ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1"

Transcription

1 ML λ λ 1 λ 1.1 λ λ λ e (λ ) ::= x ( ) λx.e (λ ) e 1 e 2 ( ) ML λx.e Objective Caml fun x -> e x e let 1

2 let λ 1 let x = e1 in e2 (λx.e 2 )e 1 e 1 x e 2 λ 3 λx.(λy.e) λx.λy.e λx.(e 1 e 2 ) λx.e 1 e 2 λ (e 1 e 2 )e 3 e 1 e 2 e (3 7) (10 3) β λ small-step λ λ λ λx.e 1 e 2 x e 2 e 1 (λx.e 1 )e 2 [e 2 /x]e 1 (R-Beta) λ λ [e 2 /x]e 1 e 1 x e 2 λ 1 β (λx.e 1 )e 2 [e 2 /x]e 1 1 β 1 λ λ λ 2

3 (λx.x)y y (λx.λy.x)z λy.z (λx.x)(λy.y) λy.y 1. 1 β 1.3 β (λa.b)cd λ (λa.b)cd e e 2 (R-Beta) λ (λa.b)c (R-Beta) (R-Beta) (λa.b)cd Objective Caml (fun a -> b) c d e 1 e 2 e 1 (R-App1) e 1 e 1 e 1 e 2 e 1e 2 (R-App1) λ (λa.b)cd bd 2 (λa.b)cd (λa.b)(cd) ((λa.b)c)d (λa.b)cd = (λa.b)(cd) b 3

4 (λa.b)c b R-Beta (λa.b)cd bd R-App1 (R-App1) e 1 e 2 e 2 (R- App2) e 2 e 2 e 1 e 2 e 1 e 2 (R-App2) 2. (R-App2) 1. (R-App1) (R-App2) e 1 e 2 e 1 e 2 λ λx.e e (R-Abs) e e λx.e λx.e (R-Abs) ML fun x -> e e (R-Abs) (R-Abs) λx.(λy.y)x λx.x (R-Abs) 1.4 α (λx.λy.xy)y??? (R-Beta) (λx.λy.xy)y λy.yy 4

5 (λx.λy.xy)y y y λy.yy (λx.λy.xy)y y y y y (λx.λy.xy )y (λx.λy.xy )y λy.yy y λ (λx.λy.xy )y y λy (λx.λy.xy )y y λ λx.xx λy.yy α λ e 1 e 2 α e 1 e 2 α λ λx.y λx.z # let y = (fun a -> fun b -> a) ;; (* y val y : a -> b -> a = <fun> # let z = (fun a -> fun b -> b) ;; (* z val z : a -> b -> b = <fun> 5

6 # let e1 = (fun x -> y) ;; (* x. y val e1 : a -> b -> c -> b = <fun> # let e2 = (fun x -> z) ;; (* x. z val e2 : a -> b -> c -> c = <fun> # e1 "xxx" "yyy" "zzz" ;; - : string = "yyy" # e2 "xxx" "yyy" "zzz" ;; - : string = "zzz" 2. λ f f(x) = x + 1 g(y) = y + 1 g x, y 1 x2 dx 1 y 2 dy x y α β [e 2 /x]e 1 e 1 e 2 e 1 α e 1 [e 2 /x]y = e 2 (x = y ) y (x y ) [e 2 /x](λy.e) = λy.[e 2 /x]([y /y]e) ( y ) [e 2 /x](ee ) = ([e 2 /x]e)([e 2 /x]e ) 6

7 1.5 Objective Caml λ Objective Caml type exp = (* Var of string Abs of string * exp (* App of exp * exp (* (* (* let gensym = (* let counter = ref 0 in fun () -> incr counter; (* 0 counter (* () (* counter "g" ^ string_of_int!counter (* g1, g2, g3,... let rec subst e2 x e1 = (* [e2/x]e1 match e1 with Var(y) -> if x = y then e2 else Var(y) Abs(y, e) -> let y = gensym () in Abs(y, subst e2 x (subst (Var(y )) y e)) App(e, e ) -> App(subst e2 x e, subst e2 x e ) let rec step e = (* e e -> e e match e with Var(x) -> [] Abs(x, e0) -> (* (R-Abs) List.map (fun e0 -> Abs(x, e0 )) (step e0) 7

8 App(e1, e2) -> (* (R-Beta) (match e1 with Abs(x, e0) -> [subst e2 x e0] _ -> (* (R-App1) List.map (fun e1 -> App(e1, e2)) (step (* (R-App2) List.map (fun e2 -> App(e1, e2 )) (step e2) let rec repeat e = (* step match step e with [] -> e e :: _ -> repeat e : # let e1 = Abs("x", Var("x")) ;; (* ( x. x) val e1 : exp = Abs ("x", Var "x") # step e1 ;; - : exp list = [] # let e2 = App(e1, e1) ;; (* ( x. x) ( x. x) val e2 : exp = App (Abs ("x", Var "x"), Abs ("x", Var "x")) # step e2 ;; - : exp list = [Abs ("x", Var "x")] # let e3 = App(e2, e2) ;; (* (( x. x) ( x. x)) (( x. x) ( x. x)) val e3 : exp = App (App (Abs ("x", Var "x"), Abs ("x", Var "x")), App (Abs ("x", Var "x"), Abs ("x", Var "x"))) 8

9 # step e3 ;; - : exp list = [App (Abs ("x", Var "x"), App (Abs ("x", Var "x"), Abs ("x", Var "x"))); App (App (Abs ("x", Var "x"), Abs ("x", Var "x")), Abs ("x", Var "x"))] # repeat e3 ;; - : exp = Abs ("x", Var "x") 3. step e 2 repeat e 1.6 λ e e e e λ e 1 e 2 OK 2 λ 1 ( ). λ e e e 1 e e 2 e 1 = e 2 0 e 0 e n e 0 e 1 e 2... e n 1 e n (n 0) e 1, e 2,..., e n 1 e e e 1 e 2 e 2 e 3 e 1 e 3 9

10 e e e e 2 ( ). λ e e e 1 e e 2 e 1 e e 2 e e Ω = (λx.xx)(λx.xx) Ω Ω Ω... (λx.y)ω (λx.y)ω y (λx.y)ω (λx.y)ω (λx.y)ω... λ X X X (λx.y)ω Ω (λx.y)ω λ repeat step e step 5. 10

11 ML # let rec loop x = loop x ;; (* val loop : a -> b = <fun> # let y = (fun z -> z) ;; (* y val y : a -> a = <fun> # (fun x -> y) (loop ()) ;; Interrupted. λx.y (call-by-value) (call-by-name) Haskell (call-by-need) 1.7 λ λ λ true, false if e 1 then e 2 else e 3 true = λt.λf.t false = λt.λf.f if e 1 then e 2 else e 3 = e 1 e 2 e 3 if true then e 2 else e 3 = true e 2 e 3 = (λt.λf.t)e 2 e 3 (λf.e 2 )e 3 e 2 11

12 if false then e 2 else e 3 = false e 2 e 3 = (λt.λf.f)e 2 e 3 (λf.f)e 3 e 3 b if b then e 2 else e 3 b then e 2 else e 3 b true e 2 e 3 e 2 λt.λf.t false e 2 e 3 e 3 λt.λf.f b if b then else (e 1, e 2 ) = λc.ce 1 e 2 match e 1 with (f, s) -> e 2 = e 1 (λf.λs.e 2 ) c e 1 e 2 λc.ce 1 e 2 (e 1, e 2 ) match 12

13 6. match (e 1, e 2 ) with (x, y) -> e 3 [e 2 /y][e 1 /x]e = λs.λz.z 1 = λs.λz.sz 2 = λs.λz.s(sz) 3 = λs.λz.s(s(sz)). λ (Church encoding) z s 0 z 1 s(z) 2 s(s(z)) 3 s(s(s(z))) s z s z λ 0 = λs.λz.z 1 = λs.λz.sz 2 = λs.λz.s(sz) 3 = λs.λz.s(s(sz)). 13

14 m + n m + n = λs.λz.ns(msz) msz z s m msz s n m + n s = λs.λz.1s(2sz) = λs.λz.(λs.λz.sz)s(2sz) λs.λz.(λz.sz)(2sz) λs.λz.s(2sz) = λs.λz.s((λs.λz.s(sz))sz) λs.λz.s((λz.s(sz))z) λs.λz.s(s(sz)) = 3 # let one = Abs("s", Abs("z", App(Var("s"), Var("z")))) ;; val one : exp = Abs ("s", Abs ("z", App (Var "s", Var "z"))) # let two = Abs("s", Abs("z", App(Var("s"), App(Var("s"), Var("z")))));; val two : exp = Abs ("s", Abs ("z", App (Var "s", App (Var "s", Var "z")))) # let plus m n = Abs ("s", Abs ("z", 14

15 App (App (m, Var("s")), App(App(n, Var("s")), Var("z"))))) ;; val plus : exp -> exp -> exp = <fun> # repeat (plus one two) ;; - : exp = Abs ("s", Abs ("z", App (Var "s", App (Var "s", App (Var "s", Var "z"))))) m n m n = λs.λz.n(λz.msz )z s m n s m n s m λz.msz n n(λz.msz )z z z m + n m n λ m n λ m < n m n = g(y) = e fix f = (λx.f(xx))(λx.f(xx)) λ g = fix λg.λy.e 3 3 e g g = λy.e 15

16 λ f fix f fix f = (λx.f(xx))(λx.f(xx)) f((λx.f(xx))(λx.f(xx))) = f(fix f ) fix f f g(y) g(y) = (fix λg.λy.e )y (λg.λy.e)(fix λg.λy.e )y = (λg.λy.e)gy (λy.e)y e 4 g(y) = e 2 λ λ false 2 false + 2 false + 2 = (λt.λf.f) + 2 = (λs.λz.z) + 2 = g g = fix λg.λy.e g λ fix λg.λy.e α fix λg.λy.[g /g]e 16

17 λ if then 10 else false λ 2.1 τ τ ( ) ::= b ( ) τ 1 τ 2 ( ) bool nat τ ( ) ::= τ 1 τ 2 ( ) τ 2.2 τ e τ λx.x x x τ τ λx.x τ τ λx.x : τ τ e τ 17

18 e : τ λx.y y y τ λx.y τ τ y : τ λx.y : τ τ x 1, x 2,..., x n τ 1, τ 2,..., τ n e τ x 1 : τ 1, x 2 : τ 2,..., x n : τ n e : τ m : nat, n : nat, plus : nat nat nat plus m n : nat nat nat nat nat (nat nat) x 1 : τ 1, x 2 : τ 2,..., x n : τ n Γ x 1, x 2,..., x n τ 1, τ 2,..., τ n 2.3 Γ, e, τ Γ e : τ 18

19 λ Γ(x) = τ Γ x : τ (T-Var) Γ, x : τ 1 e : τ 2 Γ λx.e : τ 1 τ 2 Γ e 1 : τ τ Γ e 2 : τ Γ e 1 e 2 : τ (T-Abs) (T-App) (T-Var) Γ x : τ Γ x τ (T-App) Γ e 1 τ τ e 2 τ e 1 e 2 τ (T-Abs) Γ λx.e τ 1 τ 2 Γ x : τ 1 Γ, x : τ 1 e τ 2 x τ 1 e τ 2 : s : nat nat, z : nat s : nat nat T-Var s : nat nat, z : nat z : nat T-Var s : nat nat, z : nat sz : nat s : nat nat λz.sz : nat nat λs.λz.sz : (nat nat) nat nat T-App T-Abs T-Abs 2.4 false + 5 if then 10 else false λ λ λ 19

20 λ λ = v ( ) ::= λx.e ( ) λ 3 ( ). e : τ e e e 1 ( ). e : τ e e e e 2 ( ). e : τ e e e : τ e : τ 3 ( ). Γ e 1 : τ 1 Γ, x : τ 1 e 2 : τ 2 Γ [e 1 /x]e 2 : τ 2. Γ, x : τ 1 e 2 : τ true = λt.λf.t false = λt.λf.f if e 1 then e 2 else e 3 = e 1 e 2 e 3 20

21 λ true = λf.λt.t false = λf.λt.f if e 1 then e 2 else e 3 = e 1 e 3 e 2 true false true : bool, false : bool, if : bool nat nat nat e : nat true, false, if λ e [λt.λf.t/true][λt.λf.f/false][λb.λt.λf.btf/if]e 1 [λf.λt.t/true][λf.λt.f/false][λb.λt.λf.bf t/if]e 2 e true 2 e (T-App) Objective Caml # let ht = Hashtbl.create 10 ;; (* ht val ht : ( _a, _b) Hashtbl.t = <abstr> # ht ;; (* ht - : (string, int) Hashtbl.t = <abstr> 21

22 # Hashtbl.add ht "abc" 123 ;; (* "abc" 123 ht - : unit = () # Hashtbl.add ht "de" 456 ;; (* "de" : unit = () # Hashtbl.add ht "f" 789 ;; (* "f" : unit = () # Hashtbl.find ht "de" ;; (* "de" - : int = 456 # Hashtbl.find ht "g" ;; (* "g" Exception: Not_found. # ht + 1 ;; (* Hashtbl ht Characters 0-2: ht + 1 ;; (* Hashtbl ht ^^ This expression has type (string, int) Hashtbl.t but is here used with type int λ 9,,, ISBN Types and Programming Languages. Benjamin C. Pierce. The MIT Press. ISBN

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu II 4 : 2001 11 7 keywords: 1 OCaml OCaml (first-class value) (higher-order function) 1.1 1 2 + 2 2 + + n 2 sqsum 1 3 + 2 3 + + n 3 cbsum # let rec sqsum n = # if n = 0 then 0 else n * n + sqsum (n - 1)

More information

Parametric Polymorphism

Parametric Polymorphism ML 2 2011/04/19 Parametric Polymorphism Type Polymorphism ? : val hd_int : int list - > int val hd_bool : bool list - > bool val hd_i_x_b : (int * bool) list - > int * bool etc. let hd_int = function (x

More information

Objective Caml 3.12 Jacques Garrigue ( ) with Alain Frisch (Lexifi), OCaml developper team (INRIA)

Objective Caml 3.12 Jacques Garrigue ( )   with Alain Frisch (Lexifi), OCaml developper team (INRIA) Objective Caml 3.12 Jacques Garrigue ( ) http://www.math.nagoya-u.ac.jp/~garrigue/ with Alain Frisch (Lexifi), OCaml developper team (INRIA) Jacques Garrigue Modules in Objective Caml 3.12 1 Objective

More information

jssst-ocaml.mgp

jssst-ocaml.mgp Objective Caml Jacques Garrigue Kyoto University garrigue@kurims.kyoto-u.ac.jp Objective Caml? 2 Objective Caml GC() Standard MLHaskell 3 OCaml () OCaml 5 let let x = 1 + 2 ;; val x : int = 3 ;; val-:

More information

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1

ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 More Logic More Types ML/OCaml GADT Jacques Garrigue ( ) Jacques Le Normand (Google) Didier Rémy (INRIA) @garriguejej ocamlgadt ML Edinburgh LCF ML Curry-Howard ML ( ) ( ) ( ) ( ) 1 ( ) ML type nebou and

More information

# let st1 = {name = "Taro Yamada"; id = };; val st1 : student = {name="taro Yamada"; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n

# let st1 = {name = Taro Yamada; id = };; val st1 : student = {name=taro Yamada; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n II 6 / : 2001 11 21 (OCaml ) 1 (field) name id type # type student = {name : string; id : int};; type student = { name : string; id : int; } student {} type = { 1 : 1 ;...; n : n } { 1 = 1 ;...; n = n

More information

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx.

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx. 1, 2 1 m110057@shibaura-it.ac.jp 2 sasano@sic.shibaura-it.ac.jp Eclipse Visual Studio ML Standard ML Emacs 1 ( IDE ) IDE C C++ Java IDE IDE IDE IDE Eclipse Java IDE Java Standard ML 1 print (Int. 1 Int

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

: gettoken(1) module P = Printf exception End_of_system (* *) let _ISTREAM = ref stdin let ch = ref ( ) let read () = (let c =!ch in ch := inp

: gettoken(1) module P = Printf exception End_of_system (* *) let _ISTREAM = ref stdin let ch = ref ( ) let read () = (let c =!ch in ch := inp 7 OCaml () 1. 2. () (compiler) (interpreter) 2 OCaml (syntax) (BNF,backus normal form ) 1 + 2; let x be 2-1 in x; ::= ; let be in ; ::= + - ::= * / ::= 7.1 ( (printable characters) (tokens) 1 (lexical

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in

Emacs ML let start ::= exp (1) exp ::= (2) fn id exp (3) ::= (4) (5) ::= id (6) const (7) (exp) (8) let val id = exp in Emacs, {l06050,sasano}@sic.shibaura-it.ac.jp Eclipse Visual Studio Standard ML Haskell Emacs 1 Eclipse Visual Studio variable not found LR(1) let Emacs Emacs Emacs Java Emacs JDEE [3] JDEE Emacs Java 2

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

「計算と論理」 Software Foundations その4

「計算と論理」  Software Foundations   その4 Software Foundations 4 cal17@fos.kuis.kyoto-u.ac.jp http://www.fos.kuis.kyoto-u.ac.jp/~igarashi/class/cal/ November 7, 2017 ( ) ( 4) November 7, 2017 1 / 51 Poly.v ( ) ( 4) November 7, 2017 2 / 51 : (

More information

Copyright c 2006 Zhenjiang Hu, All Right Reserved.

Copyright c 2006 Zhenjiang Hu, All Right Reserved. 1 2006 Copyright c 2006 Zhenjiang Hu, All Right Reserved. 2 ( ) 3 (T 1, T 2 ) T 1 T 2 (17.3, 3) :: (Float, Int) (3, 6) :: (Int, Int) (True, (+)) :: (Bool, Int Int Int) 4 (, ) (, ) :: a b (a, b) (,) x y

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 2 N X Y X Y f (x) f x f x y z (( f x) y) z = (( f (x))(y))(z) X Y x e X Y λx. e x x 2 + x + 1 λx. x 2 + x + 1 3 PCF 3.1 PCF PCF

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

Copyright c 2008 Zhenjiang Hu, All Right Reserved.

Copyright c 2008 Zhenjiang Hu, All Right Reserved. 2008 10 27 Copyright c 2008 Zhenjiang Hu, All Right Reserved. (Bool) True False data Bool = False True Remark: not :: Bool Bool not False = True not True = False (Pattern matching) (Rewriting rules) not

More information

untitled

untitled PPL 2006 MinCaml (myth) vs. vs. vs. Haskell (www.haskell.org) ML (www.standardml.org, caml.inria.fr) Standard ML (SML), Objective Caml (OCaml) Scheme (www.schemers.org) low level GCC C GCJ Java

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

ML 演習 第 4 回

ML 演習 第 4 回 ML 演習第 4 回 おおいわ Mar 6, 2003 今回の内容 補足 Ocaml のモジュールシステム structure signature functor Ocaml コンパイラの利用 2 識別子について 利用可能文字 先頭文字 : A~Z, a~z, _ ( 小文字扱い ) 2 文字目以降 : A~Z, a~z, 0~9, _, 先頭の文字の case で 2 つに区別 小文字 : 変数,

More information

.....Z...^.[.......\..

.....Z...^.[.......\.. 15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

「計算と論理」 Software Foundations その3

「計算と論理」  Software Foundations   その3 Software Foundations 3 cal17@fos.kuis.kyoto-u.ac.jp October 24, 2017 ( ) ( 3) October 24, 2017 1 / 47 Lists.v ( ) ( ) ( ) ( 3) October 24, 2017 2 / 47 ( ) Inductive natprod : Type := pair : nat nat natprod.

More information

org/ghc/ Windows Linux RPM 3.2 GHCi GHC gcc javac ghc GHCi(ghci) GHCi Prelude> GHCi :load file :l file :also file :a file :reload :r :type expr :t exp

org/ghc/ Windows Linux RPM 3.2 GHCi GHC gcc javac ghc GHCi(ghci) GHCi Prelude> GHCi :load file :l file :also file :a file :reload :r :type expr :t exp 3 Haskell Haskell Haskell 1. 2. 3. 4. 5. 1. 2. 3. 4. 5. 6. C Java 3.1 Haskell Haskell GHC (Glasgow Haskell Compiler 1 ) GHC Haskell GHC http://www.haskell. 1 Guarded Horn Clauses III - 1 org/ghc/ Windows

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2 output: 2011,11,10 2.1 λ λ β λ λ - abstraction λ λ - binding 1 add1 + add1(x = x + 1 add1 λx.x + 1 x + 1 add1 function application 2 add1 add1(2 g.yamadatakahiro@gmail.com 1 add1 2 β β - conversion (λx.x

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

ML 演習 第 4 回

ML 演習 第 4 回 ML 演習第 4 回 佐藤春旗, 山下諒蔵, 前田俊行 2006/06/20 ICFP Programming Contest 過去の O'Caml プログラムの実績 1998: 2 位 (ENS Camlist, France) 1999: 1 位 (Camls R Us, O'Caml 作者グループ ) 2000: 1 位 (PLClub, U-Penn, 米澤研住井, 細谷参加 ) 2 位 (Camls

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 ( : Documents/kadai4), (ex.py ),. print 12345679 * 63, cd Documents/kadai4, python ex.py., python: can t open file ex.py : [Errno 2] No such file or

1 ( : Documents/kadai4), (ex.py ),. print 12345679 * 63, cd Documents/kadai4, python ex.py., python: can t open file ex.py : [Errno 2] No such file or Python 2010.6 1 Python 1.1 ( ). mi.,.py. 1.2, python.. 1. python, python. ( ). 2.., python. Python (>>>). Python 2.6.2 (release26-maint, Apr 19 2009, 01:56:41) [GCC 4.3.3] on linux2 Type help, copyright,

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå takuro.onishi@gmail.com II 2009 6 11 [A] D B A B A B A B DVD y = 2x + 5 x = 3 y = 11 x = 5 y = 15. Google Web (2 + 3) 5 25 2 3 5 25 Windows Media Player Media Player (typed lambda calculus) (computer

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf SFG SFG SFG Y. R. Shen.17 (p. 17) SFG g ω β αβγ = ( e3 h ) (r γ ) ng n ω ω ng + iγ (r α ) gn ' (r β ) n 'n (r ) (r ) α n 'n β gn ' ng n ' ω ω n 'g iγ n'g ω + ω n 'n iγ nn ' (1-1) Harris (Chem. Phys. Lett.,

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 u t = au (finite difference) u t = au Von Neumann

1 u t = au (finite difference) u t = au Von Neumann 1 u t = au 3 1.1 (finite difference)............................. 3 1.2 u t = au.................................. 3 1.3 Von Neumann............... 5 1.4 Von Neumann............... 6 1.5............................

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

1

1 2 章 1 整数を一つ読み込み, その階乗を計算する RAM プログラムを書け f (n) = n! ( n 0) 何でもよい ( n

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

1.1 1 A

1.1 1 A . A..2 2 2. () (xyz) ( xyz) ( xy z) = (x x)yz ( xy z) = yz ( xy z) = y(z ( x z)) = y((z x)(z z)) = y( x z) (2) (3) M aj (x, y, M aj ( x, ȳ, z)) = xy ȳm aj ( x, ȳ, z) M aj ( x, ȳ, z)x M aj (x, y, z) x =

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

6

6 000 (N =000) 50 ( N(N ) / = 499500) μm.5 g cm -3.5g cm 3 ( 0 6 µm) 3 / ( g mo ) ( 6.0 0 3 mo ) =.3 0 0 0 5 (0 6 ) 0 6 0 6 ~ 0 000 000 ( 0 6 ) ~ 0 9 q R q, R q q E = 4πε 0 R R (6.) -6 (a) (b) (c) (a) (b)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

プログラミングD - Java

プログラミングD - Java プログラミング D 講義資料 中田明夫 nakata@ist.osaka-u.ac.jp ML 教科書 プログラミング言語 Standard ML 入門 :1,2 章 講義のねらい 関数型プログラムを知る 関数型プログラムを知る利点 プログラムを統一的, 抽象的に捕らえる リスト処理, 高階関数, 再帰関数定義 リストやツリーなどのデータ構造は再帰的に定義 再帰関数で扱うとプログラミングが容易 数学的な裏付け

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x, No... p. p. 3, 4,, 5.... f (, y) y 4 + y. () y m (, y) (, ) f (, y). m. () y a (, y) (, ) f (, y). a. (3) lim f (, y). (,y) (,)... (, y) (, ). () f (, y) a + by, a, b. + y () f (, y) 4 + y + y 3 + y..3.

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5:

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5: BASIC 20 4 10 0 N88 Basic 1 0.0 N88 Basic..................................... 1 0.1............................................... 3 1 4 2 5 3 6 4 7 5 10 6 13 7 14 0 N88 Basic 0.0 N88 Basic 0.1: N88Basic

More information