (x) x j y 1 y (x)a j p 1 j p (x) y x k (x)(dxk ) x y1 x k 1 (x)(dxk 1 ) x yp x kp (x)(dxk p ) x j 1,...,jp=1 k,k 1,...,kp=1 { x j 1 xjp (x) x k y 1 y (x)a j p 1 j p (x) } (dx k ) x y 1 x k 1 (x)(dxk 1 ) x yp x kp (x)(dxkp ) x. r =1 x jr y r (x) yr x k r (x) = δ j rk r

37 34 2 r =1 ( x j r ) y x k y (x) r r x (x) = x j r k r y (x) r x k r =1 x j r = (x) r y r=1 2 y r ( y r ) x (x) k r (x) x k kr x k k r (dx k ) x (dx k 1 ) x (dx kp ) x k k r ( ) = 1 p! = 1 p! = 1,..., p =1 k,k 1,...,k p =1 k 1 < <k p k=1 j 1,...,jp=1 k,k 1,...,kp=1 x j 1 xjp (x) y 1 y (x) a j 1 j p (x) p x k (dx k ) x y 1 x k 1 (x)(dxk 1 ) x yp x k p (x)(dxkp ) x a k1 k p (x)(dx k ) x k x (dx k 1 ) x (dx k p ) x a k1 k p x k (x)(dx k ) x (dx k 1 ) x (dx kp ) x. dω dω dω p + 1 dω M d : Ω p (M) Ω p+1 (M) F M N C F F : Ω p (N) Ω p (M) m = dm M, n = dm N ω Ω p (N) F (U) U M N (U; x 1,..., x m ) (U ; y 1,..., y n ) ( ) a j1 j p (y) = ω y y j 1,, y y jp ω U ω y = a j1 j p (y)(dy j1 ) y (dy jp ) y j 1 < <j p y

38 x U ( ) (F ω) x x 1,, x x p x (y j 1 F ) = (x) (yj p F ) (x) a x j1 j 1 x p p (F (x)). j 1,,j p=1 = (d(f ω)) x m j 1,,j p =1 1 < < p =1 { (y j 1 F ) x x 1 (dx ) x (dx 1 ) x (dx p ) x. (x) (yj p } F ) (x) a x p j1 j p (F (x)) 2 (y jr F ) (x) x x r r (dx ) x (dx 1 ) x (dx p ) x r = (d(f ω)) x j 1,,j p =1 1 < < p m =1 (y j 1 F ) x 1 (x) (yj p F ) (x) a j 1 j p (F (x)) x p x = 1 p! (dx ) x (dx 1 ) x (dx p ) x m m (y j 1 F ) x 1 j 1,,j p =1 1,, p =1 =1 (dx ) x (dx 1 ) x (dx p ) x. (x) (yjp F ) (x) a j 1 j p (F (x)) x p x (dω) y = = 1 p! j 1 < <j p j=1 j 1,,j p =1 j=1 a j1 j p (y)(dy j ) y j y (dy j 1 ) y (dy j p ) y a j1 j p (y)(dy j ) y j y (dy j 1 ) y (dy jp ) y (F (dω)) x = (df x ) (dω) F (x) = 1 p! j 1,,j p =1 j=1 a j1 j p (F (x))(df y j x ) (dy j ) F (x) (df x ) (dy j 1 ) F (x) (df x ) (dy jp ) F (x).

39 36 2 (df x ) (dy j ) F (x) = (dy j ) F (x) df x = d(y j F ) x = m =1 (y j F ) (x)(dx ) x x = = j=1 j=1 m =1 a j1 j p (F (x))(df y j x ) (dy j ) F (x) m =1 a j1 j p (F (x)) (yj F ) y j x a j1 j p (F (x)) (x)(dx ) x x (x)(dx ) x = 1 p! (F (dω)) x m m j 1,,j p =1 1,, p =1 =1 (y j 1 F ) x 1 (dx ) x (dx 1 ) x (dx p ) x = (d(f ω)) x. F (dω) = d(f ω) (x) (yj p F ) (x) a j 1 j p (F (x)) (x) x p x M N F : M N N M M M M N M d : Ω p (M) Ω p+1 (M) d M φ Ω p (M), ψ Ω q (M) d(φ ψ) = dφ ψ + ( 1) p φ dψ

40 n = dm M (U; x 1,..., x n ) M U φ ψ φ x = a 1 p (x)(dx 1 ) x (dx p ) x 1 < < p ψ x = b j1 j q (x)(dx j1 ) x (dx jq ) x j 1 < <j q (φ ψ) x = 1 < < p j 1 < <j q a 1 p (x)b j1 j q (x) (dx 1 ) x (dx p ) x (dx j 1 ) x (dx j q ) x k 1 < < k p+q { 1,..., p, j 1,..., j q } = {k 1,..., k p+q } ( ) 1 p j 1 j q sgn = 0 k 1 k p k p+1 k p+q = (φ ψ) x sgn k 1 < <k p+q 1 < < p j 1 < <j q ( 1 p j 1 j q k 1 k p k p+1 k p+q ) a 1 p (x)b j1 j q (x)(dx k 1 ) x (dx k p+q ) x = = = d(φ ψ) x sgn k 1 < <k p+q 1 < < p j 1 < <j q =1 ( 1 p j 1 j q k 1 k p k p+1 k p+q (a 1 p (x), b j1 j q (x)) (dx ) x x (dx k 1 ) x (dx k p+q ) x ( 1 p j 1 j q sgn k 1 < < p j 1 < <j 1 k p k p+1 k p+q q { a1 p (x)b x j1 j q (x) + a 1 p (x) b } j 1 j q (x) x k 1 < <k p+q =1 (dx ) x (dx k 1 ) x (dx k p+q ) x { a1 p (x)b x j1 j q (x) + a 1 p (x) b } j 1 j q (x) x 1 < < p j 1 < <j q =1 ) ) (dx ) x (dx 1 ) x (dx p ) x (dx j 1 ) x (dx j q ) x = (dφ ψ) x + ( 1) p (φ dψ) x.

41 38 2 d(φ ψ) = dφ ψ + ( 1) p φ dψ M d : Ω p (M) Ω p+1 (M) d d = 0 n = dm M ω Ω 0 (M) d 2 ω = 0 (U; x 1,..., x n ) M x U (dω) x = j=1 ω x j (x)(dxj ) x (d 2 ω) x = =1 j=1 2 ω x x j (x)(dx ) x (dx j ) x. 2 ω (x) j (dx ) x x j x (dx j ) x j (d 2 ω) x = 0 d 2 ω = 0 p > 0 ω Ω p (M; V ) U ω x = a 1 p (x)(dx 1 ) x (dx p ) x 1 < < p (dω) x = = 1 < < p =1 a 1 p (x)(dx ) x x (dx 1 ) x (dx p ) x 1 < < p (da 1 p ) x (dx 1 ) x (dx p ) x (d 2 ω) x = (d 2 a 1 p ) x (dx 1 ) x (dx p ) x 1 < < p + (da 1 p ) x 1 < < p = 0. p ( 1) j (dx 1 ) x (d 2 x j ) x (dx p ) x j=1 (d 2 ω) x = 0 d 2 ω = 0

42 n M Z p (M) = {ω Ω p (M) dω = 0} B p (M) = {dη η Ω p 1 (M)} d d 2 = 0 B p (M) Z p (M) H p (M) = Z p (M)/B p (M) H p (M) M p de Rham χ(m) = ( 1) p dm H p (M) p=0 χ(m) M Euler M C p C p (M) Z p (M) = {c C p (M) c = 0} B p (M) = { c c C p+1 (M)} 2 = 0 B p (M) Z p (M) H p (M) = Z p (M)/B p (M) H p (M) M C p (de Rham) ω Z p (M) ω H p (M) [ω] Z p (M) R ; c ω H p (M) H p (M) H p (M) M ω Z p (M) ω H p (M) [ω] [ω] H p (M) [η] H q (M) [ω η] ω, η [ω] [η] c ω Ω p 1 (M) η Ω q 1 (M) (ω + dω ) (η + dη ) = ω η + ω dη + dω η + dω dη d(ω η ) = dω η + ( 1) p ω dη = ( 1) p ω dη, d(ω η) = dω η + ( 1) p 1 ω dη = dω η, d(ω dη ) = dω dη + ( 1) p 1 ω d 2 η = dω dη B p+q (M) [(ω + dω ) (η + dη )] = [ω η] [ω η] ω, η [ω] [η]

43 n M H (M) = H p (M) H (M) M de Rham p= M Z 0 (M) 0 M R H 0 (M) = Z 0 (M) M R R 1 de Rham Z 1 (R) = Ω 1 (R) C f(x) f(x)dx f(t)dt df = f(x)dx Z 1 (R) = B 1 (R) H 1 (R) = {0} H (R) = R R R 1 S 1 de Rham F (x) = x 0 S 1 = {(x, y) R 2 x 2 + y 2 = 1} (cos θ, sn θ) θ Z 1 (S 1 ) = Ω 1 (S 1 ) 2π C f(θ) f(θ)dθ I : Z 1 (S 1 ) R ; f(θ)dθ 2π 0 f(θ)dθ I I Ω 0 (S 1 ) 2π C g(θ) dg = g (θ)dθ I(dg) = 2π 0 g (θ)dθ = g(2π) g(0) = 0. B 1 (S 1 ) ker I f(θ)dθ ker I F (θ) = θ f(t)dt 0 F (θ) θ C 2π f(t)dt = 0 0 F (θ) 2π C B 1 (S 1 ) df = F (θ)dθ = f(θ)dθ ker I B 1 (S 1 ) B 1 (S 1 ) = ker I H 1 (S 1 ) = Z 1 (S 1 )/B 1 (S 1 ) = Z 1 (S 1 )/ ker I = mi = R M ω Ω p (M) p = 0 X X(M) dω(x) = Xω. p = 1 X, Y X(M) dω(x, Y ) = X(ω(Y )) Y (ω(x)) ω([x, Y ]).

44 p = 0 X X(M) dω(x) = Xω C dω p = 1 ω ω = a dx ω dω dω =,j a x j dxj dx X, Y X = ξ x, Y = j η j x j dω(x, Y ) =,j a x j (ξj η η j ξ ) ω(y ) = a η X(ω(Y )) =,j ξ j x (a η ) = j,j ( ) ξ j a η x j η + a. x j X Y Y (ω(x)) =,j ( ) η j a ξ x j ξ + a x j [X, Y ] =,j =,j ξ ηj x x j,j (ξ j η ξ ηj xj x j η j ξ x j ) x x

45 42 2 ω([x, Y ]) =,j ( a ξ j η ξ ηj xj x j ). dω(x, Y ) = X(ω(Y )) Y (ω(x)) ω([x, Y ]) p > 0 X 1,... X p+1 X(M) = dω(x 1,..., X p+1 ) p+1 ( 1) 1 X (ω(x 1,..., ˆX,..., X p+1 )) =1 + ( 1) +j ω([x, X j ], X 1,..., ˆX,..., ˆX j,..., X p+1 ). <j

46 43 3 Remann R 2 D R 3 dp : R 2 R 3 D 2 p R 2 D u, v p u = p u, p v = p v p u, p v dp p p u, p v 2 u p u v p v R 3 p u, p v 2 dp I = dp, dp I (0, 2) X, Y I(X, Y ) = dp(x), dp(y ) dp I Remann dp = p u du + p v dv I(X, Y ) = p u du(x) + p v dv(x), p u du(y ) + p v dv(y ) = p u, p u du(x)du(y ) + p u, p v du(x)dv(y ) + p v, p u dv(x)du(y ) + p v, p v dv(x)dv(y ) = p u, p u du(x)du(y ) + p u, p v (du(x)dv(y ) + dv(x)du(y )) + p v, p v dv(x)dv(y ) = p u, p u du du(x, Y ) + p u, p v (du dv + dv du)(x, Y ) + p v, p v dv dv(x, Y ).

47 44 3 Remann (0, 1) φ, ψ X, Y (φ ψ)(x, Y ) = 1 (φ(x)ψ(y ) + ψ(x)φ(y )) 2 (0, 2) φ ψ I = p u, p u du du + 2 p u, p v du dv + p v, p v dv dv I E = p u, p u, F = p u, p v, G = p v, p v Remann I = Edu du + 2F du dv + Gdv dv. p u, p v p u p v e = p u p v p u p v e II = dp, de II (0, 2) X, Y II(X, Y ) = dp(x), de(y ) de = e u du + e v dv II(X, Y ) = p u du(x) + p v dv(x), e u du(y ) + e v dv(y ) = p u, e u du(x)du(y ) p u, e v du(x)dv(y ) p v, e u dv(x)du(y ) p v, e v dv(x)dv(y ). e p u, p v p u, e = 0, p v, e = 0 u v p uu, e + p u, e u = 0, p uv, e + p u, e v = 0, p vu, e + p v, e u = 0, p vv, e + p v, e v = 0.

48 p uv = p vu p u, e v = p v, e u II = p u, e u du du 2 p u, e v du dv p v, e v dv dv = p uu, e du du + 2 p uv, e du dv + p vv, e dv dv II L = p uu, e, M = p uv, e, N = p vv, e II = Ldu du + 2Mdu dv + Ndv dv. p 0 = p(u 0, v 0 ) e 0 e 0 f f(u, v) = p(u, v), e 0. p 0 e 0 df = p u du + p v dv, e 0 = p u, e 0 du + p v, e 0 dv = 0 f p 0 f 2 f u u (p 0) = p uu, e 0 = L, 2 f v v (p 0) = p vv, e 0 = N 2 f u v (p 0) = 2 f v u (p 0) = p uv, e 0 = M, f p 0 Hesse II II LN M 2 > 0 II LN M 2 < 0 II M E M : C (T M) C (E) C (E); (X, φ) X φ (1) (4) E

49 46 3 Remann (1) X+Y φ = X φ + Y φ, (X, Y C (T M), φ C (E)) (2) X (φ + ψ) = X φ + X ψ, (X C (T M), φ, ψ C (E)) (3) fx φ = f X φ, (X C (T M), φ C (E), f C (M)) (4) X (fφ) = f X φ + (Xf)φ. (X C (T M), φ C (E), f C (M)) X C (T M) X φ = 0 φ C (E) 3.2.2, M E, E E X φ, ψ = X φ, ψ + φ, X ψ (X C (T M), φ, ψ C (E)), M E X, Y C (T M) φ C (E) R (X, Y )φ = X Y φ Y X φ [X,Y ] φ E R (X, Y )φ R A 2 (T M, End(E)) C A 2 (U, V ) U U V X, Y C (T M) φ C (E) M C f R (fx, Y )φ R (X, Y )φ = R (Y, X)φ = fx Y φ Y fx φ [fx,y ] φ = f X Y φ Y (f X φ) f[x,y ] φ + (Y f)x φ = f X Y φ f Y X φ (Y f) X φ f [X,Y ] φ + (Y f) X φ = fr (X, Y )φ.

50 R (fx, Y )φ = fr (X, Y )φx, Y R (X, fy )φ = fr (X, Y )φ R (X, Y )fφ = X Y (fφ) Y X (fφ) [X,Y ] fφ = X (f Y φ + (Y f)φ) Y (f X φ + (Xf)φ) f [X,Y ] φ ([X, Y ]f)φ = f X Y φ + (Xf) Y φ + (Y f) X φ + (XY f)φ f Y X φ (Y f) X φ (Xf) Y φ (Y Xf)φ f [X,Y ] φ ([X, Y ]f)φ = fr (X, Y )φ. R (X, Y )fφ = fr (X, Y )φ R (X, Y )φ X, Y, φ R A 2 (T M, End(E)) C R R M E R R (X, Y ) + R (Y, X) = 0 (X, Y C (T M)) E,, R (X, Y )φ, ψ + φ, R (X, Y )ψ = 0 (X, Y C (T M), φ, ψ C (E)) R A 2 (T M, End(E)) [X, Y ] = XY Y X = XY φ, ψ Y X φ, ψ [X, Y ] φ, ψ = X Y φ, ψ + X φ, Y ψ Y X φ, ψ Y φ, X ψ [X,Y ] φ, ψ φ, [X,Y ] ψ = X Y φ, ψ + Y φ, X ψ + X φ, Y ψ + φ, X Y ψ Y X φ, ψ X φ, Y ψ Y φ, X ψ φ, Y X ψ [X,Y ] φ, ψ φ, [X,Y ] ψ = R (X, Y )φ, ψ + φ, R (X, Y )ψ.

51 48 3 Remann 3.3 Remann M p M T p M, p M C X, Y X, Y M C, M Remann (M,, ) Remann Remann Remann Eucld Remann (M,, ) X Y Y X = [X, Y ] (X, Y C (T M)) Remann, Remann M X, Y, Z X Y, Z + Y, X Z = X Y, Z Y Z, X + Z, Y X = Y Z, X Z X, Y X, Z Y = Z X, Y. X Y Y X = [X, Y ] X Y, Z + [X, Z], Y + [Y, Z], X + Z, [Y, X] + Z, X Y = X Y, Z + Y Z, X Z X, Y. X Y, Z = 1 (X Y, Z + Y Z, X Z X, Y 2 + [X, Y ], Z [Y, Z], X + [Z, X], Y ) X+Y Z = X Z + Y Z (X, Y, Z C (T M)) X (Y + Z) = X Y + X Z (X, Y, Z C (T M)) M C f fx Y, Z = 1 (fx Y, Z + Y Z, fx Z fx, Y 2 + [fx, Y ], Z [Y, Z], fx + [Z, fx], Y )

52 3.3. Remann 49 = 1 (fx Y, Z + (Y f) Z, X + fy Z, X 2 (Zf) X, Y fz X, Y +f [X, Y ], Z (Y f) X, Z f [Y, Z], X +f [Z, X], Y + (Zf) X, Y ) = 1 f(x Y, Z + Y Z, X Z X, Y 2 + [X, Y ], Z [Y, Z], X + [Z, X], Y ) = f X Y, Z. fx Y, Z = f X Y, Z fx Y = f X Y X (fy ), Z = 1 (X fy, Z + fy Z, X Z X, fy 2 + [X, fy ], Z [fy, Z], X + [Z, X], fy ) = 1 ((Xf) Y, Z + fx Y, Z + fy Z, X 2 (Zf) X, Y fz X, Y +f [X, Y ], Z + (Xf) Y, Z f [Y, Z], X + (Zf) Y, X + [Z, X], fy ) = f X Y, Z + (Xf) Y, Z = f X Y + (Xf)Y, Z. X (fy ), Z = f X Y + (Xf)Y, Z X (fy ) = f X Y + (Xf)Y T M X Y, Z + Y, X Z = 1 (X Y, Z + Y Z, X Z X, Y 2 + [X, Y ], Z [Y, Z], X + [Z, X], Y ) + 1 (X Z, Y + Z Y, X Y X, Z 2 + [X, Z], Y [Z, Y ], X + [Y, X], Z ) = X Y, Z.

53 50 3 Remann Remann, X Y, Z Y X, Z = 1 (X Y, Z + Y Z, X Z X, Y 2 + [X, Y ], Z [Y, Z], X + [Z, X], Y ) 1 (Y X, Z + X Z, Y Z Y, X 2 + [Y, X], Z [X, Z], Y + [Z, Y ], X ) = [X, Y ], Z X Y Y X = [X, Y ] Remann Lev-Cvta X Y Y X Remann (M,, ) Lev-Cvta X, Y, Z X Y, Z = 1 (X Y, Z + Y Z, X Z X, Y 2 + [X, Y ], Z [Y, Z], X + [Z, X], Y ) (U; x 1,..., x n ) x Remann (M, g) (U; x 1,..., x n ) j = Γ k j k U C Γ k j X = X, Y = Y j j X Y X Y = (XY k + Γ k jx Y j ) k Remann g = g j dx dx j (g j ) g j Γ k j = 1 2 gkl ( g jl + j g l l g j ) (V ; y 1,..., y n ) y p p p q = Γ r pq r U V Γ r pq = yr x x j x k y p y q Γk j + 2 x k y r y p y q x k

54 3.3. Remann 51 X Y = X (Y j j ) = (XY j ) j + Y j X j = (XY j ) j + Y j X j = (XY j ) j + X Y j j = (XY k ) k + X Y j Γ k j k = (XY k + Γ k jx Y j ) k g( j, l ) = 1 2 ( g( j, l ) + j g( l, ) l g(, j )) = 1 2 ( g jl + j g l l g j ). g( j, l ) = g(γ k j k, l ) = Γ k jg( k, l ) = Γ k jg kl. Γ k jg kl = 1 2 ( g jl + j g l l g j ). Γ m j = Γ k jg kl g lm = 1 2 glm ( g jl + j g l l g j ) Γ k j = 1 2 gkl ( g jl + j g l l g j ) p p = y = x p y p x = x y p Γ r pq r = p q ) x = ( k p y + x x j q Γk j y p y q k ( ) 2 x k = y p y + x x j y r q Γk j y p y q x k r Γ r pq = yr x x j x k y p y q Γk j + 2 x k y r y p y q x k Γ k j Chrstoffel

55 52 3 Remann Remann Chrstoffel Remann (M, ) c X ( ) c (t)x = c (t)x k + Γ k dx (c(t)) j X j k dt c c (t)x (U; x 1,..., x n ) (V ; y 1,..., y n ) X = X = X p p c (t)x k = d dt Xk (c(t)) = Xk dx (c(t)) x dt Chrstoffel ( ) c (t)x k + Γ k dx (c(t)) j X j k dt ( ) X k dx (c(t)) = + Γ k dx (c(t)) x j X j k dt dt ( ( ) ) y s x k = x y s y X x q dy p (c(t)) + Γ k x dy p (c(t)) x j q y p j dt y p dt y X y q r q x k r ( y s 2 x k q x dy = X p (c(t)) + ys x k X q x dy p (c(t)) x y s yq y p dt x y q y s y p dt ) +Γ k x dy p (c(t)) x j j y p dt y X y q r q x k r ( 2 x k = y p y X q dyp (c(t)) + xk X ) q dy p (c(t)) + Γ k x dy p (c(t)) x j q dt y q y p j dt y p dt y X y q r q x k r ( ( ) ) Xr dy p (c(t)) 2 x k = + y p dt y p y + x x j y r dy p (c(t)) q Γk j X q y p y q x k r dt ( ) = c (t) X r + Γ r dy p (c(t)) pq X q r dt c (t)x c (t)x X c (t)x = 0 X X dx k (c(t)) dt + Γ k j dx (c(t)) X j = 0 (1 k n) dt

56 X k c c [a, b] u T c(a) M X(a) = u X u X(b) T c(b) M T c(a) M T c(b) M τ c Remann c X, Y d dt X, Y = c (t) X, Y = c (t)x, Y + X, c (t)y = Remann X, Y x c(0) = x c (0) = X x c c c(t) c(0) τ t 0 1 ( X Y )(x) = lm t 0 t (τ 0Y t c(t) Y x ) T x M e 1,..., e n c e (t) Y (c(t)) = Y (t)e (t) ( X Y )(x) = c (0)(Y (t)e (t)) = dy dt (0)e. 1 lm t 0 t (τ 0Y t 1 c(t) Y x ) = lm t 0 t (Y (t) Y (0))e = dy dt (0)e. 1 ( X Y )(x) = lm t 0 t (τ 0Y t c(t) Y x ) Remann X T X T

57 54 3 Remann (1) X S, T X (S T ) = X S T + S X T. (2) C f X f = Xf Y X Y Lev-Cvta X (0, 1) 1 ω (1, 0) Y ω Y ( C (1,1) (ω Y ) = C (1,1) ω Y j dx ) = ω x j Y = ω(y ) ( X ω)(y ) = C (1,1) ( X ω Y ) = C (1,1) ( X (ω Y ) ω X Y ) = X C (1,1) (ω Y ) ω( X Y ) = X (ω(y )) ω( X Y ) = X(ω(Y )) ω( X Y ). ( X ω)(y ) = X(ω(Y )) ω( X Y ) X ω (0, 0) (1, 0) (0, 1) X (p, q) T 1 ω 1,..., ω p X 1,..., X q C C(T ω 1 ω p X 1 X q ) = T (ω 1,..., ω p, X 1,..., X q ) ( X T )(ω 1,..., ω p, X 1,..., X q ) = C( X T ω 1 ω p X 1 X q ) = C ( X (T ω 1 ω p X 1 X q ) p T ω 1 X ω ω p X 1 X q =1 ) q T ω 1 ω p X 1 X X j X q j=1

58 = X(T (ω 1,..., ω p, X 1,..., X q )) p T (ω 1,..., X ω,..., ω p, X 1,..., X q ) =1 q T (ω 1,..., ω p, X 1,..., X X j,..., X q ). j=1 X T X T X T C f ( X ω)(fy ) = X(ω(fY )) ω( X (fy )) = X(fω(Y )) ω((xf)y + f X Y ) = (Xf)ω(Y ) + fx(ω(y )) (Xf)ω(Y ) fω( X Y ) = f( X ω)(y ) X ω (0, 1) : C (T M) C (T (0,1) M) C (T (0,1) M); (X, ω) X ω T (0,1) M ( fx ω)(y ) = fx(ω(y )) ω( fx Y ) = fx(ω(y )) fω( X Y ) = f( X ω)(y ) fx ω = f X ω. ( X (fω))(y ) = X(fω(Y )) fω( X Y ) = (Xf)ω(Y ) + fx(ω(y )) fω( X Y ) = (Xf)ω(Y ) + f( X ω)(y ) = ((Xf)ω + f( X ω))(y ) X (fω) = (Xf)ω + f( X ω).

59 56 3 Remann T (0,1) M (p, q) T X T (p, q) X (fω k ) = (Xf)ω k + f X ω k ( X T )(ω 1,..., fω k,..., ω p, X 1,..., X q ) = X(fT (ω 1,..., ω p, X 1,..., X q )) p f T (ω 1,..., X ω,..., ω p, X 1,..., X q ) =1 (Xf)T (ω 1,..., ω p, X 1,..., X q ) q f T (ω 1,..., ω p, X 1,..., X X j,..., X q ) j=1 = f( X T )(ω 1,..., ω p, X 1,..., X q ). ( X T )(ω 1,..., ω p, X 1,..., fx l,..., X q ) = X(fT (ω 1,..., ω p, X 1,..., X q )) p f T (ω 1,..., X ω,..., ω p, X 1,..., X q ) f =1 q T (ω 1,..., ω p, X 1,..., X X j,..., X q ) j=1 (Xf)T (ω 1,..., ω p, X 1,..., X q ) = f( X T )(ω 1,..., ω p, X 1,..., X q ). X T (p, q) (p, q) S (r, s) T X (S T )(ω 1,..., ω p+r, X 1,..., X q+s ) = X((S T )(ω 1,..., ω p+r, X 1,..., X q+s )) p+r (S T )(ω 1,..., X ω,..., ω p+r, X 1,..., X q+s ) =1 q+s (S T )(ω 1,..., ω p+r, X 1,..., X X j,..., X q+s ) j=1 = X(S(ω 1,..., ω p, X 1,..., X q )T (ω p+1,..., ω p+r, X q+1,..., X q+s ))

60 p S(ω 1,..., X ω,..., ω p, X 1,..., X q )T (ω p+1,..., ω p+r, X q+1,..., X q+s ) =1 p+r =p+1 S(ω 1,..., ω p, X 1,..., X q )T (ω p+1,..., X ω,..., ω p+r, X q+1,..., X q+s ) q S(ω 1,..., ω p, X 1,..., X X j,..., X q )T (ω p+1,..., ω p+r, X q+1,..., X q+s ) j=1 q+s j=q+1 S(ω 1,..., ω p, X 1,..., X q )T (ω p+1,..., ω p+r, X q+1,..., X X j,..., X q+s ) = ( X S)(ω 1,..., ω p, X 1,..., X q )T (ω p+1,..., ω p+r, X q+1,..., X q+s ) +S(ω 1,..., ω p, X 1,..., X q )( X T )(ω p+1,..., ω p+r, X q+1,..., X q+s ) = ( X S T + S X T )(ω 1,..., ω p+r, X 1,..., X q+s ). X (S T ) = X S T + S X T X T (p, q) (C (r,s) T )(ω 1,..., ω p 1, X 1,..., X q 1 ) = T (ω 1,..., dx a..., ω p 1, X 1,..., a..., X q 1 ) r (C (r,s) X T )(ω 1,..., ω p 1, X 1,..., X q 1 ) r = ( X T )(ω 1,..., dx a..., ω p 1, X 1,..., a..., X q 1 ) r = X(T (ω 1,..., dx a..., ω p 1, X 1,..., a..., X q 1 )) p 1 r s T (ω 1,..., X ω,..., dx a..., ω p 1, X 1,..., a..., X q 1 ) =1 r T (ω 1,..., X (dx a )..., ω p 1, X 1,..., a..., X q 1 ) q 1 r s T (ω 1,..., dx a..., ω p 1, X 1,..., X X j,..., a..., X q 1 ) j=1 r T (ω 1,..., dx a..., ω p 1, X 1,..., X a..., X q 1 ). s s X a = X b Γ c ba c s s s

61 58 3 Remann X (dx a )( c ) = X(dx a ( c )) dx a ( X c ) = dx a (X b Γ d bc d ) = X b Γ a bc X (dx a ) = X b Γ a bcdx c. r T (ω 1,..., X (dx a )..., ω p 1, X 1,..., a..., X q 1 ) r T (ω 1,..., dx a..., ω p 1, X 1,..., X a..., X q 1 ) r = X b Γ a bct (ω 1,..., dx c,..., ω p 1, X 1,..., a..., X q 1 ) = 0. r X b Γ c bat (ω 1,..., dx a..., ω p 1, X 1,..., c..., X q 1 ) s s s s (C (r,s) X T )(ω 1,..., ω p 1, X 1,..., X q 1 ) r = X(T (ω 1,..., dx a..., ω p 1, X 1,..., a..., X q 1 )) p 1 r s T (ω 1,..., X ω,..., dx a..., ω p 1, X 1,..., a..., X q 1 ) =1 q 1 r s T (ω 1,..., dx a..., ω p 1, X 1,..., X X j,..., a..., X q 1 ) j=1 s = X((C (r,s) T )(ω 1,..., ω p 1, X 1,..., X q 1 )) p 1 s (C (r,s) T )(ω 1,..., X ω,..., ω p 1, X 1,..., a..., X q 1 ) =1 q 1 (C (r,s) T )(ω 1,..., ω p 1, X 1,..., X X j,..., X q 1 ) j=1 = ( X C (r,s) T )(ω 1,..., ω p 1, X 1,..., X X j,..., X q 1 ) C (r,s) X T = X C (r,s) T X

62 (p, q) T ( X T )(ω 1,..., ω p, X 1,..., X q ) = X(T (ω 1,..., ω p, X 1,..., X q )) p T (ω 1,..., X ω,..., ω p, X 1,..., X q ) =1 q T (ω 1,..., ω p, X 1,..., X X j,..., X q ) j= : C (T M) C (T (p,q) M) C (T (p,q) M); (X, T ) X T T (p,q) M (0, 0) (1, 0) (0, 1) (p, q) ( fx T )(ω 1,..., ω p, X 1,..., X q ) = fx(t (ω 1,..., ω p, X 1,..., X q )) p T (ω 1,..., fx ω,..., ω p, X 1,..., X q ) =1 q T (ω 1,..., ω p, X 1,..., fx X j,..., X q ) j=1 = fx(t (ω 1,..., ω p, X 1,..., X q )) p f T (ω 1,..., X ω,..., ω p, X 1,..., X q ) f =1 q T (ω 1,..., ω p, X 1,..., X X j,..., X q ) j=1 = f( X T )(ω 1,..., ω p, X 1,..., X q ). fx T = f X T.

63 60 3 Remann ( X (ft ))(ω 1,..., ω p, X 1,..., X q ) = X(fT (ω 1,..., ω p, X 1,..., X q )) p ft (ω 1,..., X ω,..., ω p, X 1,..., X q ) =1 q ft (ω 1,..., ω p, X 1,..., X X j,..., X q ) j=1 = (Xf)T (ω 1,..., ω p, X 1,..., X q ) +fx(t (ω 1,..., ω p, X 1,..., X q )) p f T (ω 1,..., X ω,..., ω p, X 1,..., X q ) f =1 q T (ω 1,..., ω p, X 1,..., X X j,..., X q ) j=1 = (Xf)T (ω 1,..., ω p, X 1,..., X q ) f( X T )(ω 1,..., ω p, X 1,..., X q ) = ((Xf)T + f( X T ))(ω 1,..., ω p, X 1,..., X q ). X (ft ) = (Xf)T + f( X T ) T (p,q) M (p, q) T T ( T )(ω 1,..., ω p, X 1,..., X q ; X) = ( X T )(ω 1,..., ω p, X 1,..., X q ) T (p, q + 1) (ω C (T (0,1) M), X j, X C (T (1,0) M)) C f f (0, 1) f X gradf, X = df(x) gradf gradf f gradf df f 1 f Remann gradf Remann

64 f gradf f f gradf gradf = (gradf) (gradf) k g kj = gradf, j = j f (gradf) = (gradf) k g kj g j = g j j f. 1 ω g j ω j X 1 g j X j T = Remann (M, g) Lev-Cvta ( X g)(y, Z) = X(g(Y, Z)) g( X Y, Z) g(y, X Z) = 0 g = 0 Remann (p, q) T T = T 1 p j 1 j q 1 p dx j 1 dx j q T = T 1 p j 1 j q;k 1 p dx j 1 dx j q dx k k T 1 p j 1 j q = k T 1 p j 1 j q 1 p dx j 1 dx j q dx k = k T 1 p j 1 j q + p a=1 Γ a kl T 1 l p j 1 j q q b=1 Γ m kj b T 1 p j 1 m j q l a m b k dx = Γ kadx a

65 62 3 Remann k T 1 p j 1 j q = ( k T )(dx 1,..., dx p, j1,..., jq ) = k (T (dx 1,..., dx p, j1,..., jq )) p T (dx 1,..., k dx a,..., dx p, j1,..., jq ) a=1 q T (dx 1,..., dx p, j1,..., k jb,..., jq1) b=1 = k T 1 p j 1 j q p T (dx 1,..., Γ a kl dx l,..., dx p, j1,..., jq ) a=1 q T (dx 1,..., dx p, j1,..., Γ m kj b m,..., jq1) b=1 = k T 1 p j 1 j q + p a=1 Γ a kl T 1 l p j 1 j q q b=1 Γ m kj b T 1 p j 1 m j q V, W V q V V W L q (V, W ) M L q (T M, T M) = L q (T x M, T x M) x M M L q (T M, T M) C T T (ω, X 1,..., X q ) = ω(t (X 1,..., X q )) (ω C (T M), X C (T M)) T T M (1, q) M (1, q) L q (T M, T M) C L q (T M, T M) C M (1, q) T T ( j1,..., jq ) = T j 1 j q (1, q) T T j 1 j q = T (dx, j1,..., jq ) = dx (T ( j1,..., jq ))

66 = dx (T k j 1 j q k ) = T j 1 j q T T T Remann M Lev-Cvta R Remann L 3 (T M, T M) C M (1, 3) Remann R X, Y, Z, W (1) (5) (1) R(X, Y )Z + R(Y, X)Z = 0, (2) R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0, (3) R(X, Y )Z, W + Z, R(X, Y )W = 0, (4) R(X, Y )Z, W = R(Z, W )X, Y, (5) ( X R)(Y, Z)W + ( Y R)(Z, X)W + ( Z R)(X, Y )W = 0. (2) 1Banch (5) 2Banch (1) (3) (2) Lev-Cvta R(X, Y )Z = X Y Z Y X Z [X,Y ] Z X Y Y X = [X, Y ] = X ( Z Y + [Y, Z]) Y ( Z X + [X, Z]) [X,Y ] Z = X Z Y + [Y,Z] X + [X, [Y, Z]] Y Z X [X,Z] Y [Y, [X, Z]] [X,Y ] Z. R(Y, Z)X R(Z, X)Y R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = R(X, Y )Z + Y Z X Z Y X [Y,Z] X + Z X Y X Z Y [Z,X] Y = [X, [Y, Z]] + [Y, [Z, X]] + Z ( X Y Y X) [X,Y ] Z = [X, [Y, Z]] + [Y, [Z, X]] + Z [X, Y ] [X,Y ] Z = [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0.

67 64 3 Remann Jacob (4) V V (1, 3) R (1) R(X, Y )Z + R(Y, X)Z = 0, (2) R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0, (3) R(X, Y )Z, W + Z, R(X, Y )W = 0 R R(X, Y )Z, W R(X, Y )Z, W = R(Z, W )X, Y = R(Y, Z)X, W R(Z, X)Y, W ((2) ) = R(Y, Z)W, X + R(Z, X)W, Y ((3) ) = R(Z, W )Y, X R(W, Y )Z, X R(X, W )Z, Y R(W, Z)X, Y ((2) ) = 2 R(Z, W )X, Y + R(W, Y )X + R(X, W )Y, Z ((1) (3) ) = 2 R(Z, W )X, Y R(Y, X)W, Z ((2) ) = 2 R(Z, W )X, Y R(X, Y )Z, W. ((1) (3) ) R(X, Y )Z, W = R(Z, W )X, Y 3.5.3(5) Remann X, Y T R(X, Y )T = ( X Y Y X [X,Y ] )T (1) R(X, Y ) S, T R(X, Y )(S T ) = R(X, Y )S T + S R(X, Y )T.

68 (2) C f R(X, Y )f = 0 (p, q) T (R(X, Y )T )(ω 1,..., ω p, X 1,..., X q ) p = T (ω 1,..., R(X, Y )ω,..., ω p, X 1,..., X q ) =1 q T (ω 1,..., ω p, X 1,..., R(X, Y )X j,..., X q ) j=1 R(X, Y ) R(X, Y ) S, T X Y (S T ) = X ( Y S T + S Y T ) = X Y S T + Y S X T + X S Y T + S X Y T R(X, Y )(S T ) = R(X, Y )S T + S R(X, Y )T. C f R(X, Y )f = XY f Y Xf [X, Y ]f = 0. R(X, Y ) (p, q) T 0 = R(X, Y )(T (ω 1,..., ω p, X 1,..., X q )) = (R(X, Y )T )(ω 1,..., ω p, X 1,..., X q ) p + T (ω 1,..., R(X, Y )ω,..., ω p, X 1,..., X q ) + =1 q T (ω 1,..., ω p, X 1,..., R(X, Y )X j,..., X q ). j=1 (R(X, Y )T )(ω 1,..., ω p, X 1,..., X q ) p = T (ω 1,..., R(X, Y )ω,..., ω p, X 1,..., X q ) =1 q T (ω 1,..., ω p, X 1,..., R(X, Y )X j,..., X q ) j=1

69 66 3 Remann (Rcc ) Remann (p, q) T X, Y ( 2 T )(ω 1,..., ω p, X 1,..., X q ; X; Y ) ( 2 T )(ω 1,..., ω p, X 1,..., X q ; Y ; X) = (R(X, Y )T )(ω 1,..., ω p, X 1,..., X q ) ( T )(ω 1,..., ω p, X 1,..., X q ; X) = X(T (ω 1,..., ω p, X 1,..., X q )) p T (ω 1,..., X ω,..., ω p, X 1,..., X q ) =1 q T (ω 1,..., ω p, X 1,..., X X j,..., X q ) j=1 ( 2 T )(ω 1,..., ω p, X 1,..., X q ; X; Y ) = Y (( T )(ω 1,..., ω p, X 1,..., X q ; X)) p ( T )(ω 1,..., Y ω k,..., ω p, X 1,..., X q ; X) =k q ( T )(ω 1,..., ω p, X 1,..., Y X l,..., X q ; X) l=1 ( T )(ω 1,..., ω p, X 1,..., X q ; Y X) = Y X(T (ω 1,..., ω p, X 1,..., X q )) (5.1) p Y (T (ω 1,..., X ω,..., ω p, X 1,..., X q )) (5.2) + + =1 q Y (T (ω 1,..., ω p, X 1,..., X X j..., X q )) (5.3) j=1 p X(T (ω 1,..., Y ω k,..., ω p, X 1,..., X q )) (5.4) k=1 p T (ω 1,..., X ω,..., Y ω k,..., ω p, X 1,..., X q ) (5.5) k=1 k p T (ω 1,..., X Y ω k,..., ω p, X 1,..., X q ) (5.6) k=1

70 p k=1 j=1 q T (ω 1,..., Y ω k,..., ω p, X 1,..., X X j,..., X q ) (5.7) q X(T (ω 1,..., ω p, X 1,..., Y X l,..., X q )) (5.8) l=1 q l=1 p T (ω 1,..., X ω,..., ω p, X 1,..., Y X l,..., X q ) (5.9) =1 q T (ω 1,..., ω p, X 1,..., Y X j,..., X X l,..., X q ) (5.10) l=1 j l q T (ω 1,..., ω p, X 1,..., X Y X l,..., X q ) (5.11) l=1 ( X Y )(T (ω 1,..., ω p, X 1,..., X q )) (5.12) p + T (ω 1,..., Y Xω k,..., ω p, X 1,..., X q ) (5.13) + k=1 q T (ω 1,..., ω p, X 1,..., Y XX l,..., X q ). (5.14) l=1 X Y (1) [X, Y ](T (ω 1,..., ω p, X 1,..., X q )) (2) (4) (3) (8) (5) X Y (6) p T (ω 1,..., ( X Y Y X )ω k,..., ω p, X 1,..., X q ) k=1 (7) (9) (10) X Y (11) q T (ω 1,..., ω p, X 1,..., ( X Y Y X )X l,..., X q ) l=1 (12) (1) (13) ( X Y Y X)(T (ω 1,..., ω p, X 1,..., X q )) = [X, Y ](T (ω 1,..., ω p, X 1,..., X q )) p T (ω 1,..., X Y Y Xω k,..., ω p, X 1,..., X q ) k=1

71 68 3 Remann = p T (ω 1,..., [X,Y ] ω k,..., ω p, X 1,..., X q ) k=1 (14) = q T (ω 1,..., ω p, X 1,..., X Y Y XX l,..., X q ) l=1 q T (ω 1,..., ω p, X 1,..., [X,Y ] X l,..., X q ) l= = ( 2 T )(ω 1,..., ω p, X 1,..., X q ; X; Y ) ( 2 T )(ω 1,..., ω p, X 1,..., X q ; Y ; X) p T (ω 1,..., R(X, Y )ω,..., ω p, X 1,..., X q ) =1 + q T (ω 1,..., ω p, X 1,..., R(X, Y )X j,..., X q ) j=1 = (R(X, Y )T )(ω 1,..., ω p, X 1,..., X q ) C f (0, 2) 2 f ( 2 f)(x; Y ) ( 2 f)(y ; X) = (R(X, Y )f) = 0 2 f 2 f C f Hessan ( 2 f)(x; Y ) = ( Y f)(x) = Y (( f)(x)) f( Y X) = Y (df(x)) df( Y X) = Y Xf ( Y X)f 3.5.3(5) 1 ω ( 2 ω)(w ; X; Y ) ( 2 ω)(w ; Y ; X) = (R(X, Y )ω)(w ) = ω(r(x, Y )W ) = (C (1,1) (ω R))(X, Y, W ).

72 Z ( 3 ω)(w ; X; Y ; Z) ( 3 ω)(w ; Y ; X; Z) = ( Z C (1,1) (ω R))(X, Y, W ) = (C (1,1) ( Z ω R + ω Z R))(X, Y, W ) = ( Z ω)(r(x, Y )W ) + ω(( Z R)(X, Y )W ). ω ( 3 ω)(w ; X; Y ; Z) ( 3 ω)(w ; X; Z; Y ) = (R(Y, Z) ω)(w ; X) = ( ω)(r(y, Z)W ; X) + ( ω)(w ; R(Y, Z)X). X, Y, Z ( 3 ω)(w ; Y ; Z; X) ( 3 ω)(w ; Y ; X; Z) = ( ω)(r(z, X)W ; Y ) + ( ω)(w ; R(Z, X)Y ) ( 3 ω)(w ; Z; X; Y ) ( 3 ω)(w ; Z; Y ; X) = ( ω)(r(x, Y )W ; Z) + ( ω)(w ; R(X, Y )Z). ( ω)(r(x, Y )W ; Z) + ( ω)(r(y, Z)W ; X) + ( ω)(r(z, X)W ; Y ) +( ω)(w ; R(X, Y )Z) + ( ω)(w ; R(Y, Z)X) + ( ω)(w ; R(Z, X)Y ) = ( 3 ω)(w ; X; Y ; Z) ( 3 ω)(w ; Y ; X; Z) +( 3 ω)(w ; Y ; Z; X) ( 3 ω)(w ; Z; Y ; X) +( 3 ω)(w ; Z; X; Y ) ( 3 ω)(w ; X; Z; Y ) = ( X ω)(r(y, Z)W ) + ( Y ω)(r(z, X)W ) + ( Z ω)(r(x, Y )W ) +ω(( X R)(Y, Z)W ) + ω(( Y R)(Z, X)W ) + ω(( Z R)(X, Y )W ) 3.5.3(2) ω(( X R)(Y, Z)W + ( Y R)(Z, X)W + ( X R)(Y, Z)W ) = ( ω)(w ; R(X, Y )Z + R(Y, Z)X + R(Z, X)Y ) = 0. 1 ω ( X R)(Y, Z)W + ( Y R)(Z, X)W + ( X R)(Y, Z)W = 0

73 70 3 Remann Remann R(, j ) k = R l jk l R(, j ) k = j k j k [, j ] k = (Γ m jk m ) j (Γ m k m ) = ( Γ m jk) m + Γ m jk m ( j Γ m k) m Γ m k j m = ( Γ l jk) l + Γ m jkγ l m l ( j Γ l k) l Γ m kγ l jm l Rjk l = Γ l jk j Γ l k + Γ l mγ m jk Γ l jmγ m k (0, 4) R(X, Y )Z, W R(, j ) k, l = R jkl R jkl = R(, j ) k, l = Rjk m m, l = g lm Rjk. m Rjk l + Rjk l = 0, Rjk l + Rjk l + Rkj l = 0, R jkl + R jlk = 0 R jkl = R klj Rjkl m + j Rkl m + k Rjl m = (R(, j )dx k )( l ) dx k (R(, j ) l ) = dx k (R m jl m ) = R k jl R(, j )dx k = R k jldx l. (p, q)t (R(, j )T ) 1 p j 1 j q (R(, j )T ) 1 p j 1 j q = (R(, j )T )(dx 1,..., dx p, j1,..., jq )

74 = = p a=1 p T (dx 1,..., R(, j )dx a,..., dx p, j1,..., jq ) a=1 q T (dx 1,..., dx p, j1,..., R(, j ) b,..., jq ) b=1 R a jk T 1 k p j 1 j q q b=1 R l jj a T 1 p j 1 l j q. k a l b Rcc ( 3.5.6) T 1 p j 1 j q ;;j T 1 p j 1 j q ;j; = j T 1 p j 1 j q p = a=1 j T 1 p j 1 j q q R a jk T 1 k p j 1 j q + b=1 R l jj b T 1 p j 1 l j q. C f f = f ; = f f Hessan 2 f f ;;j = j f = j f Γ k j k f. df x = 0 x f ;;j Hessan = j f 2 f Remann M p T p M 2 σ R(X, Y )Y, X X Y 2 (X, Y σ ) Z, W σ Z = ax + by, W = cx + dy (ad bc 0) (1) (3) R(Z, W )W, Z = R(aX + by, cx + dy )(cx + dy ), ax + by

75 72 3 Remann = R(aX, dy )(cx + dy ), ax + by + R(bY, cx)(cx + dy ), ax + by = ad R(X, Y )cx, by + ad R(X, Y )dy, ax +bc R(Y, X)cX, by + bc R(Y, X)dY, ax = (ad bc) 2 R(X, Y )Y, X Z W = (ad bc)x Y Z W 2 = (ad bc) 2 X Y 2. R(Z, W )W, Z Z W 2 = R(X, Y )Y, X X Y Remann M p T p M 2 σ K σ = R(X, Y )Y, X X Y 2 (X, Y σ ) K σ σ M p T p M 2 σ K σ M Remann (1) σ σ e 1, e 2 e 1 e 2 = 1 K σ = R(e 1, e 2 )e 2, e Remann M K p M X, Y, Z T p M R(X, Y )Z = K( Y, Z X X, Z Y ) K R R(X, Y )Z = K( Y, Z X X, Z Y ) R(X, Y )Y, X = K Y, Y X X, Y Y, X = K( X, X Y, Y X, Y 2 ).

76 X Y 2 = X, X Y, Y X, Y 2 K M M M K R K (X, Y )Z = K( Y, Z X X, Z Y ) M (1, 3) R K R K R K (1) R K (X, Y )Z + R K (Y, X)Z = 0 R K (X, Y )Z + R K (Y, Z)X + R K (Z, X)Y = K( X, Z Y Y, Z X + Y, X Z Z, X Y + Z, Y X X, Y Z) = 0 R K (2) R K (X, Y )Z, W + Z, R K (X, Y )W = K( Y, Z X, W X, Z Y, W ) + K( Z, X Y, W Z, Y X, W ) = 0 R K (3) R K R K (X, Y )Z, W = R K (Z, W )X, Y R K (X, Y )Z, W = K( Y, Z X, W X, Z Y, W ) = K W, X Z Z, X W, Y = R K (Z, W )X, Y. R K (1) (4) R (1) (4) S = R R K S (1) (4) (1, 3) S 0 X, Y S(X, Y )Y, X = 0

77 74 3 Remann X, Y X, Y S(X, Y )Y, X = 0 X, Y S(X, Y )Y, X = R(X, Y )Y, X R K (X, Y )Y, X = K X Y 2 K( X, X Y, Y X, Y 2 ) = 0. X, Y S(X, Y )Y, X = 0 Y Y + Z 0 = S(X, Y + Z)(Y + Z), X = S(X, Y )Y, X + S(X, Y )Z, X + S(X, Z)Y, X + S(X, Z)Z, X = S(X, Y )Z, X + S(X, Z)Y, X. S(X, Y )Z, X = S(X, Y )X, Z S(X, Z)Y, X = S(Y, X)X, Z = S(X, Y )X, Z 2 S(X, Y )X, Z = 0 S(X, Y )X = 0 X X + Z 0 = S(X + Z, Y )(X + Z) = S(X, Y )X + S(X, Y )Z + S(Z, Y )X + S(Z, Y )Z = S(X, Y )Z + S(Z, Y )X = S(X, Y )Z S(Y, X)Z S(X, Z)Y = 2S(X, Y )Z S(X, Z)Y. 2S(X, Y )Z = S(X, Z)Y.

1 Euclid Euclid Euclid

1 Euclid Euclid Euclid II 2000 1 Euclid 1 1.1..................................... 1 1.2..................................... 8 1.3 Euclid............. 19 1.4 3 Euclid............................ 22 2 28 2.1 Lie Lie..................................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II Lie Lie Lie ( ) 1. Lie Lie Lie

II Lie Lie Lie ( ) 1. Lie Lie Lie II Lie 2010 1 II Lie Lie Lie ( ) 1. Lie Lie 2. 3. 4. Lie i 1 1 2 Lie Lie 4 3 Lie 8 4 9 5 11 6 14 7 16 8 19 9 Lie 23 10 Lie 26 11 Lie Lie 31 12 Lie 35 1 1 C Lie Lie 1.1 Hausdorff M M {(U α, φ α )} α A (1)

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information