II 2 ( )

Size: px
Start display at page:

Download "II 2 ( )"

Transcription

1 II 2 (

2 : R ( Green Gauss

3 3.5 Stokes A 5 A.1 Green A.2 Gauss B 58 B.1 k B B B B.5 Jordan : : : : : D 69 D.1 Green D.2 Helmholtz D D D D D.7 Schwarz D D E 73 E.1 : E E E.4 de Rham E E.6 de Rham E F 78 F F.2 [1]

4 ( II ( ( (a f dr (b f n ds 3. S d dx x a f(t dt = f(x, b a F (x dx = F (b F (a div f dx = f n ds Ω Ω (Gauss S rot f ds = S f dr (Stokes 1 ( 1 (Michael Faraday, , (James lerk Maxwell, , Edinburgh ambridge (Oliver Heaviside, , 3

5 2 2 O.Heaviside [2] (1893 Josiah Willard Gibbs ( , (1881, 191 James lerk Maxwell ( ([23], 1873 J.W.Gibbs [21] Mathematicians/Gibbs.html Gibbs work on vector analysis was also of major importance in pure mathematics. He first produced printed notes for the use of his own students in 1881 and 1884 and it was not until 191 that a properly published version appeared prepared for publication by one of his students. Using ideas of Grassmann, Gibbs produced a system much more easily applied to physics than that of Hamilton. ( Hamilton a 4 (quaternion a Sir William Rowan Hamilton ( , Ireland Dublin Dublin 4 (1843 http: // 4 ( [14] [6] a a II T (transpose a = (a 1, a 2, a 3 T x r r x, y, z 2 ( 4

6 f : I R (I R n m f : Ω R m (Ω R n m = n n (vector field Ω r ( f(r Ω f ( f 1 f : I R f : I R (I R 1 n f : Ω R (Ω R n n 2 f n n (n f : Ω R n (n ( Ω f : Ω R Ω (scalar field 1.2 : R 3 R 3 a = a 1 a 2, b = b 1 b 2 a 3 b 3 5

7 a b 3 R 3 ( a 2 b 2 a b := a 3 b 3, a 3 b 3 a 1 b 1, a 1 b T 1 a 2 b 2 = = a 2 b 2 a 3 b 3 e 1 a 1 b 1 e 1 a 2 b 2 e 2 a 3 b 3 e 3 a 1 b 1 a 3 b 3 e 2 + a 1 b 1 a 2 b 2 e 3 (. e 1 = 1, e 2 = 1, e 3 = 1. i a i, b i e 1 e 2 e 3 a b = a 1 a 2 a 3 b 1 b 2 b 3 a = (1, 2, 3 T, b = (3, 2, 1 T a b (1 ( e 1 e 2 e a b = = 2 1 e e e 3 = (2 a b = ( , , T =

8 1.2.1 ( a, b, a 1, a 2 R 3 λ R (1 a b = (b a. a a =. (2 (a 1 + a 2 b = (a 1 b + (a 2 b, (λa b = λ(a b. (3 x R 3 det (a b x = (a b, x. (4 a b 1 a b. ( (5 a, b {ta + sb; t [, 1], s [, 1]} S (a b a, (a b b, det(a b a b, a b = S. (1, (2 (3 x = (x 1, x 2, x 3 T a 2 b 2 (a b, x = a 3 b 3 x a 1 b 1 1 a 3 b 3 x a 1 b a 1 b 1 x a 2 b 2 x 3 = a 2 b 2 x 2 = det(a b x. a 3 b 3 x 3 (a b e 1, e 2, e 3 x 1, x 2, x 3 a b x (4 (3 a b 1 x s.t. a, b, x 1 (5 (3 x s.t. det(a b x x s.t. (a b, x a b. (a b, a = det(a b a =, (a b, b = det(a b b =, det(a b a b = (a b, a b = a b 2. S = a b a, b 1 a, b 1 3 a, b, a b 3 V a b V = S a b. V = det(a b a b. 7

9 S a b = det(a b a b = a b 2 a b (> S = a b. (a, b (5 a b θ cos θ = a b S = a b sin θ = a b 1 cos 2 θ = a 2 b 2 (a, b 2 = (a a a 2 3(b b b 2 3 (a 1 b 1 + a 2 b 2 + a 3 b 3 2 = (a 2 b 3 a 3 b (a 3 b 1 a 1 b (a 1 b 2 a 2 b 1 2 = a b. (a b c = a (b c a, b, c (a b c + (b c a + (c a b = (Jacobi (R n R n R n n 1 a 1, a 2,, a n 1 R n x det(a 1, a 2,, a n 1, x R c R n s.t. x R n det(a 1, a 2,, a n 1, x = (c, x. c a 1, a 2,, a n 1 a 1 a 2 a n 1 n n a 1 a 2 a n 1 x = e i : a 1 a 2 a n 1 i = det(a 1, a 2,, a n 1, e i. ( ( 3 A(1, 2, 3, B(2, 1,, (, 2, 1 AB 8

10 AB = = 1 1 3, A = = 1 4 ( AB A = 1 3 4, , T = ( AB = 1 AB A = ( 1 2 = 2. A(1, 2, 3 (4, 7, 1 T 4(x 1 + 7(y 2 + ( 1(z 3 = 4x + 7y z = ( 1 f(t, g(t (f(t g(t = f (t g(t + f(t g (t ( t m, r(t, f mr (t = f (Newton f f = f(rr f 3 a a a = ( d 1 dt 2 r(t r (t = 1 2 (r (t r (t + r(t r (t = 1 2 r(t f m = 1 2 r(t f m r(t = 1 2 r(t r (t. 4 ( Kepler 4 r(t (mr (t 9

11 1.3 grad, rot, div ( grad ( I div, rot R n ( := x 1 x 2. x n nabla 5 Hamilton R n Ω 1 - f : Ω R f = x 1 x 2. x n f := f x 1 f x 2. f x n : Ω R n f f (gradient f grad f : f a Ω f(a f ( {x Ω; f(x = c}, c := f(a a f 5 ( (Nebel ( [17] 1

12 1.3.3 R n Ω 1 - f : Ω R n f := x 1 x 2. x n f 1 f 2. f n = n i=1 f i x i : Ω R f f (divergence f div f div f = (solenoidal div f Gauss f f 2 div f = div f <, div f > n = 3 R 3 a, b a b R 3 Ω 1 - f : Ω R 3 f := ( x 2 x 3 f 2 f 3, x 3 x 1 f 3 f 1, x 1 x 2 f 1 f 2 T = f 3 x 2 f 2 x 3 f 1 x 3 f 3 x 1 f 2 x 1 f 1 x 2 : Ω R 3 f f (rotation f rot f curl f e 1 e 2 e 3 f = x 1 x 2 x 3 f 1 f 2 f 3 f rot f (vorticity rot f = Ω (r cos Ωt, r sin Ωt (r = x 2 + y 2, t v ω := rot v rot f Stokes 11

13 f 1 x 2 x 3 f 2 f 3 = f 3 f 2 x 2 x 3 1 2, 2 3, 3 1 f 1 x 3 f 3 x 1, f 2 x 1 f 1 x 2 : 2 2 f = (f 1, f 2 T f = rot f := f 2 x 1 f 1 x 2 3 f f(r = (f 1 (x 1, x 2, f 2 (x 1, x 2, T 2 f x 1 f 1 e 1 ( ( x = det x 2 f 2 e 2 = det 1 f 1 e 3 =,, f 2 f T 1 x e 2 f 2 x 1 x 2 3 ψ rot ψ := ( ψ, ψ T x 2 x 1 ( ψ rot ψ (stream function 3 rot R n Ω 2 - f : Ω R f := n i=1 2 f x 2 i 12

14 f f (Laplacian f f (harmonic function R n Ω 2 - f : Ω R n f Laplacian f := ( f 1,, f n T ( f = div(grad f = ( f 2 ( 1.3.6? ( f R 3 2 f R (1 div(grad f = f. ( f = f. (2 rot(grad f =. ( f =. (3 div(rot f =. ( f =. (4 rot(rot f = grad(div f f. ( f = ( f f. ( (1, (2, (3 ( (2, (3 (1 ( u, v div (u v = (rot u, v (rot v, u ( 6 ( 6 13

15 II ( (Maxwell (1873, E, B, ρ, j Maxwell E = ρ ε, E = B t, B =, c2 B = j + E ε t 7 (c, ε 8 (ρ, j E =, E = B t, B =, c2 B = E t (4 1 2 B c 2 t E c 2 t 2 = B ( B = = ( E t t = E ( E = E = E, = 1 c 2 t ( E = 1 c E 2 t = 1 c ( c 2 B = B 2 = B ( B = B = B. E, B c Maxwell ( ( Hertz (Heinrich Rudolph Hertz, ( (Fourier, Fourier (Jean-Baptiste-Joseph Fourier, , ( u u = grad u ( ( u = div(k grad u t ( k Fourier k div(grad = u t = κ u, κ := k ( 7 Maxwell Heaviside 8 MKS ε = 17 4πc F/m. 14

16 1.3.4 ( ( v v = ( ( Gauss ( [15] 15

17 : r = ϕ(t (t [a, b] ( L (2.1 L = b a ( n 1/2 ϕ (t dt, ϕ (t = ϕ i(t 2 1 t = a t = t s = σ(t (t [a, b] s = σ(t = t a i=1 ϕ (r dr ds dt = dσ dt = ϕ (t. σ(t t 1 - t [a, b] ϕ (t dσ dt > (t [a, b]. t = τ(s ψ := ϕ τ, ψ(s := ϕ(τ(s (s [, L] r = ϕ(t r = ψ(s s {r; r = ψ(s, s [, L]} f L (2.2 f ds := f(ψ(s ds 1 [a, b] = {t j } N j= L := N j=1 ϕ(t j ϕ(t j 1 L L (rectifiable L ϕ 1 - (2.1 II (2.1 2 σ, τ s, t 16

18 b (2.3 f ds = f(ϕ(t ϕ (t dt a (2.3 ds := ϕ (t dt = ϕ 1(t ϕ n(t 2 dt ( dγ 2.2 ( f ( f dr 1 ( ω = f 1 dx 1 + f 2 dx f n dx n ω = f 1 dx 1 + f 2 dx f n dx n 3 dr = (dx 1,, dx n T f dr = f 1. f n dx 1. dx n (? = f 1 dx f n dx n ( ( (... 3 d ( 17

19 ( f r W W = fr f r W = f r. f W N W f(r j r j, r j := r j r j 1. j=1 r j [a, b] = {t j } N j= r j = ϕ(t j (j =, 1,..., N W = f dr := lim N f(r i r i 1 - b a i=1 f(ϕ(t ϕ (t dt Ω Ω f : Ω f(z dz = lim N f(z i (z i z i 1 i=1 ( [a, b] = {t j } N j=1 z j = ϕ(t j f(z dz = (u + iv(dx + i dy = u dx v dy + i v dx + u dy 18

20 2.2.2 R n Ω n f : Ω R n f = (f 1,, f n T Ω 1 - r = ϕ(t = (ϕ 1 (t,, ϕ n (t T (t [a, b] f dr := b a f dr dt dt = b a f ϕ (t dt = b a [f 1 (ϕ(tϕ 1(t + + f n (ϕ(tϕ n(t] dt f ( ( f(x, y, z = (y + z, z + x, x + y T j f dr j (1 1 : r = (t, t 2, t 3 T (t [, 1] (2 2 : (,,, (1,,, (1, 1,, (1, 1, 1 (1 ϕ(t = (t, t 2, t 3 f(ϕ(t = (t 2 + t 3, t 3 + t, t + t 2 T, ϕ (t = (1, 2t, 3t 2 T f(ϕ(t ϕ (t = (t 2 + t (t 3 + t 2t + (t + t 2 3t 2 = t 2 + t 3 + 2t 4 + 2t 2 + 3t 3 + 3t 4 = 3t 2 + 4t 3 + 5t 4. 1 f dr = 1 (3t 2 + 4t 3 + 5t 4 dt = = 3. (2 (,, (1,, γ 1, (1,, (1, 1, γ 2, (1, 1, (1, 1, 1 γ 3 2 = γ 1 + γ 2 + γ 3 f dr = 2 f dr + γ 1 f dr + γ 2 f dr. γ 3 γ 1 ϕ(t = (t,, T (t [, 1] f(ϕ(t = (, t, t T, ϕ (t = (1,, T, f(ϕ(t ϕ (t = f dr =. γ 1 γ 2 ϕ(t = (1, t, T (t [, 1] f(ϕ(t = (t, 1, 1 + t T, ϕ (t = (, 1, T, f(ϕ(t ϕ (t = 1 f dr = 1. γ 2 γ 3 ϕ(t = (1, 1, t T (t [, 1] f(ϕ(t = (1 + t, t + 1, 2 T, ϕ (t = (,, 1 T, f(ϕ(t ϕ (t = 2 f dr = 2. γ 3 f dr = =

21 2.2.1 ( 4 dr ds dx f ds, f dx t = dr ds ds f t ds (f, dr, (f dr ( ( 3 f ds = f dr = b a b f(ϕ(t ds dt dt, a P dx + Q dy = f(ϕ(t dr dt dt, b a ds dt = ϕ (t, dr dt = ϕ (t, [ P (x(t, y(t dx + Q(x(t, y(tdy dt dt ] dt (n = ( 4 ( 2

22 2.2.1 ( ( 1 -, (1 ( (2 (f + g dr = f dr + g dr. (3 (λf dr = λ f dr. (4 f dr = f dr + f dr (5 f dr = f dr. (6 f dr f ds. (( f ds (5 f ds = f ds 2.3 (1 R f : Ω R n F (x = f(x (x Ω F F f (potential 5 Lagrange (1773 Green (

23 1 F = f F f Ω R n F : Ω R 1 - F ( F F : Ω R n ( f(x 1, x 2, x 3 := (g g F (x 1, x 2, x 3 := gx 3 F = f F f ( f(r := GM r 3 r (M, G, r R3 \ {} F (r := GM r f ( ( f grad V = f V f V f ( 1 ω = f 1 dx f n dx n ω = df := F dx F dx n F ω x 1 x n ω (exact 22

24 2.3.2 (1 (1 1 - f = (f 1,, f n T f i x j = f j x i (i, j = 1, 2,, n 3 f = (rot f = (2 f F, a, b f dr = F dr = F (b F (a. 1 b a F (x dx = F (b F (a (3 Ω a x a x Ω 1 - x F (x := f dr x F f ( F = f 1 d dx x a f(t dt = f(x ( ( x 2 f(x 1, x 2 = x 1 F F x 1 = f 1 (x 1, x 2 = x 2, 2 F = 1, x 2 x 1 2 F x 2 x 1 23 F x 2 = f 2 (x 1, x 2 = x 1 2 F x 1 x 2 = 1 2 F x 1 x 2

25 (1 f F f 1 - F 2 - f k = F x k (k = 1, 2,, n f i x j = F = x j x i F = f j x i x j x i (i, j = 1, 2,, n. (2 r = ϕ(t (t [α, β] β n β n f dr = f i (ϕ(tϕ F i(t dt = (ϕ(tϕ x i(t dt i α i=1 β d = α dt = F (b F (a. α i=1 F (ϕ(t dt = [F (ϕ(t]t=β t=α = F (ϕ(β F (ϕ(α ( R n ( Ω Ω f : Ω R n f Ω 1 - f dr = ( f F r = ϕ(t (t [α, β] ϕ(α = ϕ(β f dr = F (ϕ(β F (ϕ(α =. ( Ω 1 - f dr = Ω a Ω x a, x Ω 1 - x 6 F (x := f dr x 6 B

26 F (x x ( well-defined F i {1, 2,, n} (x = f i (x 7 γ h ϕ(t := x + the i x i ( t 1 x x + he i x+he i x + γ h ϕ (t = he i, f e i = f i F (x + he i F (x = f dr f dr = f dr x +γ h x γ h = h = 1 1 f(x 1,, x i 1, x i + th, x i+1,, x n he i dt f i (x 1,, x i 1, x i + th, x i+1,, x n dt F (x + he i F (x h = 1 1 f i (x 1,, x i 1, x i + th, x i+1,, x n dt f i (x dt = f i (x (h. F (x = f i (x F = f F f x i f 8 R n f f i x j = f j x i (i, j = 1, 2,..., n ( Ω R n f : Ω R n 1 - (2.4 f i x j = f j x i (i, j = 1, 2,..., n f R f rot f = f 7 n = 2 F/ x = f 1 8 f dr 25

27 Ω f i / x j = f j / x i f ( 1 f ( Ω R n ( Ω (simply connected Ω Ω ( ( R n, B(a; R, 3 1 R 3 \ {a}, R 2 \ {(x, ; x } 2 1 R 2 \ {a}, R 3 \ l (l (Poincaré ( (2.4 1 ω := f 1 dx f n dx n 1 Poincaré 9 (1 ( ( R 3 f(r = (y + z, z + x, x + y T f R 3 e 1 e 2 e 3 ( f3 f = det x y z = y f 2 z, f 1 z f 3 x, f 2 x f T 1 y f 1 f 2 f 3 y (x + y (z + x z 1 1 = (y + z (x + y = 1 1 = z x x (z + x 1 1 (y + z y 9 Jules Henri Poincaré ( , Nancy Paris 19 2 (D.Hilbert Poincaré 26

28 f x = (x, y, z T x ϕ(t = (tx, ty, tz T (t [, 1] 1 1 ty + tz x F (x := f dr = f(r(t ϕ (t dt = tz + tx y dt x tx + ty z = 1 t [x(y + z + y(z + x + z(x + y] dt = xy + yz + zx F = f ( ( Ω = R 2 \ {} f(x, y = ( T y x 2 + y, x 2 x 2 + y 2 f = ( f dr = 2π ( dz z = 2πi (i z 1/z \ {x; x } (log z R 2 \ {(x, ; x } f R 2 \ {(x, ; x } f 2.4 Green 27

29 Green ( Green (Green auchy-green R Jordan D D D Ω 1 - f = (P, Q T ( P x (2.5 f dr = rot f dx dy, rot f := det ( f = det = Q Q x P y. D ( Q (2.6 P dx + Q dy = D x P dx dy. y ( Green Gauss-Green Green-Stokes ( Gauss 2 f n ds = div f dx dy D f = (Q, P T n ds = (dy, dx T (2.6 (2.5 Stokes 2 2 Gauss Stokes Green Green (Gauss, Stokes 1. Jordan ( ( 99% ( y ( x y 28

30 2.4.2 (x y Green R 2 D D = {(x, y; x (a, b, ϕ 1 (x < y < ϕ 2 (x} = {(x, y; y (c, d, ψ 1 (y < x < ψ 2 (y} ϕ j [a, b] 1 - ψ j [c, d] 1 - x (a, b ϕ 1 (x < ϕ 2 (x, y (c, d ψ 1 (y < ψ 2 (y D 1 - P, Q ( Q P (x, ydx + Q(x, ydy = x P dx dy y D 1, 2, 3, 4 1 : r = (t, ϕ 1 (t T (t [a, b], 2 : r = (b, t T (t [ϕ 1 (b, ϕ 2 (b], 3 : r = (t, ϕ 2 (t T (t [a, b], 4 : r = (a, t T (t [ϕ 1 (a, ϕ 2 (a]. D y ( P ( b ϕ2 (x dx dy = P D y a ϕ 1 (x y dy dx b b = P (x, ϕ 1 (xdx P (x, ϕ 2 (xdx a a = P (x, y dx P (x, y dx 1 3 = P (x, y dx = P (x, y dx , 4 dx/dt = P dx = P dx = 2 4 D x Q dx dy = Q(x, y dy D x ( A.1.1 ( ( 29

31 2.4.1 ( D {(x, y; 1 < x 2 + y 2 < 2} D 1 := {(x, y D; x >, y > }, D 2 := {(x, y D; x <, y > }, D 3 := {(x, y D; x <, y < }, D 4 := {(x, y D; x >, y > } D j (j = 1, 2, 3, D = D 1 D 2 D 3 D 4. ( = D 1 + D 2 + D 3 + D 4, D j D j D j ( Q x P dx dy = y D = 4 j=1 D j ( Q x P 4 dx dy = P dx + Qdy y j=1 D j P dx + Qdy P dx + Qdy = 1 Jordan D ( ( ( [9] ( Green , A ( 1 - D x dy = y dx = 1 x dy y dx = µ(d 2 (µ(d D 13 A.1.1 3

32 Q P (x, y =, Q(x, y = x x P y = 1, Q P (x, y = y, Q(x, y = x P y = 1, P (x, y = 1 2 y, Q(x, y = 1 2 x Q x P y = 1 1 Green x dy, y dx, x dy y dx 2 1 dxdy = µ(d D (auchy 1 - Jordan D D 1 - f f(z = u(x, y+iv(x, y, z = x + iy (x, y R, u(x, y R, v(x, y R f(z dz = (u(x, y + iv(x, y(dx + i dy = u(x, ydx v(x, ydy + i v(x, ydx + u(x, ydy ( = v x u ( u dx dy + i y x + v dx dy. y D f auchy-riemann D u x = v y, u u = v x f(z dz = D dx dy + i dx dy =. D (2 2 Ω f rot f = f 2 x f 1 y = Ω Ω D D Ω Green ( f2 f dr = x f 1 dx dy = dx dy = y D f ( 14 D 14 Jordan 31

33 Gauss ( Stokes ( R (> ( (a z = f(x, y x = g(y, z y = h(z, x. z = R 2 x 2 y 2 ((x, y Ω := {(x, y; x 2 + y 2 < R 2 } R (b ( F (x, y, z = c. c x 2 + y 2 + z 2 = R 2 R ( 32

34 (c ϕ = (ϕ 1, ϕ 2, ϕ 3 T : D R 3 x = ϕ 1 (u, v, r = ϕ(u, v i.e. y = ϕ 2 (u, v, z = ϕ 3 (u, v x = R sin θ cos φ (3.1 y = R sin θ sin φ ((θ, φ (, π (, 2π z = R cos θ R ( φ = ( 3 3 (a (b z = f(x, y F (x, y, z := f(x, y z, c := F (x, y, z = c (a (c z = f(x, y ϕ 1 (u, v := u, ϕ 2 (u, v := v, ϕ 3 (u, v := f(u, v x = ϕ 1 (u, v, y = ϕ 2 (u, v, z = ϕ 3 (u, v (b F (a = c, F (a a (a F x (a F y (a F z (a 1 x = ϕ(y, z x 33

35 (c ϕ u (u, v ϕ v (u, v (u, v (a y u y v z u z v x u z u z v x u x v y u x v y v ( ( ( ( u v = ξ(y, z, u v = η(z, x, u v = ζ(x, y u, v (u, v T = ξ(y, z x = ϕ 1 (u, v = ϕ 1 (ξ(y, z (b F F ϕ (c r = ϕ(u, v u ϕ v ( F F = c I F (x, y, z = c (x, y, z F (x, y, z F (x, y, z := ax + by + cz = d (a, b, c, d (a, b, c (,, F = (a, b, c T (a, b, c T R F (x, y, z := (x a 2 + (y b 2 + (z c 2 = R 2 (x, y, z T F (x, y, z = 2(x a, y b, z c T

36 ( D R 2 Jordan U D U R 2 ϕ: U R 3 r - ( 1 r S := ϕ(d = {ϕ(u, v; (u, v D} 2 r - S := ϕ( D = {ϕ(u, v; (u, v D} ( D := D \ D S S (i, (ii (i ϕ D p, q D, p q = ϕ(p ϕ(q. (ii p D (3.2 ϕ u ϕ (p (p. v ( D U R 2 D, U ( ( I u v (u, v D {ϕ(u, v ; (u, v D} ϕ(u, v u {ϕ(u, v; (u, v D} ϕ(u, v v ϕ(u, v u v ϕ 1 ϕ 1 u v ϕ u = ϕ 2 ϕ u, v = ϕ 2 v ϕ 3 ϕ 3 u v 35

37 u v ϕ u ϕ v = ϕ 1 u ϕ 2 u ϕ 3 u ϕ 1 v ϕ 2 v ϕ 3 v = ϕ 2 u ϕ 3 u ϕ 1 u ϕ 3 v ϕ 3 ϕ 2 u v ϕ 1 v ϕ 1 ϕ 3 u v ϕ 2 v ϕ 2 ϕ 1 u v = (x 2, x 3 (u, v (x 3, x 1 (u, v (x 1, x 2 (u, v ( ϕ(u, v = (x 1, x 2, x 3 T S S ϕ(u, v (3.3 ϕ u ϕ 2 v = 1 i<j 3 ( 2 (xi, x j (u, v ( (3.2 (3.2 (3.4 rank ϕ (p = 2. ϕ (p ϕ ϕ 1 ϕ 1 u v ϕ = ϕ 2 ϕ 2 u v ϕ 3 ϕ 3 u v ( 2 (xi, x j (3.5 > (u, v 1 i<j 3 ( (3.3 (3.2 (3.2, (3.4, (3.5 36

38 3.1.2 (2 D Jordan U D U R 2 f : U R r - (1 r f D grad f D = {(x, y, f(x, y; (x, y D} x r - ϕ(x, y def. = y f(x, y 3 ϕ x = ϕ x ϕ y = 1 f x 1 f x, ϕ y = 1 f y = 1 f y f x f y 1 graph f D ( R (> S := {(x, y, z; x 2 + y 2 + z 2 = R 2 } M := {(x, y, z S; x, y = } S \ M R sin θ cos φ U = R 2, D = (, π (, 2π, ϕ: U (θ, φ R sin θ sin φ R 3 R cos θ S \ M = ϕ(d - ϕ - ϕ D 1 1 ( (3.6 ϕ θ = ϕ θ ϕ φ = R2 R cos θ cos φ R cos θ sin φ R sin θ, sin 2 θ cos φ sin 2 θ sin φ sin θ cos θ ϕ φ = = R 2 sin θ < θ < π ϕ θ ϕ φ = R2 sin θ >. R sin θ sin φ R sin θ cos φ sin θ cos φ sin θ sin φ cos θ S \ M - 3 (x 1, y 1 (x 2, y 2 (x 1, y 1, f(x 1, y 1 (x 2, y 2, f(x 2, y

39 ( S ϕ ϕ S ϕ ϕ θ =, π D θ =, π D θ φ ϕ(θ, φ = (,, ±R T ϕ ϕ θ ϕ φ = R2 sin θ θ =, π ((3.6 (3.6 sin θ cos φ n := sin θ sin φ cos θ n = ϕ(θ, φ ϕ(θ, φ = ϕ(θ, φ R n ϕ(θ, ψ R 2 sin θ ϕ θ ϕ φ = ( ( ( S = {(x, y, z T ; x 2 + y 2 + z 2 = R 2 } (3.1 (θ, φ (x, y, z T 1 1 (θ = φ (x, y, z T = (,, R T (a, (b, (c 38

40 R 3 S k - x S R 3 U 2 (i x U (ii U S k - (manifold S R 3 2 k - S = {(x, y, z T ; x 2 +y 2 +z 2 = R 2 } z > z = R 2 x 2 y 2 z < z = R 2 x 2 y 2 x > x = R 2 y 2 z 2 x < x = R 2 y 2 z 2 y > y = R 2 z 2 x 2 y < y = R 2 z 2 x 2 ( S - R 3 ( II S = ϕ(d R 3 2 r - ϕ ϕ(u + t, v + s = ϕ(u, v + t ϕ u + s ϕ v + O(t2 + s 2 ((t, s (, D ( t, s A = {(u + t, v + s; (t, s [, t] [, s]} { x = ϕ(u, v + t ϕ ϕ(a = {ϕ(u + t, v + s; (t, s [, t] [, s]} u + s ϕ v } ; (t, s [, t] [, s] 4 39

41 ϕ u ϕ v t s ϕ(a ϕ u ϕ v t s (, U, D, ϕ, S r - S f : S R S f ds := f(ϕ(u, v ϕ u ϕ v du dv S µ c (S µ c (S := 1 ds = S S D D ϕ u ϕ v dudv ( ds := ϕ u ϕ v dudv ( ds dγ dσ ( ϕ xy 2 Jordan ( ϕ 3 =, ϕ = (ϕ 1, ϕ 2, T ϕ u ϕ v = ϕ 1 u ϕ 2 v ϕ 1 v ϕ 2 u R 3 S µ c (S = ϕ 1 ϕ 2 D u v ϕ 1 ϕ 2 v u dudv. ( ( R 2 x S µ(s = Φ(u, v def. = y µ(s = dx dy = det Φ (u, v du dv = S D 4 D ϕ 1 u ϕ 2 v ϕ 1 v ϕ 1 (u, v ϕ 2 (u, v ϕ 2 u du dv.

42 3.2.1 ( x 2 + y 2 + z 2 = R ds = R 2 sin θ dθ dφ π µ c (S = R 2 sin θ dθ dφ = R 2 θ [,π],φ [,2π] 2π sin θ dθ dφ = 4πR (2 R f : U R x ϕ(x, y := y f(x, y ϕ x ϕ y = f x f y 1 D U D graph f D ds = ϕ x ϕ y 1 dx dy = + (f x 2 + (f y 2 dx dy µ c (graph f D = D. 1 + (f x 2 + (f y 2 dx dy ( xy 1 f : [a, b] R x S f(x > (x [a, b] ( x x ϕ: [a, b] R f(x cos θ R 3, θ f(x sin θ D := (a, b (, 2π S = ϕ(d 1 ϕ x = f ϕ (x cos θ, θ = f (x sin θ f(x sin θ f(x cos θ, ϕ x ϕ θ = f(xf (x f(x cos θ f(x sin θ ϕ x ϕ θ = f(x 1 + f (x 2 >. 41

43 S µ c (S = f(x b 1 + f (x 2 dx dθ = 2π f(x 1 + f (x 2 dx. x [a,b],θ [,2π] ( : a S = ϕ(d ( ϕ E := u, ϕ ( ϕ, F := u u, ϕ v, G := ϕ u ϕ v = EG F 2 ( ϕ v, ϕ v 3.3 ϕ: U R 3 n = ϕ u ϕ v ϕ u ϕ v n ds = ϕ u ϕ du dv v ds (3.7 ds := n ds = ϕ u ϕ v dudv. S f f S S f ds = S f n ds := D f(ϕ(u, v ( ϕ u ϕ dudv v ( ( f n f 5 f f n ds ds 5 n e a a e a e ( R 3 i = 1, j = 1, k = a j = a 2, a k = a a i = a 1,

44 ( f n ds S (n S 6 S S Gauss ( f = (f 1, f 2, f 3 T ( f ds = f 1 (ϕ(u, v (x 2, x 3 (u, v + f 2(ϕ(u, v (x 3, x 1 (u, v + f 3(ϕ(u, v (x 1, x 2 dudv. (u, v S D ( f 1 dx 2 dx 3 + f 2 dx 3 dx 1 + f 3 dx 1 dx 2. D ( (x 2, x 3 n ds = ds = ϕ u ϕ (u, v dx du dv = (x 3, x 1 2 dx 3 v (u, v du dv = dx 3 dx 1. (x 1, x 2 dx 1 dx 2 (u, v ( ( S S x 2 + y 2 + z 2 = R 2 f S (1 f(x, y, z := (α, β, γ T (. (2 f(x, y, z := (y, z, x T. (3 f(x, y, z := 1 (x 2 + y 2 + z 2 3/2 (x, y, zt. S (3.8 ds = R 2 sin θ dθ dφ. ( ϕ θ ϕ φ = R2 sin θ sin θ cos φ sin θ sin φ cos θ 6 II 43

45 (3.9 ds = n ds = ϕ θ ϕ sin θ cos φ dθ dφ = sin θ sin φ R 2 sin θ dθ dφ φ cos θ ds = nds S r = (x, y, z T n = r r = 1 x sin θ cos φ y = sin θ sin φ R z cos θ ( α (1 f β ( γ 2π ( (2 f = S (3 f = S cos φ dφ = y z x f n ds = f n ds = 2π θ [,π] φ [,2π] sin φ dφ = π = θ [,π] φ [,2π] θ [,π] φ [,2π] = =. 1 (x 2 + y 2 + z 2 3/2 x y z α β γ R sin θ sin φ R cos θ R sin θ cos φ sin θ cos φ sin θ sin φ cos θ R 2 sin θ dθdφ = =. cos θ sin θ dθ = sin θ cos φ sin θ sin φ cos θ R 2 sin θ dθdφ R 3 (sin 2 θ cos φ sin φ + cos θ sin θ sin φ + cos θ sin θ cos φ sin θ dθdφ S f = 1 R n 2 S f n ds = 1 R 2 S ds = 4π. Gauss Gauss Gauss 44

46 3.4 Gauss 7 (Green (Gauss Ω R 3 S = Ω 1 - Ω 1 - f div f dx 1 dx 2 dx 3 = f ds. Ω Ω S (flux F.Gauss 8 (1839 G.Green 9 (1828, M.V.Ostrogradskii 1 (1831 ( ( 3 1 f = F, Ω = (a, b b div f dx = F (x dx = F (b F (a Ω a 1 f n ds Ω = {a, b} S n = { 1 (x = b 1 (x = a Gauss (Gauss u dx = un i ds (1 i 3 x i Ω S (n i n i Johann arl Friedrich Gauss ( ( George Green ( , Sneinton Sneinton. 1 Mikhail Vasilevich Ostrogradski ( , Ukraine Poltava Poltava. 11 S 45

47 3.4.1 ( (1, (2 Ω = B(; R Gauss (1 f div f =. f n ds = div f dx dy dz =. (2 f = (3 f = y z x S div f =. 1 (x 2 + y 2 + z 2 3/2 S x y z f n ds = Ω Ω div f dx dy dz =. div f = f S ( Gauss S f n ds S ( 4π ( Gauss E Gauss E ρ div E = ρ/ε. S S Q/ε Q S Gauss 12 E ( E ds E ds Gauss S = E ds = div E dx dy dz = S Ω Ω ρ ε dx dy dz = Q ε 12 Gauss Gauss 46

48 3.4.3 ( Ω x S = Ω ds p(x n ds. p(x p(x = ρgx 3 + ρ g Ω S P := p n ds (3.1 P = S ρµ(ωg 13 ( (3.1 P =: (P 1, P 2, P 3 T P j = p n j ds (j = 1, 2, 3 P 3 f := (,, p T P 3 = f n ds = div f dx dy dz = ρg dx dy dz = ρg S = ρgµ(ω. Ω S Ω Ω dx dy dz P 1 = P 2 = 14 = Ω 3.5 Stokes ( 13 µ(ω ρ g ( 14 47

49 3.5.1 (Stokes, rot f ds = f dr. S S George Gabiriel Stokes ( , Skreen ambdridge William Thomson ( , Lord Kelvin, Belfast Netherhall ( Stokes ( [1] Green Gauss Stokes ω = dω M M Stokes R γ: (u, v T = ψ(t (t I = [a, b] γ ψ(i R 2 U 1 - ϕ: U R 3 ϕ ψ : I R 3 R Γ ϕ V f : U R 3 f dr f dr = Γ b a f(ϕ(ψ(t (ϕ (ψ(tψ (t dt x R 2, A R 2 3, u R 3 x (Au = (Au T x = (u T A T x = u ( T A T x = (A T x u (3.11 Γ f dr = b ϕ 1 (V f a [ ϕ (ψ(t T f(ϕ(ψ(t ] ψ (tdt. f(u := ϕ (u T f(ϕ(u (u ϕ 1 (V ϕ f f (3.11 f dr = f dr. ( ( (3.12 rot f ϕ = (rot f ϕ u ϕ v Γ γ Γ 48

50 ( ϕ rot f n ds = rot f(ϕ(u, v S D u ϕ du dv = rot v f(u, v du dv D = f dr = f dr. D S ( rot f = f 2 u f 1 ( v 3 ( 3 = f i (ϕ(u, v ϕ i f i (ϕ(u, v ϕ i u v v u i=1 i=1 3 = f i (ϕ(u, v 2 ϕ i u v + f i ϕ j ϕ i 3 x i=1 i,j j u v i=1 = ( f i ϕj ϕ i (ϕ(u, v x j u v ϕ j ϕ i v u i j ( fj = (ϕ(u, v f ( i ϕi (ϕ(u, v x i x j u (i,j=(1,2,(2,3,(3,1 ( ϕ = (rot f ϕ u ϕ. v f i (ϕ(u, v 2 ϕ i v u i,j ϕ j v ϕ j u f i ϕ j ϕ i x j v u ϕ i v (Faraday ( Maxwell rot E = B t Faraday B n ds = E dr t S S Stokes ( 15 49

51 A A.1 Green A.1.1 (y Green R 2 D D = {(x, y; x (a, b, ϕ 1 (x < y < ϕ 2 (x} ϕ j [a, b] 1 - x (a, b ϕ 1 (x < ϕ 2 (x D 1 - P, Q ( Q P (x, ydx + Q(x, ydy = x P dx dy y D 1, 2, 3, 4 1 : r = (t, ϕ 1 (t T (t [a, b], 2 : r = (b, t T (t [ϕ 1 (b, ϕ 2 (b], 3 : r = (t, ϕ 2 (t T (t [a, b], 4 : r = (a, t T (t [ϕ 1 (a, ϕ 2 (a]. [9] ( P dx dy = P (x, y dx D y F (x, u, v := v u Q(x, y dy F x (x, u, v = v u Q x (x, y dy, F u(x, u, v = Q(x, u, F v (x, u, v = Q(x, v 5

52 ( d ϕ2 (x Q(x, y dy dx ϕ 1 (x = d dx (F (x, ϕ 1(x, ϕ 2 (x = F x (x, ϕ 1 (x, ϕ 2 (x + F u (x, ϕ 1 (x, ϕ 2 (xϕ 1(x + F v (x, ϕ 1 (x, ϕ 2 (xϕ 2(x = ϕ2 (x ϕ 1 (x Q x (x, y dy Q(x, ϕ 1(xϕ 1(x + Q(x, ϕ 2 (xϕ 2(x. x [a, b] ( b ϕ2 (x Q (x, y dy dx a ϕ 1 (x x [ ] x=b ϕ2 (x b = Q(x, y dy + Q(x, ϕ 1 (xϕ 1(x dx = ϕ 1 (x ϕ2 (b ϕ 1 (b b a Q(b, y dy x=a ϕ2 (a ϕ 1 (a Q(x, ϕ 2 (xϕ 2(x dx. a Q(a, y dy + b a b Q(x, ϕ 1 (xϕ 1(x dx a Q(x, ϕ 2 (xϕ 2(x dx Q(x, y dy + Q(x, y dy + Q(x, y dy + Q(x, y dy = Q(x, y dy r = (b, t T, t [ϕ 1 (b, ϕ 2 (b] dx/dt =, dy/dt = 1 ϕ2 (b ϕ2 (b Q(x, y dy = Q(b, t 1 dt = Q(b, y dy. 2 ϕ 1 (b ϕ 1 (b 4 Q(x, y dy = ϕ2 (a ϕ 1 (a Q(a, y dy. 1 r = (t, ϕ 1 (t T, t [a, b] dx/dt = 1, dy/dt = ϕ (t b b Q(x, y dy = Q(t, ϕ 1 (t ϕ 1(t dt = Q(x, ϕ 1 (xϕ 1(x dx. 1 a a b Q(x, y dy = Q(x, ϕ 2 (xϕ 2(x dx 2 a 4 A.1.1 (Green P, Q 1 Q x, P y Q x P y (Goursat-Bochner 51

53 A.2 Gauss ( Gauss [9] Green (x, y, z Gauss A.2.1 D R Jordan D ϕ 1, ϕ 2 D 1 - ϕ 1 < ϕ 2 (on D Ω := {(x, y, z; (x, y D, ϕ 1 (x, y < z < ϕ 2 (x, y} Ω 1 - f f := (,, f T ( f (A.1 dx dy dz = f n ds = f dx dy. Ω z S S f n ds 3 S T, S B, S S S (i S T ϕ(u, v := (u, v, ϕ 2 (u, v T ((u, v D (ii S B S B ϕ(u, v := (u, v, ϕ 1 (u, v T ((u, v D (iii S S r = (ξ(t, η(t T (t [a, b] ϕ(t, s := (ξ(t, η(t, s ((t, s {(t, s; t [a, b], ϕ 1 (ξ(t, η(t s ϕ 2 (ξ(t, η(t} D ( f ϕ2 (x,y f (x, y, z dx dy dz = (x, y, z dz dx dy Ω z D ϕ 1 (x,y z = f(x, y, ϕ 2 (x, y dx dy f(x, y, ϕ 1 (x, y dx dy. S T ϕ u ϕ ( v = ϕ T 2 u, ϕ 2 v, 1 ( ϕ f u ϕ = f(u, v, ϕ 2 (u, v. v f n ds = f(u, v, ϕ 2 (u, v du dv. S T D D D 52

54 ( ϕ S B f u ϕ = f(u, v, ϕ 1 (u, v v f n ds = f(u, v, ϕ 1 (u, v du dv. S B D S S ϕ t ϕ s = ξ (t η (t ( ϕ f t ϕ =. s 1 S S f n ds =. = η (t ξ (t f (x, y, z dx dy dz = z Ω = = f(u, v, ϕ 2 (u, v du dv f(u, v, ϕ 1 (u, v du dv + D D f n ds f n ds + f n ds S T S B S S f n ds + f n ds + f n ds. S T S B S S Ω z x, y x y z Ω ( f x + g y + h dx dy dz = f dy dz + g dz dx + h dx dy. z Ω f := (f, g, h T div f dx dy dz = Ω S S f n ds A.2.1 ( Bourbaki Stokes Gauss 53

55 1 ( ϕ 1, ϕ 2 ϕ f u ϕ f(u, v, ϕ j (u, v ϕ j v ϕ j 1 54

56 2 [4] [15] [7] ( 3 [6] [1] (dx dy [dx, dy] artan 55

57 [1],, (196. [2],,, (25 [3],,, 23 7, [4], 2, (22, [5],, (23. [6], I, II,, (1994, [7], 3, (199. [8], I, (198. [9], II, (1985. [1],, (1972. [11],, (1987. [12],, (. [13],, (1989, 199, 199, [14],, (1997. [15],,,, III, (1986. [16],, (24. [17], Nebel (,, No.57 (22. [18], (,, (1976. [19],, (25. 56

58 [2] Oliver Heaviside, Electromagnetic Theory, Vol.I, The Electrician, London, [21] J.W.Gibbs and E.B.Wilson, Vector Analysis, Yale Univ.Press (191. [22] G.Green, An essay on the application of mathematical analysis to the theories of electricity and magnetism, W.Thomson 184 [23] J..Maxwell, A Treatise on Electricity and Magnetism, larendon Press (1873. [24] Georges de Rham, Variétés Defférentiables, Hermann, Paris (1955, 196. G.,, :, (

59 B B.1 k - k - II ϕ: [a, b] R n k - l N, {t j } l j= s.t. j {1, 2,..., l} ϕ [tj 1,t j ] k ([t j 1, t j ] B.1.1 k I = [a, b], ϕ: I R n ϕ I k - l N, {t j } l j=1 s.t. j = 1, 2,..., l ϕ j a = t < t 1 < < t l = b ϕ [tj 1,t j ] k i =, 1,..., k lim ϕ(t (t (t j 1, t j ϕ j (t := ϕ(t j 1 + (t = t j 1 ϕ(t j (t = t j 1 t t j 1 + ϕ(i (t lim t t j 1 + ϕ(i (t ϕ j k ([t j 1, t j ] B.1.1 ϕ I ϕ j := ϕ [tj 1,t j ] ϕ(a +, ϕ(b lim x a+ ϕ(x, lim ϕ(x x b ϕ: [a, b] R n ϕ (a, ϕ (b ϕ (a = lim h + ϕ(a + h ϕ(a, ϕ ϕ(b + h ϕ(b (b = lim h h h 58

60 B.1.1 ϕ: [a, b] R n c [a, b] lim ϕ (t = A t c ϕ c ϕ (c = A. n = 1 c + h [a, b] h c c + h ξ h ϕ(c + h ϕ(c h = ϕ (ξ h. h ξ h c A ϕ c ϕ (c = A. B.1.1 ϕ: [a, b] R n [a, b] k 1 c [a, b] k lim ϕ (k (t = A t c ϕ (k 1 c ϕ (k (c = A. B.2 R I = [a, b] R n ϕ: I R n R n ( γ 1 ϕ: [a, b] R n : r = ϕ(t (t [a, b] ϕ k - k - ( k (R n R n ϕ(i = {ϕ(t; t I} ϕ(a ϕ(b (ϕ(a = ϕ(b (closed curve [ b, a] t ϕ( t R n 1 : r = ϕ 1 (t (t [a 1, b 1 ] 2 : r = ϕ 2 (t (t [a 2, b 2 ] 59

61 ϕ(t := { ϕ 1 (t (t [a 1, b 1 ] ϕ 2 (a 2 + (t b 1 (t [b 1, b 1 + b 2 a 2 ] R n ϕ: [a, b] R n 1 - a = t < t 1 < < t N = b {t j } N j= ϕ [t j 1, t j ] ϕ j := ϕ [tj 1,t j ] 1 - t [t j 1, t j ] ϕ j(t 1 [t j 1, t j ] t ϕ j(t : r = ϕ(t (t [a, b] 1 - ϕ: [a, b] R n 1 - ( ϕ I D(I L( := sup ={t j } l j= D(I l ϕ(t j ϕ(t j 1 (rectifiable L( j=1 B.3 X X U 1, U 2 X = U 1 U 2 U 1 U 2 = U 1 = X, U 2 = U 1 =, U 2 = X X X X ( x, y X, ϕ: [, 1] X s.t. ϕ ϕ( = x, ϕ(1 = y R I I R n II B.3.1 R n 1 1 ϕ j (t j 1 ϕ j (t j 6

62 ( R n B.3.2 Ω R n Ω 2 a, b Ω Ω := {x Ω; a x Ω }, Ω 1 := {x Ω; a x Ω } Ω Ω 1 = Ω, Ω Ω 1 =, a Ω. Ω x Ω x Ω Ω ε > s.t. B(x; ε Ω. B(x; ε y x a (a x x y y Ω. B(x; ε Ω Ω Ω 1 x Ω 1 x Ω Ω ε > s.t. B(x; ε Ω. B(x; ε y x a ( y a y x a x y Ω 1. B(x; ε Ω 1 Ω 1 Ω Ω = Ω Ω 1 =. a Ω Ω Ω 1 - Ω 1 - Ω 1 - Ω ( B(x; ε 61

63 B.4 B.4.1 X (simply connected ϕ: I = [a, b] X ( ϕ(a = ϕ(b Φ: I [, 1] X (i Φ(, = ϕ. t [a, b] Φ(t, = ϕ(t. (ii s [, 1] Φ(, s s [, 1] Φ(a, s = Φ(b, s. (iii Φ(, 1 ( 1 t [a, b] Φ(t, 1 = Φ(a, 1. B.4.1 ϕ [, 1] B.4.1 ( : a Ω π 1 (Ω, a Ω R 2 Ω Ω R 2 \ Ω compact ( R 2 ( B.5 Jordan Jordan (Jordan curve theorem ( ( 62

64 Jordan ( R 2 Jordan R 2 R 2 \ Ω 1, Ω 2 : R 2 \ = Ω 1 Ω 2, Ω 1 Ω 2 = Ω 1, Ω 2 Ω i p p Jordan p Ω i (i = 1, 2 (1993 ( : p.534 Jordan Ω Jordan Jordan Ω Jordan ( Jordan ( Jordan Riemann Jordan arathéodory Jordan Jordan 63

65 f (.1 f i x j = f j x i in Ω (i, j = 1, 2,..., n [6] 2 5 [9] (.1.1 1: ( : x x F (x := f dr x n x a x R n ( [a j, b j ] (2 Green 1 grad F = f (.1 ( [6] 2 Green 1 Fubini j=1 64

66 .1.2 2: x F (x = 1 F (x := f dr x ϕ(t := a + t(x a (t [, 1] f(a + t(x a (x a dt = N (x j a j j=1 (.1 F x k (x = = N 1 δ jk f j (a + t(x ady + j=1 1 f k (a + t(x adt + N (x j a j j=1 N (x j a j j= f j (a + t(x adt. f j x k (a + t(x a t dt f k x j (a + t(x a t dt. 2 2 = 1 d dt (f k(a + t(x a t dt 1 = [f k (a + t(x a t] 1 f k (a + t(x adt = f k (x 1 f k (a + t(x adt. F x k (x = f k (x..2 2: R n Ω (.1 f Ω : r = ϕ(t (t I = [a, b] L(f; 1 - L(f; = f dr 65

67 2 Ω : r = ϕ(t (t I = [a, b] E( E( ϕ(i U U 1 - F grad F = f in U E( f (.2 L(f; := F (ϕ(b F (ϕ(a (U, F (Ũ, F Ũ ϕ(i grad F = f in Ũ U Ũ grad(f F = grad F grad F = f f =. F F U Ũ F (ϕ(b F (ϕ(a = F (ϕ(b F (ϕ(a (.2 (U, F E( 1 - E( = N j (j = 1, 2,..., N E( j ϕ(i ( Ω R n \ Ω ( d d > ( ϕ I δ > s.t. ( t, t I : t t δ ϕ(t ϕ(t < d. I = {t j } N j= < δ j ϕ [tj 1,t j ] t,e V j := B(ϕ(t j 1 ; d ϕ([t j 1, t j ] V j Ω j V j V j 1 V j f F j N = j ( j=1 j E( j (.2 : L(f; j = F j (ϕ(t j F j (ϕ(t j 1 f dr f ds 2 (j = 1, 2,..., N. = 66

68 = N (.3 L(f; := N L(f; j = j=1 N (F j (ϕ(t j F j (ϕ(t j 1 j=1 ( 1 - I (.3 1, 2 1 < δ, 2 < δ 1, 2 i i.3 3: Ω f (.1 Ω 1 - f dr = [, 1] (i (iv Φ: [, 1] [, 1] Ω (i Φ(, = ϕ. t [, 1] Φ(t, = ϕ(t. (ii s [, 1] Φ(, s s [, 1] Φ(, s = Φ(1, s. (iii Φ(, 1 ( 1 t [, 1] Φ(t, 1 = Φ(a, 1. ψ(r := Φ(r, (r [, 1] Φ(1, r 1 (r [1, 2] Φ(3 r, 1 (r [2, 3] Φ(, 4 r (r [3, 4] = + γ + + ( γ γ r = Φ(1, t (t [, 1] 67

69 f dr = L(f, = L(f, + L(f, γ + L(f, Γ + L(f, γ e = L(f, + L(f, γ + L(f, γ = L(f, = f dr. auchy Goursat ( ts 2 [, 1] [, 1] {S n } n N a [, 1] [, 1] s.t. S n = {a}, n=1 n N L(f, n ( n Φ( S n a Ω n Φ(S n F L(f, n = F ( n F ( n =. f dr = 68

70 D ( TPO D.1 Green II ( D.1.1 (Green (f g + f g dx dy dz = Ω Ω (f g g dx dy dz = Ω Ω (f f + f 2 dx dy dz = Ω f dx dy dz = Ω f g n ds. ( f g n g f Ω Ω f n ds. n f f n ds ds. Gauss (Gauss f n = f n II D.2 Helmholtz R 3 Ω Ω - f u = f u 69

2 2 ( ) 28 4 6, 216 4 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/) 1 3 1.1............................................. 3 1.1.1.................................... 3 1.1.2....................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

untitled

untitled 0.1 1 vector.tex 20010412;20;23;25;28 0507;09 19;0917-19;22;23;1017;1127;1204; 20020108;15; 20061107; 0 1 0.1............................................. 1 0.2....................................... 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 米田 戸倉川月 7 限 193~21 西 5-19 応用数学 A 積分定理 Gaussの定理 divbd = B nds Stokesの定理 E bds = E dr Green の定理 g x f y dxdy = fdx + gdy = f e i + ge j dr Gauss の発散定理 S n FdS = Fd 1777-1855 ドイツ Johann arl Friedrich Gauss

More information