ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1

Size: px
Start display at page:

Download "ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1"

Transcription

1 ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1

2 let λ 1 let x = e1 in e2 (λx.e 2 )e 1 e 1 x e 2 λ 3 λx.(λy.e) λx.λy.e λx.(e 1 e 2 ) λx.e 1 e 2 λ (e 1 e 2 )e 3 e 1 e 2 e (3 7) (10 3) β λ small-step λ λ λ λx.e 1 e 2 x e 2 e 1 (λx.e 1 )e 2 [e 2 /x]e 1 (R-Beta) λ λ [e 2 /x]e 1 e 1 x e 2 λ 1 β (λx.e 1 )e 2 [e 2 /x]e 1 1 β 1 λ λ λ 2

3 (λx.x)y y (λx.λy.x)z λy.z (λx.x)(λy.y) λy.y 1. 1 β 1.3 β (λa.b)cd λ (λa.b)cd e e 2 (R-Beta) λ (λa.b)c (R-Beta) (R-Beta) (λa.b)cd Objective Caml (fun a -> b) c d e 1 e 2 e 1 (R-App1) e 1 e 1 e 1 e 2 e 1e 2 (R-App1) λ (λa.b)cd bd 2 (λa.b)cd (λa.b)(cd) ((λa.b)c)d (λa.b)cd = (λa.b)(cd) b 3

4 (λa.b)c b R-Beta (λa.b)cd bd R-App1 (R-App1) e 1 e 2 e 2 (R- App2) e 2 e 2 e 1 e 2 e 1 e 2 (R-App2) 2. (R-App2) 1. (R-App1) (R-App2) e 1 e 2 e 1 e 2 λ λx.e e (R-Abs) e e λx.e λx.e (R-Abs) ML fun x -> e e (R-Abs) (R-Abs) λx.(λy.y)x λx.x (R-Abs) 1.4 α (λx.λy.xy)y??? (R-Beta) (λx.λy.xy)y λy.yy 4

5 (λx.λy.xy)y y y λy.yy (λx.λy.xy)y y y y y (λx.λy.xy )y (λx.λy.xy )y λy.yy y λ (λx.λy.xy )y y λy (λx.λy.xy )y y λ λx.xx λy.yy α λ e 1 e 2 α e 1 e 2 α λ λx.y λx.z # let y = (fun a -> fun b -> a) ;; (* y val y : a -> b -> a = <fun> # let z = (fun a -> fun b -> b) ;; (* z val z : a -> b -> b = <fun> 5

6 # let e1 = (fun x -> y) ;; (* x. y val e1 : a -> b -> c -> b = <fun> # let e2 = (fun x -> z) ;; (* x. z val e2 : a -> b -> c -> c = <fun> # e1 "xxx" "yyy" "zzz" ;; - : string = "yyy" # e2 "xxx" "yyy" "zzz" ;; - : string = "zzz" 2. λ f f(x) = x + 1 g(y) = y + 1 g x, y 1 x2 dx 1 y 2 dy x y α β [e 2 /x]e 1 e 1 e 2 e 1 α e 1 [e 2 /x]y = e 2 (x = y ) y (x y ) [e 2 /x](λy.e) = λy.[e 2 /x]([y /y]e) ( y ) [e 2 /x](ee ) = ([e 2 /x]e)([e 2 /x]e ) 6

7 1.5 Objective Caml λ Objective Caml type exp = (* Var of string Abs of string * exp (* App of exp * exp (* (* (* let gensym = (* let counter = ref 0 in fun () -> incr counter; (* 0 counter (* () (* counter "g" ^ string_of_int!counter (* g1, g2, g3,... let rec subst e2 x e1 = (* [e2/x]e1 match e1 with Var(y) -> if x = y then e2 else Var(y) Abs(y, e) -> let y = gensym () in Abs(y, subst e2 x (subst (Var(y )) y e)) App(e, e ) -> App(subst e2 x e, subst e2 x e ) let rec step e = (* e e -> e e match e with Var(x) -> [] Abs(x, e0) -> (* (R-Abs) List.map (fun e0 -> Abs(x, e0 )) (step e0) 7

8 App(e1, e2) -> (* (R-Beta) (match e1 with Abs(x, e0) -> [subst e2 x e0] _ -> (* (R-App1) List.map (fun e1 -> App(e1, e2)) (step (* (R-App2) List.map (fun e2 -> App(e1, e2 )) (step e2) let rec repeat e = (* step match step e with [] -> e e :: _ -> repeat e : # let e1 = Abs("x", Var("x")) ;; (* ( x. x) val e1 : exp = Abs ("x", Var "x") # step e1 ;; - : exp list = [] # let e2 = App(e1, e1) ;; (* ( x. x) ( x. x) val e2 : exp = App (Abs ("x", Var "x"), Abs ("x", Var "x")) # step e2 ;; - : exp list = [Abs ("x", Var "x")] # let e3 = App(e2, e2) ;; (* (( x. x) ( x. x)) (( x. x) ( x. x)) val e3 : exp = App (App (Abs ("x", Var "x"), Abs ("x", Var "x")), App (Abs ("x", Var "x"), Abs ("x", Var "x"))) 8

9 # step e3 ;; - : exp list = [App (Abs ("x", Var "x"), App (Abs ("x", Var "x"), Abs ("x", Var "x"))); App (App (Abs ("x", Var "x"), Abs ("x", Var "x")), Abs ("x", Var "x"))] # repeat e3 ;; - : exp = Abs ("x", Var "x") 3. step e 2 repeat e 1.6 λ e e e e λ e 1 e 2 OK 2 λ 1 ( ). λ e e e 1 e e 2 e 1 = e 2 0 e 0 e n e 0 e 1 e 2... e n 1 e n (n 0) e 1, e 2,..., e n 1 e e e 1 e 2 e 2 e 3 e 1 e 3 9

10 e e e e 2 ( ). λ e e e 1 e e 2 e 1 e e 2 e e Ω = (λx.xx)(λx.xx) Ω Ω Ω... (λx.y)ω (λx.y)ω y (λx.y)ω (λx.y)ω (λx.y)ω... λ X X X (λx.y)ω Ω (λx.y)ω λ repeat step e step 5. 10

11 ML # let rec loop x = loop x ;; (* val loop : a -> b = <fun> # let y = (fun z -> z) ;; (* y val y : a -> a = <fun> # (fun x -> y) (loop ()) ;; Interrupted. λx.y (call-by-value) (call-by-name) Haskell (call-by-need) 1.7 λ λ λ true, false if e 1 then e 2 else e 3 true = λt.λf.t false = λt.λf.f if e 1 then e 2 else e 3 = e 1 e 2 e 3 if true then e 2 else e 3 = true e 2 e 3 = (λt.λf.t)e 2 e 3 (λf.e 2 )e 3 e 2 11

12 if false then e 2 else e 3 = false e 2 e 3 = (λt.λf.f)e 2 e 3 (λf.f)e 3 e 3 b if b then e 2 else e 3 b then e 2 else e 3 b true e 2 e 3 e 2 λt.λf.t false e 2 e 3 e 3 λt.λf.f b if b then else (e 1, e 2 ) = λc.ce 1 e 2 match e 1 with (f, s) -> e 2 = e 1 (λf.λs.e 2 ) c e 1 e 2 λc.ce 1 e 2 (e 1, e 2 ) match 12

13 6. match (e 1, e 2 ) with (x, y) -> e 3 [e 2 /y][e 1 /x]e = λs.λz.z 1 = λs.λz.sz 2 = λs.λz.s(sz) 3 = λs.λz.s(s(sz)). λ (Church encoding) z s 0 z 1 s(z) 2 s(s(z)) 3 s(s(s(z))) s z s z λ 0 = λs.λz.z 1 = λs.λz.sz 2 = λs.λz.s(sz) 3 = λs.λz.s(s(sz)). 13

14 m + n m + n = λs.λz.ns(msz) msz z s m msz s n m + n s = λs.λz.1s(2sz) = λs.λz.(λs.λz.sz)s(2sz) λs.λz.(λz.sz)(2sz) λs.λz.s(2sz) = λs.λz.s((λs.λz.s(sz))sz) λs.λz.s((λz.s(sz))z) λs.λz.s(s(sz)) = 3 # let one = Abs("s", Abs("z", App(Var("s"), Var("z")))) ;; val one : exp = Abs ("s", Abs ("z", App (Var "s", Var "z"))) # let two = Abs("s", Abs("z", App(Var("s"), App(Var("s"), Var("z")))));; val two : exp = Abs ("s", Abs ("z", App (Var "s", App (Var "s", Var "z")))) # let plus m n = Abs ("s", Abs ("z", 14

15 App (App (m, Var("s")), App(App(n, Var("s")), Var("z"))))) ;; val plus : exp -> exp -> exp = <fun> # repeat (plus one two) ;; - : exp = Abs ("s", Abs ("z", App (Var "s", App (Var "s", App (Var "s", Var "z"))))) m n m n = λs.λz.n(λz.msz )z s m n s m n s m λz.msz n n(λz.msz )z z z m + n m n λ m n λ m < n m n = g(y) = e fix f = (λx.f(xx))(λx.f(xx)) λ g = fix λg.λy.e 3 3 e g g = λy.e 15

16 λ f fix f fix f = (λx.f(xx))(λx.f(xx)) f((λx.f(xx))(λx.f(xx))) = f(fix f ) fix f f g(y) g(y) = (fix λg.λy.e )y (λg.λy.e)(fix λg.λy.e )y = (λg.λy.e)gy (λy.e)y e 4 g(y) = e 2 λ λ false 2 false + 2 false + 2 = (λt.λf.f) + 2 = (λs.λz.z) + 2 = g g = fix λg.λy.e g λ fix λg.λy.e α fix λg.λy.[g /g]e 16

17 λ if then 10 else false λ 2.1 τ τ ( ) ::= b ( ) τ 1 τ 2 ( ) bool nat τ ( ) ::= τ 1 τ 2 ( ) τ 2.2 τ e τ λx.x x x τ τ λx.x τ τ λx.x : τ τ e τ 17

18 e : τ λx.y y y τ λx.y τ τ y : τ λx.y : τ τ x 1, x 2,..., x n τ 1, τ 2,..., τ n e τ x 1 : τ 1, x 2 : τ 2,..., x n : τ n e : τ m : nat, n : nat, plus : nat nat nat plus m n : nat nat nat nat nat (nat nat) x 1 : τ 1, x 2 : τ 2,..., x n : τ n Γ x 1, x 2,..., x n τ 1, τ 2,..., τ n 2.3 Γ, e, τ Γ e : τ 18

19 λ Γ(x) = τ Γ x : τ (T-Var) Γ, x : τ 1 e : τ 2 Γ λx.e : τ 1 τ 2 Γ e 1 : τ τ Γ e 2 : τ Γ e 1 e 2 : τ (T-Abs) (T-App) (T-Var) Γ x : τ Γ x τ (T-App) Γ e 1 τ τ e 2 τ e 1 e 2 τ (T-Abs) Γ λx.e τ 1 τ 2 Γ x : τ 1 Γ, x : τ 1 e τ 2 x τ 1 e τ 2 : s : nat nat, z : nat s : nat nat T-Var s : nat nat, z : nat z : nat T-Var s : nat nat, z : nat sz : nat s : nat nat λz.sz : nat nat λs.λz.sz : (nat nat) nat nat T-App T-Abs T-Abs 2.4 false + 5 if then 10 else false λ λ λ 19

20 λ λ = v ( ) ::= λx.e ( ) λ 3 ( ). e : τ e e e 1 ( ). e : τ e e e e 2 ( ). e : τ e e e : τ e : τ 3 ( ). Γ e 1 : τ 1 Γ, x : τ 1 e 2 : τ 2 Γ [e 1 /x]e 2 : τ 2. Γ, x : τ 1 e 2 : τ true = λt.λf.t false = λt.λf.f if e 1 then e 2 else e 3 = e 1 e 2 e 3 20

21 λ true = λf.λt.t false = λf.λt.f if e 1 then e 2 else e 3 = e 1 e 3 e 2 true false true : bool, false : bool, if : bool nat nat nat e : nat true, false, if λ e [λt.λf.t/true][λt.λf.f/false][λb.λt.λf.btf/if]e 1 [λf.λt.t/true][λf.λt.f/false][λb.λt.λf.bf t/if]e 2 e true 2 e (T-App) Objective Caml # let ht = Hashtbl.create 10 ;; (* ht val ht : ( _a, _b) Hashtbl.t = <abstr> # ht ;; (* ht - : (string, int) Hashtbl.t = <abstr> 21

22 # Hashtbl.add ht "abc" 123 ;; (* "abc" 123 ht - : unit = () # Hashtbl.add ht "de" 456 ;; (* "de" : unit = () # Hashtbl.add ht "f" 789 ;; (* "f" : unit = () # Hashtbl.find ht "de" ;; (* "de" - : int = 456 # Hashtbl.find ht "g" ;; (* "g" Exception: Not_found. # ht + 1 ;; (* Hashtbl ht Characters 0-2: ht + 1 ;; (* Hashtbl ht ^^ This expression has type (string, int) Hashtbl.t but is here used with type int λ 9,,, ISBN Types and Programming Languages. Benjamin C. Pierce. The MIT Press. ISBN

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu II 4 : 2001 11 7 keywords: 1 OCaml OCaml (first-class value) (higher-order function) 1.1 1 2 + 2 2 + + n 2 sqsum 1 3 + 2 3 + + n 3 cbsum # let rec sqsum n = # if n = 0 then 0 else n * n + sqsum (n - 1)

More information

Parametric Polymorphism

Parametric Polymorphism ML 2 2011/04/19 Parametric Polymorphism Type Polymorphism ? : val hd_int : int list - > int val hd_bool : bool list - > bool val hd_i_x_b : (int * bool) list - > int * bool etc. let hd_int = function (x

More information

Jacques Garrigue

Jacques Garrigue Jacques Garrigue Garrigue 1 Garrigue 2 $ print_lines () > for i in $1; do > echo $i > done $ print_lines "a b c" a b c Garrigue 3 Emacs Lisp (defun print-lines (lines) (dolist (str lines) (insert str)

More information

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 http://www.kb.ecei.tohoku.ac.jp/ koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ 1.1.1 λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 τ 2 M (terms) ::= c τ x M 1 M 2 λx : τ.m (M 1,M 2

More information

Objective Caml 3.12 Jacques Garrigue ( ) with Alain Frisch (Lexifi), OCaml developper team (INRIA)

Objective Caml 3.12 Jacques Garrigue ( )   with Alain Frisch (Lexifi), OCaml developper team (INRIA) Objective Caml 3.12 Jacques Garrigue ( ) http://www.math.nagoya-u.ac.jp/~garrigue/ with Alain Frisch (Lexifi), OCaml developper team (INRIA) Jacques Garrigue Modules in Objective Caml 3.12 1 Objective

More information

jssst-ocaml.mgp

jssst-ocaml.mgp Objective Caml Jacques Garrigue Kyoto University garrigue@kurims.kyoto-u.ac.jp Objective Caml? 2 Objective Caml GC() Standard MLHaskell 3 OCaml () OCaml 5 let let x = 1 + 2 ;; val x : int = 3 ;; val-:

More information

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 More Logic More Types ML/OCaml GADT Jacques Garrigue ( ) Jacques Le Normand (Google) Didier Rémy (INRIA) @garriguejej ocamlgadt ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 ( ) ML type nebou and

More information

# let st1 = {name = "Taro Yamada"; id = };; val st1 : student = {name="taro Yamada"; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n

# let st1 = {name = Taro Yamada; id = };; val st1 : student = {name=taro Yamada; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n II 6 / : 2001 11 21 (OCaml ) 1 (field) name id type # type student = {name : string; id : int};; type student = { name : string; id : int; } student {} type = { 1 : 1 ;...; n : n } { 1 = 1 ;...; n = n

More information

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx.

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx. 1, 2 1 m110057@shibaura-it.ac.jp 2 sasano@sic.shibaura-it.ac.jp Eclipse Visual Studio ML Standard ML Emacs 1 ( IDE ) IDE C C++ Java IDE IDE IDE IDE Eclipse Java IDE Java Standard ML 1 print (Int. 1 Int

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

: gettoken(1) module P = Printf exception End_of_system (* *) let _ISTREAM = ref stdin let ch = ref ( ) let read () = (let c =!ch in ch := inp

: gettoken(1) module P = Printf exception End_of_system (* *) let _ISTREAM = ref stdin let ch = ref ( ) let read () = (let c =!ch in ch := inp 7 OCaml () 1. 2. () (compiler) (interpreter) 2 OCaml (syntax) (BNF,backus normal form ) 1 + 2; let x be 2-1 in x; ::= ; let be in ; ::= + - ::= * / ::= 7.1 ( (printable characters) (tokens) 1 (lexical

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

構造化プログラミングと データ抽象

構造化プログラミングと データ抽象 計算の理論 後半第 3 回 λ 計算と型システム 本日の内容 λ 計算の表現力 ( 前回のつづき ) 前回の復習 不動点演算子と再帰 λ 計算の重要な性質 チャーチ ロッサー性 簡約戦略 型付き λ 計算 ブール値 組 ブール値と組の表現 ( 復習 ) true, false を受け取り 対応する要素を返す関数 として表現 T = λt.λf.t F = λt.λf.f if e 1 then e

More information

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

「計算と論理」 Software Foundations その4

「計算と論理」  Software Foundations   その4 Software Foundations 4 cal17@fos.kuis.kyoto-u.ac.jp http://www.fos.kuis.kyoto-u.ac.jp/~igarashi/class/cal/ November 7, 2017 ( ) ( 4) November 7, 2017 1 / 51 Poly.v ( ) ( 4) November 7, 2017 2 / 51 : (

More information

Copyright c 2006 Zhenjiang Hu, All Right Reserved.

Copyright c 2006 Zhenjiang Hu, All Right Reserved. 1 2006 Copyright c 2006 Zhenjiang Hu, All Right Reserved. 2 ( ) 3 (T 1, T 2 ) T 1 T 2 (17.3, 3) :: (Float, Int) (3, 6) :: (Int, Int) (True, (+)) :: (Bool, Int Int Int) 4 (, ) (, ) :: a b (a, b) (,) x y

More information

構造化プログラミングと データ抽象

構造化プログラミングと データ抽象 計算の理論 後半第 3 回 λ 計算と型システム 本日の内容 λ 計算の表現力 ( 前回の復習 ) データの表現 不動点演算子と再帰 λ 計算の重要な性質 チャーチ ロッサー性 簡約戦略 型付き λ 計算 ブール値 組 ブール値と組の表現 true, false を受け取り 対応する要素を返す関数 として表現 T = λt.λf.t F = λt.λf.f if e 1 then e 2 else

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 2 N X Y X Y f (x) f x f x y z (( f x) y) z = (( f (x))(y))(z) X Y x e X Y λx. e x x 2 + x + 1 λx. x 2 + x + 1 3 PCF 3.1 PCF PCF

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

untitled

untitled PPL 2006 MinCaml (myth) vs. vs. vs. Haskell (www.haskell.org) ML (www.standardml.org, caml.inria.fr) Standard ML (SML), Objective Caml (OCaml) Scheme (www.schemers.org) low level GCC C GCJ Java

More information

Copyright c 2008 Zhenjiang Hu, All Right Reserved.

Copyright c 2008 Zhenjiang Hu, All Right Reserved. 2008 10 27 Copyright c 2008 Zhenjiang Hu, All Right Reserved. (Bool) True False data Bool = False True Remark: not :: Bool Bool not False = True not True = False (Pattern matching) (Rewriting rules) not

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x

e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x e ::= c op(e 1,..., e n ) if e 1 then e 2 else e 3 let x = e 1 in e 2 x let rec x y 1... y n = e 1 in e 2 e e 1... e n (e 1,..., e n ) let (x 1,..., x n ) = e 1 in e 2 Array.create e 1 e 2 e 1.(e 2 ) e

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

ML 演習 第 4 回

ML 演習 第 4 回 ML 演習第 4 回 おおいわ Mar 6, 2003 今回の内容 補足 Ocaml のモジュールシステム structure signature functor Ocaml コンパイラの利用 2 識別子について 利用可能文字 先頭文字 : A~Z, a~z, _ ( 小文字扱い ) 2 文字目以降 : A~Z, a~z, 0~9, _, 先頭の文字の case で 2 つに区別 小文字 : 変数,

More information

.....Z...^.[.......\..

.....Z...^.[.......\.. 15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

「計算と論理」 Software Foundations その3

「計算と論理」  Software Foundations   その3 Software Foundations 3 cal17@fos.kuis.kyoto-u.ac.jp October 24, 2017 ( ) ( 3) October 24, 2017 1 / 47 Lists.v ( ) ( ) ( ) ( 3) October 24, 2017 2 / 47 ( ) Inductive natprod : Type := pair : nat nat natprod.

More information

org/ghc/ Windows Linux RPM 3.2 GHCi GHC gcc javac ghc GHCi(ghci) GHCi Prelude> GHCi :load file :l file :also file :a file :reload :r :type expr :t exp

org/ghc/ Windows Linux RPM 3.2 GHCi GHC gcc javac ghc GHCi(ghci) GHCi Prelude> GHCi :load file :l file :also file :a file :reload :r :type expr :t exp 3 Haskell Haskell Haskell 1. 2. 3. 4. 5. 1. 2. 3. 4. 5. 6. C Java 3.1 Haskell Haskell GHC (Glasgow Haskell Compiler 1 ) GHC Haskell GHC http://www.haskell. 1 Guarded Horn Clauses III - 1 org/ghc/ Windows

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2 output: 2011,11,10 2.1 λ λ β λ λ - abstraction λ λ - binding 1 add1 + add1(x = x + 1 add1 λx.x + 1 x + 1 add1 function application 2 add1 add1(2 g.yamadatakahiro@gmail.com 1 add1 2 β β - conversion (λx.x

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

ML 演習 第 4 回

ML 演習 第 4 回 ML 演習第 4 回 佐藤春旗, 山下諒蔵, 前田俊行 2006/06/20 ICFP Programming Contest 過去の O'Caml プログラムの実績 1998: 2 位 (ENS Camlist, France) 1999: 1 位 (Camls R Us, O'Caml 作者グループ ) 2000: 1 位 (PLClub, U-Penn, 米澤研住井, 細谷参加 ) 2 位 (Camls

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå takuro.onishi@gmail.com II 2009 6 11 [A] D B A B A B A B DVD y = 2x + 5 x = 3 y = 11 x = 5 y = 15. Google Web (2 + 3) 5 25 2 3 5 25 Windows Media Player Media Player (typed lambda calculus) (computer

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf SFG SFG SFG Y. R. Shen.17 (p. 17) SFG g ω β αβγ = ( e3 h ) (r γ ) ng n ω ω ng + iγ (r α ) gn ' (r β ) n 'n (r ) (r ) α n 'n β gn ' ng n ' ω ω n 'g iγ n'g ω + ω n 'n iγ nn ' (1-1) Harris (Chem. Phys. Lett.,

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 u t = au (finite difference) u t = au Von Neumann

1 u t = au (finite difference) u t = au Von Neumann 1 u t = au 3 1.1 (finite difference)............................. 3 1.2 u t = au.................................. 3 1.3 Von Neumann............... 5 1.4 Von Neumann............... 6 1.5............................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

1

1 2 章 1 整数を一つ読み込み, その階乗を計算する RAM プログラムを書け f (n) = n! ( n 0) 何でもよい ( n

More information

1.1 1 A

1.1 1 A . A..2 2 2. () (xyz) ( xyz) ( xy z) = (x x)yz ( xy z) = yz ( xy z) = y(z ( x z)) = y((z x)(z z)) = y( x z) (2) (3) M aj (x, y, M aj ( x, ȳ, z)) = xy ȳm aj ( x, ȳ, z) M aj ( x, ȳ, z)x M aj (x, y, z) x =

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

6

6 000 (N =000) 50 ( N(N ) / = 499500) μm.5 g cm -3.5g cm 3 ( 0 6 µm) 3 / ( g mo ) ( 6.0 0 3 mo ) =.3 0 0 0 5 (0 6 ) 0 6 0 6 ~ 0 000 000 ( 0 6 ) ~ 0 9 q R q, R q q E = 4πε 0 R R (6.) -6 (a) (b) (c) (a) (b)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

プログラミングD - Java

プログラミングD - Java プログラミング D 講義資料 中田明夫 nakata@ist.osaka-u.ac.jp ML 教科書 プログラミング言語 Standard ML 入門 :1,2 章 講義のねらい 関数型プログラムを知る 関数型プログラムを知る利点 プログラムを統一的, 抽象的に捕らえる リスト処理, 高階関数, 再帰関数定義 リストやツリーなどのデータ構造は再帰的に定義 再帰関数で扱うとプログラミングが容易 数学的な裏付け

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information