30

Size: px
Start display at page:

Download "30"

Transcription

1 3

2

3

4

5 n Liouville i

6 ( ) ( ) ii

7 . dq dw du Á U d'w d'q du = dq + dw (.) ( ) dw = pdv du = dq pdv (.2) ( ) pdv ( 2) dq dw d Q d W A B A B 2 ( ) ( ) 2 ( ).2.2 R ( T ) R 2 ( T 2 ) R Q R 2 Q 2 Q T + Q 2 T 2 (.3)

8 η η T T 2 T (.4) ( ) n (.3) n i= Q i T i (.5) T 2 lr 2 dq T (.6) T T T Q Q 2 lr (T ) W.2.3 L L 2 2 L dq/dt S() L L 2 dq/dt S(2) : Ô dq = S() L T dq = S(2) L 2 T 2 L d Q/dT dq = S(2) S() T L 2 (.7) dq T L 2 L 2 : Ô = ds (.7) S (.6) dq T ds (.8) (dq = ) ds (.9) 2 ( ) dq = T ds 2

9 du = pdv + T ds (.).3 (.) U V S H F G.3. L dl dl = Xdx + Y dy+,... (x, y,...) (X, y,...) L = L Xx L d L = dl Xdx xdx = xdx + Y dy+,... (.) d L (X, y,...).3.2 H (V, S) (S, p) H = U + pv (.2) dh = du + pdv + V dp = T ds + V dp (.3) F (V, S) (V, T ) 3

10 F = U T S (.4) df = du T ds SdT = pdv SdT (.5) G (V, T ) (T, p) G = F + pv = H T S = U + pv T S (.6) dg = V dp SdT (.7).3.3 δs =, δ 2 S < (.8) ( ) d Q T ds d Q T ds d Q = T ds T ds δf =, δ 2 F > (.9) ( ) d Q T ds d Q = du d W = du + pdv du T ds + pdv df = d(u T S) = du T ds SdT SdT = pdv = df = du T ds δg =, δ 2 G > (.2).4 < ϵ > < ϵ >= 2 m < v2 >= 2 m < v2 x + v 2 y + v 2 z >= 2 m < v2 x > + 2 m < v2 y > + 2 m < v2 y > (.2) 4

11 2 m < v2 x >= 2 m < v2 y >= 2 m < v2 z >= kt 2 (.22) 2kT k R N A k = R/N A (.23) k B < ϵ >= 3 kt (.24) 2 U = N < ϵ >= 3 NkT (.25) 2 C V = ( ) U T V = 3 Nk (.26) < ϵ >= 5 kt (.27) 2 U = N < ϵ >= 5 NkT (.28) 2 C V = ( ) U T V = 5 Nk (.29) 2 5

12 2 2. n f(x, x 2,, x n ) m g i (x, x 2,, x n ) =, {x i } (i =, 2,, m) m L({x i }, {α i }) = f(x, x 2,, x n ) α i g i (x, x 2,, x n ) (2.) i= {α i } n + m L =, x i (i =, 2,, n) (2.2) L =, α i (i =, 2,, m) (2.3) (2.4) {x i } {α i } [ 2. ] g(x, y, z) = x 2 + y 2 + z 2 = f(x, y, z) = x + y + z 2.2 [ 2.2 ] () 5 5 (2) 5 3 (3) 5 3 n m np m = n! (n m)! (2.5) n m n m (2.6) [ 2.3 ] ()

13 (2) n m n m nc m = n! m!(n m)! (2.7) n n n 2 n m ( n + n n m = n) m n! n!n 2! n m! (2.8) [ 2.4 ] [ 2.5 ] 6 () 3 (2) [ 2.6 ] 6 2 () 6 (2) [ 2.7 ] i p i p : p 2 : p 3 : p 4 : p 5 : p 6 = : : 2 : 2 : 3 : 3 () 3 (2) m x x 2 x 3 x m n n 2 n 3 n m x i p i p i = n i (2.9) m n i i= m p i = (2.) i= 7

14 m x i x f(x) x x + dx f(x)dx x x + dx p(x)dx = f(x)dx f(x)dx (2.) p(x) p(x)dx = (2.2) 2.3. x i A i A m A = p i A i = i= m n i A i i= (2.3) m n i i= x A(x) A A = p(x)a(x)dx = f(x)a(x)dx f(x)dx (2.4) ( ) 2 = (x x ) 2 σ 2 σ 2 = p(x)(x x ) 2 dx = p(x)(x 2 2x x + x 2 )dx = x 2 2 x 2 + x 2 = x 2 x 2 σ 2 = x 2 x 2 (2.5) 8

15 σ σ x x σ f(x) = ] [ σ 2π exp (x x )2 2σ 2 (2.6) 2.4 n [ 2.8 ] Γ(s) = () Γ(s + ) = sγ(s) ( ) Γ(S + ) = (2) Γ(n) = (n )! (3) Γ( 2 ) = π x s e x dx Γ(s) e x2 dx = π/2 x s e x dx = [ 2.9 ] r n γ n γ n = γ n = x s ( e x ) dx... x 2 +x x2 n r2 dx dx 2... dx n γ n πn/2 Γ( n 2 + )rn n r γ n = C n r n σ n σ n = d dr γ n = nc n r n I n =... exp{ a(x 2 + x x 2 n)}dx dx 2... dx n { } n () I n = exp( ax 2 )dx I n (2) I n = exp( ar 2 )σ n dr I n C n (3) 2 γ n = πn/2 Γ( n 2 + )rn r n V V = πn/2 Γ( n 2 + )rn (2.7) 9

16 x i I i p i I i = I(p i ) = log p i (3.) x i x j I I(p i ) > I(p j ), p i < p j I(p i p j ) = I(p i ) + I(p j ) (3.) 3..2 S = p i I(p i ) = i p i log p i (3.2) [ 3. ] W p i = /W ( ) 3.2 (3.2) (.8) ( / ) R N A k = R/N A (3.3) S = k i p i log p i (3.4)

17 p q Hamiltonian H(p, q) Hamiltonian H = N i= 2m i p 2 i + Φ(r, r 2,..., r N ) (3.5) dq i dt = H p i, dp i dt = H q i (3.6) Newton dp dt = Φ r (3.7) p q 6N ( ) k m x Hamiltonian H = 2m p2 x + 2 kx2 px 2mE x 2E k Liouville t (q, p) dqdp t (q, p ) dq dp q i = q i + dq i dt t = q i + H dq dp t p i (q,p) p i = p i + dp i dt t = p i H dq' t dp' q i (q',p') (q, p) (q, p ) p dqdp dq dp Jacobi dq dp = (q, p ) (q, p) dqdp dqdp (3.8) Liouville q

18 dq dp = dqdp (3.9) ( ) (q, p ) (q, p) = + 2 H q p t 2 H q 2 t 2 H p 2 2 H p q ( 2 ) H + q p 2 H = (3.) p q Schrödinger Schrödinger p iħ (3.) x p x x p x h (3.2) [x, p x ] = iħ (3.3) ( ) (3.) Schrödinger 3.5 ( ) (a priori) Newton ( ) 3.6 (q, bmp) (E = const.) { const. : (q, p) E = const. ρ = (3.4) : 2

19 A A Ā A A ( ) A A A ρ(q, p)dqdp ( A = A ) Liouville ( A = Ā ) ( Ā = Ā ) A A Ā 3.7 3

20 4 4. E N V (Micro Canonical Ensemble) E N V t E t E h (4.) h t E E + δe W (E, N, V, δe) δe ( ) W (E, N, V ) = (4.2) E<E l <E+δE ( ) W (E, N, V ) = h 3N N! E<H(N,V )<E+δE dqdp (4.3). ( q p h) h f (f ) E E + δe q p = h 2. ( ) N! (, E) ( ) Ω (E, N, V ) ( ) Ω (E, N, V ) = (4.4) <E l <E 4

21 l ( ) Ω (E, N, V ) = h 3N N! <H(N,V )<E dqdp (4.5) (E, E + δe) (, E) Ω(E, N, V ) Ω (E, N, V ) Ω(E, N, V ) = Ω (E, N, V ) = d de Ω (E, N, V ) (4.6) E ( ) Ω(E, N, V )de (4.7) E Ω(E, N, V )de W (E, N, V ) = E+δE E Ω(E )de ΩδE = d de Ω (E, N, V )δe (4.8) ( ) Ω = h 3 <ϵ<e dqdp = h 3 ϵ = 2m p2 = 2m (p2 x + p 2 y + p 2 z) (4.9) dq < p < 2mE dp = h 3 dxdydz V 4π 3 ( 2mE) 3 dxdydz < p < 2mE < p < 2mE dp x dp y dp z (4.) dp x dp y dp z 2mE Ω = 4πV 3 ( ) 3/2 2mE (4.) h 2 5

22 Ω = d ( ) 3/2 2m de Ω = 2πV E (4.2) h 2 W (E, δe, N, V ) = ΩδE = d de Ω = 2πV ( ) 3/2 2m EδE (4.3) h 2 ( ) Schrödinger ( ħ2 2 2m x y z 2 ) ψ(x, y, z) = ϵψ(x, y, z) (4.4) L ψ k (x, y, z) = e ikr, k = (k x, k y, k z ), V = L 3 V ϵ k = ħ2 k 2 2m, k2 = k x 2 + k y 2 + k z 2 k x k y k z k x = 2π L n x (n x =, ±, ±2, ±3,...) k y = 2π L n y (n y =, ±, ±2, ±3,...) (4.5) (4.6) k z = 2π L n z (n z =, ±, ±2, ±3,...) (2π)3 < ϵ k < E V 2mE Ω (E) ħ Ω (E) = ( ) 3 = 4π 2mE / (2π)3 = 4πV ( ) 3/2 2mE 3 ħ V 3 h 2 (4.7) <ϵ k <E Ω(E) = d de Ω (E) = 2πV W (E, δe, N, V ) = 2πV ( 2m h 2 N ) 3/2 E (4.8) ( ) 3/2 2m EδE (4.9) h 2 N Ω Ω = h 3N dqdp (4.2) N! = H E h 3N N! dx dy dz dx 2 dy 2 dz 2 dx N dy N dz N (4.2) dp x dp y dp z dp x2 dp y2 dp z2 dp xn dp yn dp zn (4.22) H E 6

23 H E dx dy dz dx 2 dy 2 dz 2 dx N dy N dz N = dp x dp y dp z dp x2 dp y2 dp z2 dp xn dp yn dp zn dx dy dz dx 2 dy 2 dz 2 dx N dy N dz N = V N 2mE 3N Ω = V N (2πmE) 3N/2 N!h 3N Γ ( (4.23) 3N 2 + ) W (E, δe, N, V ) = 3NV N (2πm) 3N/2 E 3N 2 2N!h 3N Γ ( δe (4.24) 3N 2 + ) 4.3 W l p l l p l = (4.25) W S S = k log W (4.26) δe S(E, N, V ) = k log W (E, δe, N, V ) k log Ω (4.27) (4.27) n log n! n log n n (4.28) (4.23) (4.24) W = Ω 3NδE 2E k log W = k log Ω + k log 3NδE 2E (4.29) k log W (E, δe, N, V ) k log Ω (4.29) 2 log Ω log Ω = N log V + 3N 2 log E + N log(2πm)3/2 log N! N log h 3 log 3N 2! (4.3) 7

24 log Ω N log V + 3N 2 log E + N log(2πm)3/2 N log N + N N log h 3 3N 2 log 3N 2 + 3N 2 ( = N log V N + 3 2E log 2 3N + log (2πm)3/2 e 5/2 ) h 3 (4.3) E N V N (4.29) 2 N ( 24 ) S(E, N, V ) = k log W (E, δe, N, V ) k log Ω ( S = kn log V N + 3 2E log 2 3N + log (2πm)3/2 e 5/2 ) h 3 (4.32) S E = T 3 2 kn E = T E = 3 2 NkT k [ 4. ] ω N E T N ( p 2 () H = i 2m + ) 2 mω2 x 2 i Ω (E) i= (2) S k log Ω S (3) S E = E T T (4) [ 4.2 ] ω N E T ( 2 + m) ħω (m =,, 2, 3,...) () E = ( 2 N + M) ħω W M (M + N )! M!(N )! N ( ) i m i m i = M m i (2) S = k log W M (3) S E = E T T (4) E T [ 4.3 ] µ H µh µh N () MµH W M (2) M < S = k log W M (3) S E = E T T i= 8

25 (4) T [ 4.4 ] N a x a () x W (2) Stirling S x (3) F (4) X X = F X x (5) X x [ 4.5 ] N Frenkel N n n N n N, N w () N n N W (2) Stirling S (3) F (4) F = T n n 9

26 ε, ε 2,, ε j,, 2,, j, n, n 2,, n j, (n, n 2,, n j, ) {n j } N N = n j j (4.33) E = n j ε j j (4.34) ε j ε 2 ε n j j N {n j } W {n j } W {n j } = N! j n j! ( j ) n j (4.35) j W {n j } = j ( j ) n j n j! (4.36) W (E, N, V ) W (E, N, V ) = {n j } ( nj = N nj ε j = E W {n j } = ) {n j } ( nj = N nj ε j = E ( j ) nj j ) n j! (4.37) {n j } {n j } W (E, N, V ) W {n j } {n j } {n j } {n j } (4.33) (4.34)W {n j } W {n j } {n j } W {n j} log W {n j } {n j } L({n j }, α, β) = log W {n j } α n j N β n j ε j E (4.38) j j α β log W {n j } = log j ( j ) n j n j! j {n j (log n j ) n j log j } (4.39) 2

27 log W {n j } j L({n j }, α, β) = j {n j (log n j ) n j log j } α j n j N β j n j ε j E (4.4) log W {n j } {n j } L = log n i + log i α βε i = (4.4) n i L α = n j N = (4.42) j L β = n j ε j E = (4.43) j (4.4) n i = i e α e βε i (4.44) Z = i i e βε i (4.45) (4.42) α e α = N Z (4.46) β (4.43) n i n j (4.4) log n j + log j = α + βε j n j j ( n j log n j n ) j log j = α n j + β n j ε j = αn + βe (4.47) j j j { n j (log n j ) n j log j } = α + βe + N (4.48) W (E, N, V ) W {n j } S = k log W k log W {n j } = k(αn + βe + N) (4.49) β S E = T S E = kβ = T (4.5) (4.5) β = kt (4.52) 2

28 β (4.52) j n j n j = N Z j e βε j (4.53) Z = j j e βεj (4.54) n l = N Z e βε l (4.55) Z = l e βε l (4.56) l (Maxwell ) Boltzmann Z (Maxwell ) Boltzmann l n l e βε l N n : n 2 : : n l : = e βε : e βε2 : : e βε l : (4.57) E = l n lε l E E = l ε l n l = l ε l N Z e βε l = N ε l e βε l (4.58) Z l E = N Z β Z (4.59) Boltzmann ( ) Boltzmann Bose(-Einstein) Fermi(-Dirac) Boltzmann Bose Fermi m k k ε = ε k = ħ2 k 2, k = k (4.6) 2m 22

29 Z = l e βε l = k e βε k = V [ (2π) 3 exp ( βħ2 2 ) ]3 k x dk x 2m = V λ T 3, λ T 2 = βh2 2πm (4.6) α e α = N Z = N V λ T 3 (4.62) < ε > = ε l e βε l Z l = Z V (2π) 3 ħ 3 2m = 3 Z V (2π) 3 ħ 3 2m [ ] (kx 2 + ky 2 + kz) 2 exp β ħ2 (kx 2 + ky 2 + kz) 2 dk 2m [ ] kx 2 exp β ħ2 (kx 2 + ky 2 + kz) 2 dk = 3 V 2m 2 Z β λ 3 T = 3 2β (4.63) 3 2kT β = kt (4.49) S = kn + kαn + kβe (4.64) e α = λ 3 3 T N/V E = N < ε >= N 2β ( S = kn log V N + 3 2E log 2 3N + log (2πm)3/2 e 5/2 ) h 3 (4.65) (4.32) Helmholtz Helmholtz F = E T S ( ) F p = = NkT V V T,N (4.66) pv = NkT (4.67) [ 4.6 ] ω N Boltzmann E T ( 2 + m) ħω (m =,, 2, 3,...) () Boltzmann (2) 23

30 (3) ( 4.4) [ 4.7 ] µ H µh µh N Boltzmann () Boltzmann (2) (3) ( 4.5) 24

31 5 E N V 5. I II H I+II I+II ( ) H I+II H I+II = H I + H II + H (5.) H ) I II E I E II W I W II I+II E W E = E I + E II (5.2) W (E) = W I (E I ) W II (E II ) (5.3) I+II S I S I II S II S(E) = S I (E I ) + S II (E II ) (5.4) N V 2) I E I S(E) E I = E I E I = E E II E I = E II S(E) E S = (S I + S II ) = S I + S II E I E I E I E I = T = S I E I S II E II = (5.5) T I = S I E I = S II E II = T II (5.6)

32 5.2 I II I+II II I ( ) I I S E I E I = I I I I N V I E N l ε l p l p l I p l ( ) p l S = k l p l log p l (5.7) p l = (5.8) l E p l ε l E = (5.9) l L({p l }, α, β) = k ( ) ( ) p l log p l kα p l kβ p l ε l E (5.) l l l α β L = k log p i k(α + ) kβε i = p i (5.) L α = p l = l (5.2) L β = l p l ε l E = (5.3) (5.) p i = e (α+) e βεi (5.4) (5.2) e (α+) = /Z N Z N = i e βε i p i = Z N e βε i (5.5) β β (5.3) (5.5) (5.7) S = k i p i log p i = kβ i p i ε i + k log Z N = kβ E + k log Z N (5.6) 26

33 E E S E = T β kt i l l ( ) p l = Z N e βε l, β = kt Z N = l (5.7) e βε l (5.8) l e βε l p : p 2 : : p l : = e βε : e βε2 : : e βε l : (5.9) ( ) ρ(q, p)dqdp = Z N N!h 3N e βh dqdp (5.2) Z N = N!h 3N e βh dqdp (5.2) Canonical Ensemble Canonical Z N (4.56) N Z Z N 5.3 E E = l p l ε l (5.22) (5.7) p l E = ε l e βε l (5.23) Z N l E = Z N β Z N = β log Z N (5.24) 2 27

34 5.4 (5.8) (5.2) ε l E ε l = E W (E, N, V ) W (E, N, V ) Ω(E) Z N = l e βε l = E e βe W (E, N, V ) (5.25) Z N = Ω(E)e βe de (5.26) Z N W (E, N, V ) Ω(E) E (5.6) β = kt E E Z N F kt log Z N = E T S = F (5.27) W (E, N, V ) β = kt Z N S F S = k log W (E, N, V ) (5.28) F = kt log Z N (5.29) F = U T S U V S T V F ds = T du + P dv T (5.3) df = SdT P dv (5.3) 5.5 H = i () Z N = N!h 3N 2m p2 i dq dq 2 dq N dp dp 2 dp N exp { β i } 2m p2 i dq dq 2 dq N = V N (5.32) 28

35 dp dp 2 dp N exp { β i } 2m p2 i ( = { dp x dp y dp z exp β }) N ( ) 3N 2m p2 = 2πmkT (5.33) h2 λ 2 T = 2πmkT Z N = V N Z N!λ 3N T (5.34) Z N = N! ZN (5.35) N N! (2) E = β log Z N = 3N β log λ T = 3N h 2 λ T β 2πmkT = N 3 kt (5.36) 2 kt /β β = kt (3) (4) P = V ( kt log Z N ) = kt V log Z N = kt V N log V = kt N V (5.37) P V = NkT (5.38) ( ) F S = = k log Z N + kt T V Z N T Z N = k log V N ( ) V N ( ) V N N!λ 3N + kt T N!λ 3N T T N!λ 3N = k log V N T N! λ 3N T k {N log V N log N + N 3N log λ T + 32 } N [ { (2πmk = kn log V N + 3 ) }] 3/2 2 log T + log e 5/2 h 2 + k 3 2 N (5.39) Stirling log N! = N log N N 5.6 x ( x) 2 = (x x ) 2 ( x)2 = (x x ) 2 = x 2 ( x ) 2 (5.4) 29

36 ( E) 2 = E 2 E 2 (5.4) ( E) 2 E = ε l e βε l (5.42) Z N T T = kt 2 β l C v = T E = kt 2 β E = { } kt 2 ε l e βε l β Z N kt 2 ε l e βε l Z N β l l { } = kt 2 ZN 2 ( ε l )e βε l ε l e βε l kt 2 ( ε 2 Z l)e βε l N l l l ( ) 2 ( ) = kt 2 ε l e βε l + Z N kt 2 ε 2 Z le βε l N l = kt 2 ( E2 E 2 ) (5.43) l ( E) 2 = kt 2 C v (5.44) K f E = 2 fkt, C v = fk (5.45) 2 ( E)2 = E 2 fk2 T 2 2 fkt f (5.46) mol f = 3N 24 ( E)2 2 (5.47) E S = ( ) F T V = k log Z N + kt Z N T Z N (5.48) 3

37 Z N = E e βe W (E, N, V ) (5.49) E { } T e E/kT W (E, N, V ) S = k log e E/kT E W (E, N, V ) + e E/kT W (E, N, V ) E T E = E (5.5) W (, N, V ) S = k log W (, N, V ) (5.5), T = 3 T S ( ) [ 5. ] ξ ε = cξ 2 2kT [ 5.2 ] ω N N ( p 2 H = i 2m + ) 2 mω2 x 2 i i= () Z N Z Z N (2) < E >= Z N β Z N < E > (3) C v [ 5.3 ] ω N ( 2 + m) ħω (m =,, 2, 3,...) () Z N (2) < E > (3) C v [ 5.4 ] µ H µh µh N () Z N (2) < E > (3) C v (4) F (5) S 3

38 6 6. I II H I+II I+II ( ) H I+II H I+II = H I + H II + H (6.) H ) I II E I E II I II N I N II W I W II I+II E N W E = E I + E II (6.2) N = N I + N II (6.3) W (E, N) = W I (E I, N I ) W II (E II, N II ) (6.4) I+II S I S I II S II S(E, N) = S I (E I, N I ) + S II (E II, N II ) (6.5) V 2) I E I S E I E I = E II S = (S I + S II ) = S I + S II E I E I E I E I S E = T = E I E I = E E II = S I E I S II E II = (6.6) T I = S I E I = S II E II = T II (6.7) 2 2 I N I S N I = N I N I = N N II N I = N II S = (S I + S II ) = S I + S II N I N I N I N I 32 = S I N I S II N II = (6.8)

39 S N = µ kt µ I T I = S I N I = S II N II = µ II T II (6.9) T I = T II µ I = µ II I II I+II II I ( ) I I S E I = E I S N I = N I I I I I V I E N N l ε l n l p l p l I p l ( ) p l S = k l p l log p l (6.) p l = (6.) l E p l ε l E = (6.2) l N p l n l N = (6.3) l L({p l }, α, β, γ) = k ( ) ( ) ( ) p l log p l kα p l kβ p l ε l E kγ p l n l N l l l l (6.4) 33

40 α β γ L = k log p i k(α + ) kβε i kγn i = p i (6.5) L α = p l = l (6.6) L β = l L γ = l p l ε l E = (6.7) p l n l n = (6.8) (6.5) p i = e (α+) e βε i γn i (6.9) (6.6) e (α+) = /Ξ Ξ = i e βεi γni p i = Ξ e βε i γn i (6.2) β γ (6.2) (6.) S = k i p i log p i = kβ i p i ε i + kγ i p i n i + k log Ξ = kβ E + kγ N + k log Ξ (6.2) E E N N S E = S T N = µ kt β = kt γ = µ kt i l l p l = Ξ e β(ε l µn i), β = kt Ξ = e β(ε l µn i) l (6.22) (6.23) l n l = N l N (6.22) (6.23) p l = Ξ e β(ε l(n) µn), β = kt Ξ = e β(ε l(n) µn) N l (6.24) (6.25) Ξ 6.3 (6.25) ε l (N) l N N N Ξ 34

41 Ξ = N e βεl(n) e βµn = N l Z N e βµn (6.26) Ξ Z N N (6.2) β = kt γ = µ kt E E N N F = E T S G = Nµ = F + pv Xi pv kt log Ξ = F G = pv (6.27) Fermi Bose k ϵ k n k (6.25) N N ε l N = k ε l = k n k (6.28) n k ϵ k (6.29) 35

42 Ξ Ξ = e βnµ Z N = e β k n kϵ k e βnµ N= N= {n k } = e β k (µ ϵ k)n k = e β(µ ϵk)nk (6.3) n k n k n 2 {n k } (6.28) {n k } N N = Ξ Ne β(εl(n) µn) = kt log Ξ (6.3) µ N l n k (6.3) Ξ = { } + e β(µ ϵ k) (6.32) k N N = kt µ log Ξ = k e β(ϵ k µ) + (6.33) (6.28) k n k n k = e β(ϵ k µ) + n k ϵ k ϵ (6.34) f(ϵ) = e β(ϵ µ) + (6.35) n k (6.3) Ξ = { } e β(µ ϵk)nk = e β(µ ϵ k) k n k k N N = kt µ log Ξ = k e β(ϵ k µ) (6.28) k n k n k = e β(ϵ k µ) n k ϵ k ϵ (6.36) (6.37) (6.38) f(ϵ) = e β(ϵ µ) (6.39) f(ϵ) 36

43 6.4.4 n k = β(ϵ k µ) (6.4) e β(ϵ k µ) ± e β(ϵ k µ) (6.4) (6.4) (T ) (N/V ) (6.4) 3 37

44 7 ( ) 7. ( ) ħ2 2 2m x y z 2 ψ(x, y, z) = ϵψ(x, y, z) (7.) L ψ k (x, y, z) = e ikr, k = (k x, k y, k z ), V = L 3 V ϵ k = ħ2 k 2 2m, k2 = k x 2 + k y 2 + k z 2 k x k y k z k x = 2π L n x (n x =, ±, ±2, ±3,...) k y = 2π L n y (n y =, ±, ±2, ±3,...) (7.2) (7.3) k z = 2π L n z (n z =, ±, ±2, ±3,...) (2π)3 < ϵ k < E V 2mE Ω (E) ħ Ω (E) = ( ) 3 = 4π 2mE / (2π)3 = 4πV ( ) 3/2 2mE 3 ħ V 3 h 2 (7.4) <ϵ k <E Ω(E) = d de Ω (E) = 2πV ( 2m h 2 ) 3/2 E (7.5) k 2 2 ħ (= h/2π) n(e) = V (2m)3/2 2π 2 ħ 3 E (7.6) n(e) Ω(E) n(e) [ 7. ] E f(e) (6-8) f(e) = e β(e µ) + (7.7) 38

45 f(e) µ N n(e) f(e) N = f(e)n(e)de (7.8) (7.8) (7.8) N = µ n(e)de (7.9) µ E F N = EF n(e)de (7.) N (7.) (7.6) N = V (2m)3/2 3π 2 ħ 3 E 3/2 F (7.) E F ( 3π 2 ) 2/3 N ħ 2 E F = V 2m (7.2) E F = k B T F T F [ 7.2 ].97g/cm 3 Na Na 23 ħ2 k 2 2m E F = ħ2 k 2 F 2m k F (7.2) (7.3) ( 3π 2 ) /3 N k F = (7.4) V 2π/L ( ) N k F k F k F 39

46 7.3 f(e) = e β(e µ) + e β(e µ) >> (7.5) f(e) = e β(e µ) T (T >> T F ) (7.5) (T << T F ) K ( 3K) g(e) f(e) I = ( ) g(e)f(e)de µ G(E) = g(e)de G() = f( ) = g(e)de + π2 6 (k BT ) 2 g (µ) (7.6) I = [G(E)f(E)] df(e) de G(E)dE = df(e) G(E)dE (7.7) de G(E) E = µ G(E) G(µ) + (E µ)g (µ) + 2 (E µ)2 G (µ) (7.8) (7.7) { I f (E) G(µ) + (E µ)g (µ) + } 2 (E µ)2 G (µ) = G(µ) f (E)dE G (µ) (E µ)f (E)dE 2 G (µ) (E µ) 2 f (E)dE (7.9) f() = G(µ) 2 E µ = x { { } (E µ) de = e β(e µ) + µ { } x e βx dx (7.2) + e βx +} (7.2) µ { } βx x e βx dx = + e βx dx (7.2) e βx x (7.9) 2 (7.9) 3 β(e µ) = x (E µ) 2 f (E)dE (E µ) 2 f (E)dE = β 2 x 2 e x (e x + ) 2 dx = π2 6 (k BT ) 2 (7.22) 4

47 x 2 e x π2 (e x dx = + ) 2 3 (7.6) I G(µ) + π2 6 (k BT ) 2 G (µ) = µ g(e)de + π2 6 g (µ) (7.23) 7.4 N = = EF n(e)f(e)de µ µ n(e)de + π2 6 (k BT ) 2 n (µ) µ n(e)de + n(e)de + π2 E F 6 (k BT ) 2 n (µ) N + (µ E F )n(e F ) + π2 6 (k BT ) 2 n (µ) (7.24) µ = E F π2 6 (k BT ) 2 n (µ) n(e F ) E F π2 6 (k BT ) 2 n (E F ) n(e F ) (7.25) 3 n(e) = V (2m)3/2 2π 2 ħ 3 E n(e) = V (2m) 3/2 4π 2 ħ 3 E µ = E F π2 2E F (k B T ) 2 (7.26) [ 7.3 ] (3k B /2) U = U µ EF En(E)dE + π2 6 (k BT ) 2 {n(µ) + µn (µ)} En(E)dE + µ En(E)f(E)dE (7.27) E F En(E)dE + π2 6 (k BT ) 2 {n(e F ) + E F n (E F )} U + E F n(e F )(µ E F ) + π2 6 (k BT ) 2 {n(e F ) + E F n (E F )} = U + π2 6 (k BT ) 2 n(e F ) (7.28) 3 4 (7.25) 4

48 C el = U E = π2 kb 2 n(e F ) T = γt, γ = π2 kb 2 n(e F ) 3 3 (7.29) 3 (7.6) (7.2) (7.4) γ = mπk2 B V 3ħ 2 ( ) /3 3N = mk2 B V πv 3ħ 2 k F (7.3) (C el = γt ) (γ n(e F )) << [ 7.4 ] 23.97g/cm 3 γ cal mol K 2 42

49 8 8. N m u m M C Mü m = Cu m (8.) ω = C M (phonon ) n = U e ħω/k BT (8.2) (8.3) U = Nħω e ħω/k BT (8.4) C v T C v = U ( ) 2 ħω T = Nk e ħω/k BT B (8.5) k B T (e ħω/k BT ) 2 C v = Nk B (T ) (8.6) 3 3 C v = 3Nk B (T ) (8.7) Dulong Petit C v e ħω/kbt (T ) (8.8) Dulong Petit C v T 3 (8.9) 8.2 N C N 43

50 m m Mü m = C(u m+ u m ) C(u m u m ) (8.) Mü m = C(2u m u m+ u m ) (8.) u m = ũ m e iωt (8.2) (8.2) (8.) Mω 2 ũ m e iωt = C(2ũ m ũ m+ ũ m )e iωt (8.3) Mω 2 ũ m = C(2ũ m ũ m+ ũ m ) (8.4) ũ N+ = ũ, ũ = ũ N (8.5) (8.4) ũ m = ue imka, K = 2π Na (8.6) Mω 2 ue imka = C(2ue imka ue i(m+)ka ue i(m )Ka ) (8.7) Mω 2 = C(2 2 cos Ka) (8.8) ω 2 = 2C M ( cos Ka) = 4C M sin2 Ka (8.9) 2 ω = 4C M sin 2 Ka (8.2) 44

51 ω - π - π π π π a K π 2pi a a π a K π a K = ũ m = ue iωt (a) K = π a ũ m = ue i(ωt mπ) (b) (a) (b) ( (a)) 2 ( (b)) (a) (b) 45

52 8.4 (8.6) 3 ũ m = ue ik x m (8.2) x m = (x m, y m, z m ), k = (k x, k y, k z ) (8.22) x m = L N m x ( m x < N) k x = 2π L n x ( N/2 n x < N/2) y m = L N m y ( m y < N) k y = 2π L n y ( N/2 n y < N/2) z m = L N m z ( m z < N) k z = 2π L n z ( N/2 n z < N/2) (2π/L) 3 k N = 4 3 πk3 (2π/L) 3 (8.23) k ω (8.2) ω = vk (8.24) v ω π/ (8.23) N V ω3 6π 2 v 3, V = L 3 (8.25) 3 ( ) D(ω) N D(ω) = dn dω = V ω2 2π 2 v 3 (8.26) (a) (b) (ω) () (a) ω ω (b) 46

53 N 3 ω N = V ω3 6π 2 v 3 (8.27) ( 6π 2 ) /3 N ω D = v (8.28) V 8.5 U U = 3 dωħωd(ω)f(ω) = 3 Θ D dω V ħω3 2π 2 v 3 e ħω/k BT = 3V ħ 2π 2 v 3 U = 3V ħ ωd 2π 2 v 3 x = ω 3 dω e ħω/k BT ħω k B T U = 3V k4 B T 4 ħωd /k B T 2π 2 v 3 ħ 3 ħω k B T = Θ T x3 dx e x ωd ω 3 dω e ħω/k BT (8.29) (8.3) (8.3) (8.32) ħω D = k B Θ D (8.33) ( ) 3 T ΘD /T U = 9Nk B T dx x3 e x x D = Θ D T ( ) 3 T xd U = 9Nk B T dx x3 Θ D e x Θ D /T 5 xd x3 Θ D dx e x () dx x3 e x = π4 5 (8.34) (8.35) (8.36) (8.37) 47

54 Θ D [K] T [K] Θ D /T 5 [ 8. ] x 3 e x U = 3Nk BT 4 π 4 5Θ 3 D (8.38) C v = U ( ) 3 T = 2π4 Nk B T T 3 (8.39) 5 Θ D x = 2 x D x D = Θ D /T U = 3NkT x 3 e x dx 48

55 9 9. ( ) Fe Co Ni ( - ) H = J i j σ i σ j µh i σ (9.) σ i - J J > J < (9.) H = i J σ j µh σ i (9.2) j i j i σ j σ j i i σ j i σ j σ j Z σ (9.3) j i Z H H = µh eff σ i (9.4) i H eff = JZ µ σ + H (9.5) H eff Z = e βµh eff + e βµh eff = 2 cosh βµh eff (9.6) Nµ σ M = Nµ σ = Nµ tanh βµh eff (9.7) H eff M 49

56 { M = Nµ tanh βµh + β JZ } Nµ M (9.8) ( ) H = M = H = X = βjz Nµ M kt X = tanh X (9.9) JZ Y = kt X, Y = tanh X (9.) JZ X = Y = tanh X kt JZ < X T C = JZ k (9.) T < T C Nµ T > T C 5

57 . 4 He 2.2K 2 ( ) 4 He 4 He E = ħ2 k 2 2m (.) N(E) = V (2m)2/3 4π 2 ħ 3 E (.2) k = n N N n N = n + N (.3) n = e α, α = βµ (.4) µ α n α = (.2) (.3) N = n + = n + V (2m)3/2 4π 2 ħ 3 f(e)n(e)de = n + N(E) e β(e µ) de E /2 de (.5) e β(e µ).2 ( ) F σ (α) = Γ(α) F σ (α) = Γ(α) y σ e y+α dy (.6) [ ] e (y+α) y σ + e (y+α) + e 2(y+α) +... dy = e α σ + e 2α 2 σ + e 3α 3 σ + = n= e nα n σ (.7) 5

58 e n(y+σ) y σ dy = Γ(σ) n σ e nσ (.8) () σ α e α α (2) (.7) α α α F σ () = n= = ζ(σ) (.9) nσ ζ(x) ζ(3/2) = 2.62 ζ(5/2) = (.6) (.5) ( ) 3/2 N = n + N 2πmkB T = n + V F 3/2(α) (.) α = N ( ) 3/2 N max 2πmkB T = 2.62V h 2 h 2 N = n + N max (.) ( ) 3/2 N > N max 2πmkB T = 2.62V (.2) N = N h2 T C = 2πmk B h 2 ( ) 2/3 N (.3) 2.62V T < T C.4 2πV (2m)3/2 E = En(E)f(E)dE = h 3 e β(e µ) de = 3 ( ) 3/2 2 V k 2πmkB T BT F 5/2(α) (.4) h 2 E 3/2 T < T C ( ) α = E = 3 ( ) 3/2 2 V k 2πmkB T BT ζ(5/2) (.5) h 2 52

59 C = E T = 5 4 V k B ( ) 3/2 2πmkB T 3/2 (.6) T C T 3/2 T = T C 5ζ(5/2) 4ζ(3/2) R =.972R T > T C 3 2 h 2 53

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

i Γ

i Γ 018 4 10 i 1 1.1.............................. 1.......................... 3 1.3............................ 6 1.4............................ 7 8.1 Γ.................................... 8.......................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i mailto: tomita@phys.h.kyoto-u.ac.jp 2002 2003 1.5 2003 2004 2005 2,200 WEB * Ξ ( ) η ( ) DC 1.5 i 1 1 1.1............................. 1 1.2..................................... 2 1.3.................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

1 2 27 6 12 1 HP HP @@@ 2 Quantum Physics http://as2.c.u-tokyo.ac.jp 1 1 1.1............................................ 1 1.2..................................... 1 1.3...............................................

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

II

II II 28 5 31 3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information