devicemondai

Size: px
Start display at page:

Download "devicemondai"

Transcription

1 c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A

2 ii c 2019 i A 131 B 132

3 c K V 1.1 qv = C 1.5 V = J (1.1) 1.2 l 5.0 µm n V (1) 1.0 V v (2) m/s 1.2 (1) E E = V l = 1.0 V 5.0 µm = V/m (1.2)

4 2 c v v = µ n E = 0.15 m 2 /(V s) V/m = m/s (1.3) (2) E E = v µ n = m/s 0.15 m 2 /(V s) = V/m (1.4) V V = El = V/m 5.0 µm = 5.0 V (1.5) 1.3 n i /m 3 µ n 0.40 m 2 /(V s) µ p 0.20 m 2 /(V s) σ 1.3 σ = q ( µ n + µ p ) ni = C ( 0.40 m 2 /(V s) m 2 /(V s) ) /m 3 = 0.24 S/m (1.6) E g [ev] n i [/m 3 ]

5 c (1) K (2) 1.4 (1) 1 (2) n µ n µ p n i (1) σ (2) σ min (3) n 1.5 (1) p np = n 2 i ) n 2 i σ = qµ n n + qµ p p = q (µ n n + µ p n (1.7) (2) µ n n + µ p n i 2 n 2 n 2 i µ n n µ p n = 2 µ n µ p n i (1.8) (9.31) 2 9.4

6 4 c (3) (1.8) σ min = 2q µ n µ p n i (1.9) µ n n = µ p n i 2 n (1.10) n = µp µ n n i (1.11) kg 9.2 µg S 1.0 cm 2 l 5.4 cm 1.5 V V 5.0 ma I /mol (1) (2) R (3) σ (4) [g/m 3 ] (5) 4.6 kg (6) 9.2 µg (7) (8) 1.6 (1) p (2) (3) R = 1 σ l S σ = R = V I = 1.5 V 5.0 ma = Ω (1.12) l RS = 5.4 cm = 1.8 S/m (1.13) Ω 1.0 cm2

7 c (4) 1 (5) /mol g (1.14) /m /mol g/m 3 (1.15) 4.6 kg g/m m 3 (1.16) (6) 1 (11/ ) g (7) 9.2 µg /mol (8) p σ = qµ p p (1.17) m /m 3 (1.18) µ p = σ qp = 1.8 S/m C /m m2 /(V s) (1.19) 1.1 (1) (2) (3) (4) (5) n (6) p (7) n (8) (Si) (P) (9) (10) (11) (12)

8 6 c (13) (14) (15) p 1.2 (1) 2 (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (10) (12) (10) (11) (13) (12) (14) (12) (15) (16) (15) [1] [15] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [2] [8] [7] [13] [14] [15] n 3 p

9 c (Si) (GaAs) (a) (b) Si Si Si Si Si Si E g E g Si Si Si Si (a) (b) (c) (d) n p (a) (c) E g (a) (b) (c)

10 8 c 伝導帯 禁制帯 伝導帯 禁制帯 (a) (b) (c) S l V I (i) (x) S l I A V v E µ v = (i) (1.20) 1 A N S n v N = (ii) (1.21) I 1 A N q (1.21) (1.20) (1.23) I = (iii) (1.22) I = (iv) (1.23) I = (v) (1.24)

11 c E V l E = (vi) (1.25) (1.25) (1.24) I = (vii) (1.26) R R = (viii) (1.27) σ S l R = (ix) (1.28) (1.27) (1.26) (1.28) σ σ = (x) (1.29) 1.10 (1) (9) S l ρ R (1) V E (2) I J (3) V = RI E, J ρ (4) v n (5) I q (6) J (7) µ v (8) (4) (7) (8) ρ (9) 1.11 [m 2 /(V s)] [cm 2 /(V s)] A 300 K Si [cm 2 /(V s)] J

12 10 c T [K] kt [J] k (1) 300 K (2) 300 K 1.14 (1) 1 4 N v [/m 3 ] (2) n N v n/n v (3) σ (4) ρ 1.15 (1) σ i µ n µ p q n i (2) σ min µ n µ p q n i (3) σ i 3 (4) σ min l 2.5 mm 30 V V l 電子正孔 E (1) E (2) 1.5 (3) v n (4) v p

13 c µm p Si (1) 10 V (2) Si m/s 1.18 N P /m 3 (1) N P /N Si (2) n (3) p (4) σ (5) ρ /m 3 p n i /m 3 µ n 0.40 m 2 /(V s) µ p 0.20 m 2 /(V s) (1) σ (2) n 1.20 t 5.0 µm w 20 µm l 1.2 mm R 10 kω (1) (2) σ (3) N P (4) p 1.21 S 1.0 µm 2 l 3.2 µm p R 1.0 MΩ (1) A (2) ρ (3) σ

14 12 c (4) 1.22 N /m 3 n InP w 5.0 µm t 2.0 µm l 0.46 mm 23 V V 0.92 ma I (1) R (2) σ (3) µ (4) v 1.23 N D /m 3 n GaAs w 10 µm t 2.0 µm l 0.64 mm R 10 kω GaAs µ n 1.24 σ i S/m 3 n /m 3 p /m 3 σ 36 S/m (1) µ n (2) n i (3) µ p 3

15 c K I A pn (1) 300 K V (2) 1.0 ma 2.1 (1) (2) ( ) ] [ ( qv I = I 0 [exp 1 = ) ] C V A exp kt J/K 300 K A = 4.95 ma (2.1) V = kt [ ] I q ln + 1 = 1.38 [ J/K 300 K ] A I ln C A V (2.2) 2.2

16 14 c V I ( ) qv I I 0 exp kt (2.3) T 300 K (1) 10 % V 0 (2) V 0 V 1 I 1 2I 1 V 2 V 2 V (1) 1.1 I 0 [exp ( ) ] ( ) qv0 qv0 1 = I 0 exp kt kt (2.4) V 0 = kt q ln 11 = J/K 300 K C ln mv (2.5) (2) I 1 = I 0 exp ( ) ( ) qv1 qv2, 2I 1 = I 0 exp kt kt (2.6) ( ) q (V2 V 1 ) exp kt = 2I 1 I 1 = 2 (2.7) V 2 V 1 = kt q ln 2 = J/K 300 K C ln 2 18 mv (2.8) 2.3 I A 100 Ω R 2.1 I 20 ma V 0 2

17 c I V 0 R [ ] kt I q ln + 1 = 1.38 [ ] J/K 300 K 20 ma I ln C A V (2.9) V 0 = V Ω 20 ma = V V = 2.55 V (2.10) 2.4 pn C J V ϕ D C 0 ϕ D C J = C 0 ϕ D V (2.11) (1) V 0.00 V C J 50 pf V 1.44 V C J 30 pf ϕ D (2) V 0.63 V C J 2.4 (1) V 0 C J = C 0 C 0 50 pf (2.11) ( CJ ) 2 V ( ) 2 30 pf ( 1.44 V) ϕ D = C 0 ( CJ C 0 ) 2 1 = 50 pf ( ) 2 30 pf 1 50 pf = 0.81 V (2.12)

18 16 c (2) ϕ D C J = C 0 ϕ D V 0.81 V = 50 pf = 37.5 pf (2.13) 0.81 V V E 0 E 1 sin ωt I E 1 E 0 ) qe 1 kt I = I s exp ( qv kt E 1 sinw t I E 0 V (1) E 1 = 0 I 0 (2) E 1 0 I I 0 (3) I = I 0 + I 1 sin ωt I 1 x 1 exp x 1 + x 2.5 (1) V = E 0 I 0 = I s exp ( ) qe0 kt (2.14) (2) ( ) ( ) ( ) q (E0 + E 1 sin ωt) qe0 qe1 sin ωt I = I s exp = I s exp exp kt kt kt ( ) qe1 sin ωt = I 0 exp (2.15) kt

19 c (3) ( ) qe1 sin ωt exp kt 1 + qe 1 sin ωt kt (2.16) ( I I qe ) 1 sin ωt = I 0 + I 1 sin ωt (2.17) kt I 1 = I 0qE 1 kt (2.18) V D I D 0 V B V D I D = V D V B V D V B r (1) E V (2) R L E V (2.19) R 0 E V R L (1) E V = R LE R L + R 0 (2.20)

20 18 c E R 0 E V R 0 E V R L V R 0 R L E V R 0 = V R L + I D = V R L + V V B r (2.21) V V = R L (R 0 V B + re) R L R 0 + rr L + rr 0 (2.22) (2.20) (2.22) R L E = R L (R 0 V B + re) (2.23) R L + R 0 R L R 0 + rr L + rr 0 E = ( 1 + R ) 0 V B (2.24) R L R L E R L + R 0 V = R L (R 0 V B + re) R L R 0 + rr L + rr 0 ( 1 + R 0 E R L ) V B E ( 1 + R ) (2.25) 0 V B R L (2) E (2.22) R L R 0, r R L R 0 + rr L + rr 0 R L (R 0 + r) (2.26) V = R L (R 0 V B + re) R 0V B + re R L R 0 + rr L + rr 0 R 0 + r (2.27) (1) (2) pn 1 R 0 r V V B

21 c (3) pn p n (4) pn (5) (6) (7) (8) (9) n p (10) (11) (12) (13) (14) pn n p 2.2 (1) (2) (3) (4) (5) pn n p (6) (7) (8) pn (9) (8) pn (10) (9) (11) (3) (12) (11) (13) (11) (14) (15) (16) (15) A (a) K (b) (c) (1) 2.4 A K (2) 2.4 (a) A K n

22 20 c (3) 2.4 (b) (4) 2.4 (c) (5) pn A B C (a) (b) (c) 2.5 (a) pn 2.5 (b) [1] [2] [3] [3] [2] [4] 2.5 (c) A [2] [5] [3] [6] [7] (1) [1] [7] p n (2) A (3) [7] 2.5 B C pn (B) (A) (1) 2.6 E F (2) 2.6 (A)

23 c (3) 2.6 (B) (4) pn pn E F E F 禁制帯 (1) (2) (3) (4) I V B B A C 0 V (1) A

24 22 c (2) B (3) B (4) C 2 (5) V B (6) C pn (1) (2) V [V] I [ma] (1) (2) (a) pn 2.9 (b) R 20 Ω E 1.20 V I [ma] V D [V] (a) 1.2 E I (b) R V D (1) 2.9 (b) E I R V D (2) (1) 2.9 (a) (3) 2.9 (b) V D I (2) V D I 2

25 c pn R 10 Ω I V R V D (1) 2.10 V 1.00 V 40 ma (2) 2.10 I 0 (3) 2.10 I 80 ma V E 10.0 V R kω R kω D A V 4.00 V R 2 A D E R 1 R2 R 3 V (1) D I D (2) D V D (3) A V A (4) R 1 I 1 (5) R 2 I 2 (6) R pn V V I T 300 K (1) V V I I /I

26 24 c (2) V I I I 10 V 2.13 pn 300 K 0.60 V 4.0 ma E g exp( qe g /kt ) (1) I s(300) (2) 323 K(50 C) I s(323) (3) 323 K 0.60 V (4) 273 K 0 C) I s(273) (5) 273 K 0.60 V 2.14 pn I [ma] V [V] (1) 2.12 V V (2.28) V = V 0 + R 0 I (2.28) 2.2 V I (2.28) V 0 R V [V] I [ma] (2) pn 3

27 c (3) V V 0 I pn 2.13 V 0 V D 0.60 V 500W 900W V 500W D 100W pn p /m 3 p n n n0 p p0 n p0 exp(qv/kt) [B] [A] n p p n0 x (1) [A] 0 (2) [B] (3) p [A] 3 (4) pn p 2 (5) p p p0 3

28 26 c (6) p n p0 3 (7) V [A] ( x ) = 0 p n p0 exp qv kt V x = 0 p n p(0) 3 (8) V x = 0 p p p (0) p p p0 [B] V p p (0) pn J D n D p n p dn dp J = qd n qdp dx dx (2.29) (1) n n n 0 p (2.30) x V T L ] p = p 0 [e qv kt 1 e L x + p 0 (2.30) n J x J (x) (2) (3) n J x 2.18 [1] [5] pn [1] [2] pn [3] [1] [2] [4] [2] [5] 2.19 pn ϕ D N A N D n i ϕ D = kt q ln N AN D n i 2 (2.31)

29 c pn W d ε r W d = 2εrε 0 (N A + N D ) ϕ D qn A N D (2.32) (1) /m /m 3 pn ϕ D 3 (2) (1) pn W d pn C J ϕ D C 0 V C J = C 0 ϕd ϕ D V (2.33) (1) V 1 C J 2 ϕ D (2) V C J 2.3 C 0 ϕ D V C J 0.36 V 36 pf 0.80 V 30 pf 2.21 pn C J [F/m 2 ] qεr ε C J = 0 N A N D 2 (N A + N D ) 1 ϕd V (2.34) ε r ε 0 N A N D ϕ D V Si N A = N D = /m 3 V 0.0 V 7.18 pf pn 100 µm 100 µm (1) C J C 0 (2) ϕ D (9.40)

30 28 c (3) 0.50 V (4) 5.0 pf (5) pn W d C J C J = ε rε 0 W d (2.35) V 0.0 V 2.22 C pf ϕ D 0.78 V pn N A N D N (1) pn C J ϕ D C 0 V C J = C 0 ϕd ϕ D V (2.36) C J 2.6 pf V 2 (2) ϕ D k T q n i N D N A ϕ D = kt q ln N AN D n i 2 (2.37) N 2 (3) pn W 2εrε W = 0 (ϕ D V ) NA + N D (2.38) q N A N D ε 0 ε r W 2 (4) pn S C J C J = ε r ε 0 S W (2.39) pn S pn V V V B [1] V B [2] [1] [3] [4] [3] [1] [5] [4] [1] [6] [3] [7] [8]

31 c [9] [D] [1] [10] (a) 2.15 (b) I D I D R I V D V R L 0 V B (a) V D (b) (1) 2.15 (a) (2) 2.15 (a) 2 (3) E V E R R L V B (4) E V E R R L V B (5) 2.15 (b) E

32 30 c npn V BE I B I C V CE 3.1 h re V BE [V] I B [µa] I C [ma] V CE [V] (1) 3.1 h fe (2) 3.1 h ie (3) 3.1 h oe 3.1 (1) V CE = 12.0 V h fe = I C I B VCE =0 = 2.75 ma 2.50 ma 11.0 µa 10.0 µa = 0.25 ma 1.0 µa = 250 (3.1)

33 c (2) V CE = 12.0 V h ie = V BE V V = I B 11.0 µa 10.0 µa = V = 3.0 kω (3.2) 1.0 µa VCE =0 (3) I B = 10.0 µa h oe = I C = V CE IB = ma 2.47 ma 12.0 V 10.0 V = 0.03 ma 2.0 V = 15 µs (3.3) 3.2 h h fe = 200, h ie = 5.5 kω, h re = , h oe = 10 µs T T (r B, r E, r C, α) h h ie r B + r E 1 α h fe α 1 α r E (3.4) (3.5) h re (1 α) r C (3.6) 1 h oe (1 α) r C (3.7) 3.2 (3.5) (3.6) (3.7) α = h fe h fe + 1 = (3.8) 201 (3.7) (3.8) r C = (3.4) (3.8) (3.9) r B = h ie r E = h re = = 25 Ω (3.9) h oe 10 µs 1 = h fe + 1 = MΩ (3.10) (1 α) h oe h oe 10 µs r E 1 α = h ie h re (h fe + 1) = 5.5 kω = 475 Ω (3.11) h oe 10 µs

34 32 c V BE = ( Ω) I B V (3.12) I C [ma] I B = 30 ma I B = 20 ma I B = 10 ma V CE [V] (1) (1) V CE 6.0 V I B 20 µa β (2) (1) α 3 (3) (3.5) 2 L nb 20 µm I C R L R B I B V CE V CC V BB V BE (2)

35 c (4) 3.2 V CC 12.0 V R L 1.5 kω I B 20.0 µa 21.0 µa V BE V BE (5) 3.2 I B 20.0 µa 21.0 µa V CE V CE (6) 3.2 V CE / V BE (7) 3.2 I C(sat) V CE(sat) 0.10 V 3.3 (1) (2) (3) W B = 2 (1 α) L nb = β = I C 4.0 ma = = 200 (3.13) I B 20 µa α = (4) (3.12) (5) (6) β β + 1 = (3.14) β + 1 L nb = 20 µm 2.0 µm (3.15) 201 V BE = Ω I B = Ω 1.0 µa = 4.0 mv (3.16) V CE = V CC R L I C = V CC R L βi B (3.17) V CE = R L β I B = 1.5 kω µa = 0.30 V (3.18) V CE = 0.30 V = 75 (3.19) V BE 4.0 mv

36 34 c (7) (3.17) I C = I C(sat) V CE = V CE(sat) I C(sat) = V CC V CE(sat) R L = 12.0 V 0.10 V 1.5 kω = 11.9 V 7.9 ma (3.20) 1.5 kω 3.4 β β 0 β = ( ) (3.21) 2 f 1 + (1) β f β f T (2) f f β β f = β 0 f β f β 3.4 (1) f = f T β = β 0 ( ft f β ) 2 = 1 (3.22) (2) f f β f T = ( f 1 + β f β (3.23) f β ) 2 f f β (3.24) β 0 β = ( f 1 + f β ) 2 β 0f β f (3.25)

37 c h oe I C V A V CE 3.5 h oe 3.3 I C = 0 V A 1 h oe = I C V A + V CE I C V A (3.26) I C -V A 0 V CE (1) npn n (2) (3) (4) (5) (6) npn (7) (8) 1 (9) (10) (11) (12) h L.1

38 36 c (13) h (14) (15) β 1 β (16) pn (17) (18) (19) 0 (20) 3.2 (1) (2) 1 2 (3) 1 2 (4) 1 (5) (6) 0 (7) (8) (9) pn (i) (ii) (iv) (v) n p n p n p (iii) (vi) (a) (b) (c) (d) (1) 3.4 (a) pnp npn (2) 3.4 (c) pnp npn (3) (i) (vi) (4) (i) (vi) (5) (i) (vi)

39 c npn npn (a) (b) (c) (a) (b) (d) (d) (e) (d) (f) (g) (h) (d) (g) (i) (d) (j) (d) I E (d) I C (g) (f) I B I E, I C, I B (A) (1) (a) (i) n p (2) (A) 3.5 npn E F (1) (2) (3) (1) (2) E 1 E 2 )

40 38 c I 1 A A E 1 V V 1 V V E 2 2 I (3) V 1 I 1 V 1 (4) V 2 I 2 V I B I C VBB V BE V CE V CC (1) (2) V BE I B V BE (3) V CE I C V CE 3.9 α β 3.10 β = α 1 α (3.27) β 200 (1) α 3 (2) 10 µa 2 (3) 3.0 ma (1) 3.8 (2) V CE 10 V I B 20 µa β

41 I C [ma] c I B = 30mA I B = 20mA I B = 10mA V CE [V] (3) (2) α 3 (4) β f T 1 f T (5) α W L α ( W L ) 2 (3.28) (3.28) 2 L 20 µm I C [ma] V CB [V] (a) I C [ma] V CE [V] (b) (1) 3.9 (a) (2) 3.9 (b) (3) 3.9 (a) (4) 3.9 (b)

42 40 c β R B I B I C R C V BB V BE V CE V CC (1) V CC V BC I C R C (2) I C (3) I B I C (4) I C V CE (5) I B V CE (6) V BE I B V BE h ie 3.14 V CE V BE β V CC 10.0 V R C 5.00 kω V BE I B [ ( ) ] qvbe I B = I B0 exp 1, I kt B0 = A (3.29) (1) V BE V a I B 3 b I C 3 c V CE 3 (2) V CE 9.0 V a I C 3 b I B 3 c V BE 3 (3) V CE 0.10 V

43 c R B I B I C R C V BB V BE V CE V CC a I C 3 b I B 3 c V BE (a) 3.12 (b) R C 2.0 kω V CC 10.0 V I B 5.0 µa I B [A] V BE [V] V BE = ( Ω) I B V (3.30) I C [ma] V CE [V] (a) I B = 10mA 7.5mA 5.0mA 2.5mA 0.0mA R B I B I C R C V V BB V CE BE (b) V CC (1) 3.12 (a) (2) (1) E F (3) 3.12 (b) V CE V CC R C I C (4) 3.12 (b) I B 5.0 µa V BE (5) 3.12 (b) I B 5.0 µa I C (6) 3.12 (b) I B 5.0 µa V CE (7) 3.12 (b) I B 5.0 µa 5.5 µa V BE V BE

44 42 c (8) 3.12 (b) I B 5.0 µa 5.5 µa I C I C (9) 3.12 (b) I B 5.0 µa 5.5 µa V CE V CE (10) 3.12 (b) V CE / V BE I r I B r B b I B I C V V D V BE B E V D C E V BE (a) (b) (1) 3.13 (a) I V D q k T I 0 (2) 3.13 (a) V V D I r (3) 3.13 (a) V k T q I 0 r I (4) r D r D = dv di (3.31) 3.13 (a) r D k T q r I I I 0 (5) 3.13 (b) 2 (1) (4) r i I C I B h 3.18 h (1) v BE v CE, i B h (h ie, h fe, h re, h oe) (2) i C v CE, i B h

45 c B C B C h ie h re v CE h fe i B h oe h ie h re v CE h fe i B h oe E B (a) E C E B (b) E C h ie h re v CE h oe h fe i B h ie h re v CE h oe h fe i B E (c) E E (d) E (3) T (r B, r E, r C, α) h h ie r B + r E (3.32) 1 α h fe α (3.33) 1 α r h re E (3.34) (1 α) r C 1 h oe (3.35) (1 α) r C T h (4) h h fe = 200, h ie = 5.5 kω, h re = , h oe = 10 µs T (a) h 3.15 (b) h ie = 3.49 kω h fe = 120 h oe = 24.0 µs h re = i B 49.0 µa v CE 5.00 V (1) 3.15 (a) v BE (2) 3.15 (a) i C (3) 3.15 (b) v BE (4) 3.15 (b) i C (a) 3.16 (b) (a)

46 44 c i B i C i B i C v BE B E h ie h re v CE h fe i B h oe C E v CE v BE B E C h ie h fe i B E v CE (a) h パラメータ等価回路 (b) 簡易等価回路 B i B i C C B i B i C C h ie v BE h fe i B v BE h ie h fe i B v CE v CE R L E (a) E E (b) E (1) 3.16 (a) v BE i B (2) 3.16 (a) i C i B (3) 3.16 (b) v CE i C R L (4) 3.16 (b) v CE v BE 3.21 h ie h ie = V BE I B (3.36) (1) T [K] I B I B I B0 exp ( qvbe kt ) (3.37) h ie I B (2) (1) I B 10 µa h ie 3.22 h oe h oe = I C V CE (3.38)

47 c V A 3 [ ] I C = 1 + V CE I V C0 (3.39) A (1) (3.38) (3.39) h oe (2) I C0 3.0 ma V A 100 V h oe g m r π r o B i B i C C v BE r p g m v BE r O v CE E E (1) 3.17 v BE i B v CE r π r o g m (2) 3.17 i C v BE v CE r π r o g m (3) h 3.17 r π r o g m (4) h q k T β 0 V CE V A 5 I B ( ) qvbe I B = I 0 exp (3.40) kt [ ] I C = β V CE I V B (3.41) A h h ie = V BE I B, h re = V BE V CE, h fe = I C I B, h oe = I C V CE (3.42) C D (a) 5 V A 48

48 46 c (5) (3) (4) 3.17 V A V CE r o = V A + V CE I C g m = qi C kt V A I C (3.43) (3.44) r π = β 0 g m VA + V CE V A β 0 g m (3.45) 3.24 α 0 α f α β 0 β f β α 0 f α = β 0 f β (3.46) β β β = 0 ( ) 2 f 1 + f β (3.47) α α f α 100 MHz (1) β 0 (2) β f β (3) f 4.6 MHz β b i B i B r B i C B C v BE r E (1-a) r C v CE E E (1) 3.18 (2) 3.19

49 c B C r B C BE C E g p C BC g m v BE E E (3) 3.19 C E (4) C BC 3.19 α f α 6 C π C E C BE f α = g m 2πC π (3.48) f α 1.6 GHz g m 50 ms C π (a) 3.20 (b) V CC 9.5 V R L 4.7 kω 2 I C I C [ma] 5 I B = 4 20mA V CE [V] (a) 15mA 10mA 5mA 0mA R B V BB I B V BE (b) V CE R L V CC (1) I C(sat) V CE(sat) 0.10 V (2) I B 3.27 h FE V CC 10.0 V R C 1.0 kω I B (P.7)

50 48 c I C R C I B V CE V CC (1) V CE(sat) 0.0 V I C(sat) (2) 3.21 I B I C V CE 3.22 I C [ma] I B [ma] V CE [V] I B [ma] I C 0 0 A B V CE (1) 3.23 A 3.24 (a) (c) (2) 3.23 B 3.24 (a) (c)

51 c (a) (b) (c) (a) V in 3.25 (b) V out 3.25 (b) 3.25 (b) (i) 2 (ii) 3 (i) 4 (ii) 5 (ii) 3 β (ii) I B I B > 6 (3.49) 3.25 (a) V in 0 V out 3.25 (b) (iii) V CC V in R L V 1 0 t V in V out V out (i) (ii) (iii) V CC (a) 0 (b) t V CC βr βv CC L R L R L βv βr L CC V CC

52 50 c β V CE 6.0 V V CC 12.0 V R C 2.0 kω V CC R B R C (1) I C (2) I B (3) I B V BE [ I B = I B0 (4) R B exp ( qvbe kt ) ] 1, I B0 = A (3.50) V CC 10.0 V R C 2.0 kω α 1 R E I E I C R C V BB V BE V CB V CC (1) 3.27 I E pn pn ( ) qvbe I E I E0 exp (3.51) kt I E A V BE V I E 3 (2) V BE V V CB

53 c (3) V BE V I E 3 (4) V BE V V CB (5) V BE V V V CB / V BE V CC 10.0 V R E 2.00 kω β 199 I B [ ( ) ] qvbe I B = I B0 exp 1, I kt B0 = A (3.52) I B V in V CC VBE R E I E V out (1) V BE V a I B b I E c V out d V in (2) I B 14.0 µa a V BE b I E c V out d V in (3) (1) (2) 6.0 V A v A v V in V out A v = V out V in (3.53) ω j

54 52 c i B B r B i C C g m v B'E v BE v B'E r p C r O p v CE E E (1) v BE r i B r π C π g m r o B (2) v B E r v B r π C π g m r o BE (3) v CE = 0 i C v B E r B r π C π g m r o (4) v CE = 0 i C h i fe r B r π C π g m r o B (5) h fe h FE r B r π C π g m r o (6) h fe = h FE ω β r B r π C π g m r o 2 (7) h fe = 1 ω T r B r π C π g m r o g m r π 1

55 c MOSFET MOSFET (4.22) (1) g m (2) g D (3) g m (4) I Dsat V P (5) g m V G, V th, I Dsat (6) g D 4.1 (1) (2) g D = I D V DS = g m = I D V G = V DS V G [ [ β V G V th V ] ] DS V DS = βv DS (4.1) 2 [ β [ V G V th V DS 2 ] V DS ] = β (V G V th V DS ) (4.2)

56 54 c (3) g m = I D V G = [β (V G V th ) 2 ] = β (V G V th ) (4.3) V G 2 (4) V P = V G V th (5) I Dsat = β V P 2 2 (4.4) β = 2I Dsat (V G V th ) 2 (4.5) (6) g m = β (V G V th ) = g D = I D V DS = V DS 2I Dsat V G V th (4.6) [β (V G V th ) 2 ] = 0 (4.7) n MOSFET W 10 µm L 2.0 µm t 50 nm V th 1.0 V MOSFET µ S m 2 /(V s) (4.11) (4.12) (1) MOSFET C OX (2) (4.11) β (3) V G 1.0 V V P (4) V G 1.0 V V DS 1.0 V I D (5) V G 1.0 V V DS 3.0 V I D (6) V G 3.0 V V P (7) V G 3.0 V V DS 3.0 V I D

57 c (8) V G 3.0 V V DS 5.0 V I D 4.2 (1) (2) (4.12) (3) C OX = ε OX = F/m F/m 2 (4.8) t OX 50 nm β = µ SW C OX L = m 2 /(V s) 10 µm F/m µm = S/V (4.9) (4) V DS < V P [ I D = β V P = V G V th = 1.0 V ( 1.0 V) = 2.0 V (4.10) V G V th V DS 2 = S/V ] V DS [ 1.0 V ( 1.0 V) 1.0 V 2 ] 1.0 V 0.26 ma (4.11) (5) V DS > V P (6) I D = β (V G V th ) 2 = (1.0 V ( 1.0 V))2 S/V 2 2 = 0.35 ma (4.12) (7) V DS < V P V P = V G V th = 3.0 V ( 1.0 V) = 4.0 V (4.13) I D = S/V [ 3.0 V ( 1.0 V) 3.0 V 2 ] 3.0 V 1.3 ma (4.14)

58 56 c (8) V DS > V P I D = β (V G V th ) 2 = (3.0 V ( 1.0 V))2 S/V 2 2 = 1.4 ma (4.15) 4.3 MOSFET 4.1 MOSFET V DS 8.0 V V DS = 8.0V I D [A 1/2 ] V G [V] (1) MOSFET V th 2 (2) V G 4.0 V I D (3) V G 2.5 V g m 4.3 (1) I D 0 V G V th 4.1 V th = 0.50 V (4.16) (2) 4.1 V DS 8.0 V V th 0.50 V MOSFET I D = β (V G V th ) 2 2 (4.17)

59 c β = S/V (4.18) (3) I D = β (V G V th ) 2 2 g m = I D V G = = S/V (4.0 V 0.50 V)2 2 = 4.9 ma (4.19) [β (V G V th ) 2 ] = β (V G V th ) (4.20) V G 2 g m = S/V (2.5 V 0.50 V) = 1.6 ms (4.21) (a) MOSFET 4.2 (b) 4.2 (b) µ 4.2 (a) G i D D G - r D i D D v G g m v G r D v G mv G + S (a) S S (b) S (a) i D = v DS r D + g m v G (4.22) 4.2 (b) i D = v DS + µv G r D (4.23)

60 58 c µ = g m r D (4.24) µv G = r D g m v G = µ = g m r D (4.25) 4.5 n N D /m 3 ϕ D 0.80 V GaAs MESFET V G 0 I D V n GaAs ε r ϕ D < a2 qn D 2ε (4.26) a > 2εϕ D = 12 F/m 080 V qn D C /m µm (4.27) 4.1 (1) FET (2) FET (3) FET n p (4) n FET (5) FET (6) FET (7) FET (8) n MOSFET (9) p MOSFET (10) MOSFET pn (11) MOSFET (12) p MOSFET p (13) MOSFET

61 c (14) MOSFET (15) MOSFET (16) MOSFET 0 (17) n MOSFET (18) MOSFET (19) FET (20) FET (21) (22) (23) GaAs MOSFET 4.2 (1) FET (2) FET (3) 0 I D FET (4) 0 I D 0 FET (5) MIS (6) MIS 4.3 MOSFET 1 (1) (2) (3) (4) (5) 4.4 p MOS (A) (J) (1) (10) (A) (B) (C) (D) (E) (B) (F) (G) (E) (H) (I) (J)

62 60 c p MOS V G (A) (B) (C) (B) (i) V G < 0 (ii) 0 < V G < V th (iii) V th < V G 4.3 (1) 4.3 (i) (2) 4.3 (ii) (3) 4.3 (iii) (4) 4.3 (i) A (5) 4.3 (ii),(iii) B (6) 4.3 (iii) C (7) 4.3 (iii) C V th p MOS V G 0 E F M O S E F E F (1) V G (2) V G 4.4 (3) V G (4) V G 4.4 (5) V G (6) V G 4.4 (7) (3) (5) V G

63 c n MOSFET I D G V DS I D = (i) (4.28) G W L t σ G = (ii) (4.29) σ q n µ σ = (iii) (4.30) Q t n q Q = (iv) (4.31) (4.30) (4.31) n σ = (v) (4.32) (4.29) (4.32) G = (vi) (4.33) (4.28) (4.33) I D = (vii) (4.34) Q C ox V G V DS V th C ox Q = (viii) (4.35) (4.34) (4.35) MOSFET I D = (ix) (4.36) V DS 0 V DS (4.36) I D 0 V DS (x) I D V DS (x)

64 62 c (4.36) V DS I D MOSFET ( ) 2 (x) I D = β 2 (1) (i) (x) (2) V th (3) (x) (4) (4.37) β (4.36) (5) (4.36) (6) (4.37) (4.37) 4.8 MOSFET 4.5 (a) (d) 4.6 (e) (h) 4.7 (i) (l) (1) p MOSFET (2) n MOSFET (3) p MOSFET (4) n MOSFET 0 I D (a) V G > 0 V G = 0 V G < 0 V DS 0 I D (b) V G >> 0 V G > 0 V DS V DS V G < 0 V G << 0 (c) 0 I D V DS V G > 0 V G = 0 V G < 0 (d) 0 I D (1) 0 V G I D I D 0 I D (e) V G 0 0 (f) (g) V G I D (h) V G (2) V G V DS n MOSFET

65 c (i) (j) (k) (k) (3) V DS V DS オフ (A) 領域 (B) 0 V th V G (1) 4.8 (A) (2) 4.8 (B) (3) (a) MOSFET V G I D 4.9 (a) (i) 4.9 (b) I D (iv) (i) (ii) (iii) 0 (a) V G (b) (1) MOSFET (2) MOSFET n p (3) 4.9 (a) (ii) (4) 4.9 (a) (iii) (5) 4.9 (a) (iv)

66 64 c FET 4.10 (a) 4.10 (b) 4.10 (c) (i) V 1 I 2 (iii) (ii) (a) V 2 0 I 2 V3 (b) DI 2 DV 1 V 1 I 2 I 4 0 (A) V 4 (c) (B) V (1) 4.10 (a) (i) (iii) (2) 4.10 (b) V 3 (3) 4.10 (b) I 2 V 1 (4) 4.10 (c) (A) (5) 4.10 (c) (B) (6) 4.10 (c) V 4 (7) 4.10 (c) I MOSFET β [S/V] (4.38) I D [ I D = β V G V th V DS 2 ] V DS (4.38) 2.0mA I D V DS = 3.0V 2.0mA I D V G = V 0 V V G V 0 2.0V V DS (1) MOSFET n p (2) MOSFET (3) MOSFET V th (4) V G V 0 I Dsat

67 c (5) V G V 0 V P (6) V 0 (7) (4.38) β (8) V G (5) V 0 V DS 1.0 V I D MOSFET I D [ma] V G = 0.3V V G = 0.0V V G = -0.2V V DS [V] 4.12 (1) MOSFET (2) V G 0.0 V (3) MOSFET V th (4) V G 0.50 V I Dsat 4.14 MOSFET [ I D = β V G V th V ] DS V 2 DS (4.39) n MOSFET β 5.0 ms/v V th 1.0 V MOSFET (1) MOSFET (2) V G 5.0 V V P (3) V G 5.0 V V DS 2.0 V I D (4) V G 5.0 V V DS 8.0 V I D (5) V G 5.1 V V DS 8.0 V I D (6) V G 5.0 V V DS 8.0 V

68 66 c g m g m = I D V G (4.40) VDS = n MOSFET (B) I D = β 2 (V G V th ) 2 (4.41) I D [ma] (A) (B) 20 V G = 2.5V V G = (C) 8 V G = 2.0V 4 V G = 1.5V V DS [V] 4.13 (1) (A) (2) (B) (3) V G 2.0 V V P (4) MOSFET V th (5) (4.41) β 2 (6) V G 1.75 V V DS 5.0 V I D 2 (7) (C) V G V DS MOSFET I D = W µcox L [ V G V th V DS 2 ] V DS (4.42) I D V G W µ C ox L 10 µm 2.0 µm 50 nm V th 1.0 V n MOSFET µ S m 2 /(V s) 1 1 µ n

69 c (1) MOSFET (2) C ox (3) V G 1.0 V V P (4) V G 1.0 V V DS 1.0 V I D (5) V G 1.0 V V DS 3.0 V I D (6) V G 3.0 V V P (7) V G 3.0 V V DS 3.0 V I D (8) V G 3.0 V V DS 5.0 V I D 4.17 MOSFET 4.14 I D [ma] V G = 3.5V V DS [V] MOSFET MOSFET [ I D = β V G V th V DS 2 ] V DS (4.43) (1) MOSFET V th 2 (2) MOSFET β 2 (3) V DS 3.0 V 4.0 V 5.0 V 6.0 V I D MOSFET MOSFET V DS 8.0 V ID (1) MOSFET n p (2) MOSFET (3) MOSFET (a) MOSFET I D MOSFET

70 68 c x x x 10-2 I D [A 1/2 ] V DS = 8.0V 0 V G [V] I [A 1/2 D ] V DS = 10.0V 3.0 x x x V G [V] (a) I Dsat 0 I D V G = 2.75V V 0 (b) V DS MOSFET V th β I D = β (V G V th ) 2 2 (4.44) g m g m = I D V G (4.45) (1) MOSFET V th (2) MOSFET β (3) V DS 10.0 V V G 1.75 V MOSFET g m (4) V G 2.75 V MOSFET 4.16 (b) V 0 (5) 4.16 (b) I Dsat 4.20 MOSFET 4.1 (1) MOSFET V th (2) MOSFET β (3) 4.1 (A) (4) 4.1 (B) (5) V G 2.50 V V DS 1.0 V I D

71 c V DS = 4.00 V V G [V] I D [ma] (A) (B) (6) V G 2.50 V V DS 3.0 V I D 4.21 V DS MOSFET I D V G [ I D = β V G V th V ] DS V 2 DS (4.46) β MOSFET g m g D g m = I D V G (4.47) g D = I D V DS (4.48) (1) (4.46) V th (2) (4.46) (3) (2) g m (4) (2) g D (5) V DS V P I D I Dsat V P (6) (5) I Dsat (7) V P V G V th (8) V P < V DS (9) V P < V DS (10) (9) I Dsat V P (11) (9) g m (4.46) (12) (11) g m V G, V th, I Dsat (13) (9) g D

72 70 c MOSFET 4.17 MOSFET I D = β 2 (V G V th ) 2 (4.49) R L I D V DS V DD V G (1) I D V DD V DS R L (2) V G V G0 V DS V DS0 V DS0 V G0 V DD R L β V th (3) V G V G0 + V G V DS V DS0 + V DS V DS V G0 V G V DD R L β V th V G V DS 4.23 MOSFET I D V G V DS I D = g m V G + g D V DS (4.50) g m g D MOSFET V G 1.40 V V DS 4.0 V I D 6.4 ma (1) V DS 4.0 V V G 1.41 V I D 7.1 ma g m (2) V G 1.40 V V DS 10.0 V I D 6.7 ma g D 4.24 MOSFET I D V DS I D 2 λ 2 82

73 c I D = β 2 (V G V th ) 2 (1 + λv DS ) (4.51) (1) g D g D = (2) g D I D I D V DS (4.52) 4.25 MOSFET 4.18 MOSFET I D = β 2 (V G V th ) 2 (4.53) V DD 30.0 V R D 750 Ω MOSFET V th 0.50 V I D V DS R D V G V DD (1) V DD V DS R D I D (2) V G 1.50 V I D 20 ma (4.53) β (3) V G 1.60 V I D (4) V G 1.50 V V DS (5) V G 1.60 V V DS (6) V G V DS V DS V DS V G 4.26 n MOSFET R D V DD 4.19 V DD 12.0 V V G 0.40 V I D 1.6 ma V DS 10.4 V V G 1.20 V I D 6.4 ma V DS 5.8 V MOSFET

74 72 c I D R D V DS V DD V G (1) 4.19 MOSFET (2) V DD R D I D V DS (3) R D (4) V th (5) β (6) V G 0.0 V V DS (a) V G V DD V DS V DS0 V DS I D V th β [ I D = β V G V th V DS 2 ] V DS (4.54) I D I D (B) V G = V DD R D V DD (A) V G (a) 回路図 0 V DS0 (b) 電圧電流特性 V DS (1) (4.54) g m g m = I D V G (4.55)

75 c (2) V G = V DD V DS = 0 g m VDS =0 (3) 4.20 (b) B MOSFET V DS = 0 B g m (4) 4.20 (b) (A) V DS V DD I D R D A (5) A B V DS V DS0 V DS V DD R D V DS V G (1) V DS I D R D V DD (2) V G V DD V DS0 MOSFET β [S/V] V th [ I D = β V G V th V ] DS V 2 DS (4.56) (3) V DD 5.0 V R D 8.0 kω β 5.0 ms/v V th 1.0 V (2) V DS0 2 (4) V G V DD I DS0 (3) 2 (5) (2) V DS0 V DD R L β (V DD V th ) (4.57) (3) V DS (a) V G V DS 4.22 (b)

76 74 c I D V DD V DD V DS V G V DS (a) 0 V 1 V 2 (b) V G MOSFET [ β V G V th V ] DS V I D = 2 DS, V DS < V G V th β (4.58) 2 (V G V th ) 2, V DS > V G V th β R L V th V DD V G (1) V G < V 1 V DS = V DD V 1 (2) V 1 < V G < V 2 MOSFET V DS (3) V 2 < V G MOSFET V 2 (4) V 2 < V G V DS 4.30 n p 4.31 FET 4.23 (a) 4.23 (b) FET G S (A) n p D I Dsat I D p (B) V DS 0 V Dsat (a) (b) (1) 4.23 (a) FET FET

77 c (2) 4.23 (a) FET (3) 4.23 (a) FET (A) (B) (4) 4.23 (a) FET V G (5) 4.23 (b) V DS V Dsat V DS I D I Dsat V DS V Dsat 4.23 (a) (6) FET V G I D 4.32 (1) (2) (3) (4) (5) n 0 E F qf M qc qf S E F E F (1) qϕ M qϕ S (2) n qϕ D (3) qϕ D 4.24 (4) n 4.24 (5) n (1) 4.25

78 76 c (2) (a) (b) (c) 4.26 (3) E F qc qf M qf B qf D E F (1) qϕ M (2) qχ (3) qϕ B (4) qϕ D (5) E F (6) E F

79 c (a) (c) n + p n p (a) n + n + n + p (b) n + n + n i (c) (1) FET 4.28 (a) (c) MOSFET, JFET, MESFET (2) GaAs FET (1) 3 FET (3) GaAs FET 1 (4) JFET MESFET (A) 4.37 (J) JFET (A) MESFET (B) FET (C) (D) (E) (F) (G) (H) (D) (I) (I) (J) pn MOS GaAs MESFET

80 78 c C 30 SiO µm 0.30 µm d ox t B d ox = Bt (5.1) 5.1 d ox t d ox 2 t kg/m 3 SiO kg/m 3 N A /mol 5.2

81 c Si N Si SiO 2 Si N SiO2 N Si = kg/m /mol N SiO2 = kg/m /mol Si /m 3 (5.2) = /m 3 (5.3) /m (5.4) /m3 5.3 (1) d R l w (2) ρ d ρ d ρ s [Ω/ ] 150 Ω/ 100 µm 10 µm 5.3 (1) R = ρ l dw = ρ d l w (5.5) d R l w (2) R = ρ s l 100 µm = 150 Ω/ = 1.5 kω (5.6) w 10 µm

82 80 c (1) 1 (2) (3) (4) (5) CZ (6) ULSI VLSI (7) (8) TTL (9) pn (10) (11) (12) MOSFET JFET CMOS (13) CMOS n MOSFET (14) CMOS (15) CMOS (16) CMOS pn (i) (iii) インゴット ウェーハ (i) 回路作製 チップ パッケージ (ii) (iii) 封入

83 c (1) (2) 1 (3) 5.3 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (8) (a) (e) 気体 Si Si 加熱 (1) SiH 4 + B 2 H 6 [ ] (2) O 2 + Ar [ ] (3) SiH 4 + AsH 3 [ ] (4) SiH 4 + NH 3 [ ] (5) H 2 O + Ar [ ] (6) SiH 4 [ ] (7) SiH 4 + PH 3 [ ] (8) SiH 4 + O 2 [ ]

84 82 c (a) Si (b) n-si, (c) p-si, (d) SiO 2, (e) Si 3 N 4, (a) (f) CVD イオン化した不純物 基板 O 2 金属 SiO 2 (a) (b) ヒーター シリコン基板 (c) 高融点金属 ドーパント 化学反応 Ar + (d) 基板 基板 (e) 基板 (f) (1) 3 (2) (3) (4) MOS (5) MOSFET

85 c (i) (ii) (iii) n + p n n + p + p + (vi) (iv) n + (v) (1) (i) (iii) (2) (iv) (3) (v) (4) (vi) (5) (iv) (6) (i) (ix) (1) (2) (3) (4) (5) (6) (7) (8) (9) MOS L 75 µm SiO 2 20 nm

86 84 c Si SiO 2 金属 (i) p (ii) n + p (iii) n + n p (iv) p + n n p + n n + p (v) n p + n n + n p + n n + p (vi) n p + p n n + n p + n p n + (vii) n + n p + p n n + n p + n p n + (viii) n n + p p + n + n n + n p p + n (ix) n + n p + p n + n p + n n n + p L p + n + n p + p

87 c ρ d ρ ρs [Ω/ ] d L 120 µm W 30 µm 160 Ω/ p n W L p p + n p + p d nmos 5.8 (i) (viii) (1) (2) (3) (4) Si 3 N 4 /SiO 2 (5) (6) (7) (8) 1

88 86 c Si SiO 2 Si 3 N 4 poly-si 金属 (i) p B (ii) p + p p + (iii) p + p p + B/As (iv) p + p p + (v) p + p p + As (vi) n + n + p + p p + (vii) n + n + p + p p + (viii) n + n + p + p p CMOS CMOS (1) p MOSFET (i) (ii) (2) (3) (iii)

89 c (i) (ii) p n + p + n p + p p + p n + p n + p (iii) CMOS 5.10 (i) (vii) (1) (2) (3) (4) n (5) (6) (7) (i) 1 (ii) 2 Si 3 N 4 SiO 2 3 Si 3 N 4 /SiO 2 4 (iii) 5 (iv) 1 6 (v) 2 3 (vi) 1 7 (vii) 8 9 CVD

90 88 c Si SiO 2 Si 3 N 4 poly-si 金属 P (i) n p B (ii) p p p p n p (iii) p n p p p p B (iv) p n p p p p (v) p n p p p p B/As (vi) n p n+ p+ p+ p p+ p n+ n+ p p (vii) p n+ p+ n p+ p p+ p n+ n+ p p

91 c λ max 1.12 ev 6.1 λ max = hc = J s m/s qe g µm (6.1) C 1.12 ev 6.2 V o 0.58 V I s 42 ma F F 0.82 P max 6.2 P max = F F V o I s = V 42 ma 20 mw (6.2) 6.3 (1) 650 nm (2) 650 nm

92 90 c (3) 650 nm 6.3 (1) (2) ν = c λ = m/s 650 nm Hz (6.3) E = hν = J s Hz = J (6.4) (3) J ev (6.5) C 6.4 GaAs 1.43 ev GaAs 6.4 λ = hc = J s m/s qe g = 869 nm (6.6) C 1.43 ev 6.5 l 300 µm 0.90 µm n 3.6 (1) (6.17) m (2) (6.17) m 1 λ 6.5

93 c (1) m = 2ln λ = µm µm = 2400 (6.7) (2) m 1 m + 1 = 2ln λ λ (6.8) 1 = 2ln λ λ 2ln λ (6.9) λ = λ nm (6.10) 2ln + λ 6.1 (1) (2) (3) (4) pin i (5) (6) p (7) (8) (9) CCD MOS (10) CCD (11) (12) (13) (14) (15) 1 (16) (17) 6.2 (1)

94 92 c (2) (3) (4) (1) (4) (1) (2) (3) (4) pn (A) (B) (C) (D) (E) (F) I I I I 0 (G) V 0 (H) V 0 (I) V 0 (J) V pn V I I 0 q k T ] I = I 0 [exp ( qv kt ) 1 (6.11) (6.11) I ph 11 (6.12)

95 c I sh (6.13) 10 I (1) 1 6 p n (2) 7 10 A J (3) 11 (4) CdS 2.50 ev CdS 6.6 (1) λ ν c (2) 1 E p [J] ν h (3) 1 E p [J] λ c h (4) E g [ev] λ max q h c µm (1) 1.31 µm (2) 1.31 µm 1 (3) 1.31 µm pn (1) (2) (A) (B) (3) (A) (B)

96 94 c A I 0 V B λ I ph 6.4 q h c λ [m] E g [ev] P [W] 光電流 I ph I max l max 波長 l (1) λ (2) P [W] λ [ [W] [J/s] (3) λ max (4) λ < λ max I ph λ (5) I max 6.11 LED 940 nm 10 mw LED (1) 940 nm 1 (2) LED 1 [ [W]

97 c [J/s] (3) 100% η LED η 95 % 1 (4) pn 1 1 pn 6.12 pn p n I I sh 0 V op V (1) 6.5 V op (2) 6.5 I sh (3) pn I = I 0 [ ( ) ] qv exp 1 kt (6.14) 6.5 (4) V V op I sh G 0 G 0 J G 0 I = J G 0 V (5) R 20 ma I I sh 25 ma V op 0.56 V

98 96 c V I [ ( ) ] qv I = I sh I 0 exp 1 kt (6.15) I R V (1) (6.15) I 0 (2) V (3) R R 25 Ω V SW V 0.56 V SW V 0.50 V ( ) ] qv I = I sh I 0 [exp 1 (6.16) kt SW V R (1) SW (2) I sh q k T I 0 V op (3) q k T I 0 V op I sh (4) (6.16) I 0 (5) I sh V op V I sh 250 ma R R 100 mw (1) F F

99 c R V (2) 200 ma ( ) ] qv I = I sh I 0 [exp 1 (6.17) kt 6.17 V I V [V] I [ma] (1) V op 3 (2) I sh 3 (3) P max 3 (4) F F CCD 6.9 CCD (1) 6.9 A A

100 98 c V 3 V 2 V 1 A A' V 1 V 2 V 3 (a) (b) (c) (d) (e) (f) (a) (2) CCD 6.10 (a) (f) V 1 V 2 V (a) (f) (3) CCD (4) CCD (5) CCD DRAM CCD X, Y, Z A, B, C In 0.2 Ga 0.8 N 2.67 ev In 0.2 Ga 0.8 N

101 c V 1 A V 1 V 2 V 3 V 2 B V1 V 2 V 3 V 3 V C V 3 V 2 1 X Y Z λ 600 nm E g (LED) (LD) LED LD 6.24 (LD) (A) (J)

102 100 c (A) (B) (C) (D) (D) (E) (D) (F) (F) 1 (B) (B) (G) (H) (I) (J) MOS 禁制帯 p AlGaAs p GaAs n AlGaAs (1) (2) (1) (3) (2) 6.26 (A) (B) (A) (B) (C) (D) (C) (D)

103 c DRAM a b C C S (1) C S V S a V DD 2 a V a C

104 102 c (2) C S 100 ff C/C S 10 V S V DD (3.3 V) (1) V 7.2 (1) C S V S + C V DD 2 = (C S + C) V (7.1) C S V S + 1 V = 2 CV DD C S + C (7.2) (2) (1) V S = V DD C S V = 1 + C 2C S 1 + C V DD = 6 11 C S 3.3 V = 1.8 V (7.3) MeV α DRAM V DRAM C S 7.3 α C = C (7.4) 0.50 V C S = C 0.50 V = F 0.45 pf (7.5) DRAM C Sp

105 c DRAM C St C St /C Sp k DRAM a a a a C sp ka C st C OX C Sp = C OX a 2 (7.6) C St = C OX ( a ka 2) (7.7) C St C Sp = 4k + 1 (7.8) 7.5 EPROM SiO ev 7.5 λ max = hc = J s m/s qe g = 415 nm (7.9) C 3.0 ev 7.1

106 104 c (1) SRAM (2) DRAM (3) DRAM SRAM (4) DRAM (5) (6) ROM (7) ROM (8) EPROM (9) EEPROM (10) ROM (11) (12) (13) 7.2 (1) (8) (1) (2) (1) (3) (1) (4) (5) (4) (6) (4) (7) (4) (8) (7) EEPROM ROM SRAM DRAM ROM EPROM RAM CMOS NOT CMOS SRAM 6 NOT V DD V DD

107 c A I V DD A 2 B C 3 MOSFET Q 1 MOSFET Q 2 4 Q 3 5 Q 4 6 A B 7 C 8 A V DD Q 1 Q 3 Q 2 Q 4 B C (A) (B) SRAM (C) (D) (E) (F) (G) (H) (I) ROM V DD (1) (2) (3) A (4) B C (5) MOSFET Q 1 MOSFET Q 2 Q 4 (6) (5) B C MOSFET (A) (Q)

108 106 c A V DD Q 1 Q 3 Q 2 Q 4 B C DRAM 1 DRAM DRAM α DRAM MOS DRAM V DD a b C C S (1) 7.6 DRAM a b

109 c (2) DRAM 7.6 a V DD 2 (3) C S V S a V V a C (4) V S V DD 3.3 V C C S 10 (3) V (5) V S 0.15 V V DD 3.3 V C C S 14 (3) V (6) DRAM α (7) DRAM α C S α C S 100 ff (8) DRAM 7.7 (a) (c) n + n + p (a) n + n + p (b) n + n + p (c) (9) 7.8 DRAM (1) DRAM V C S 100 ff 25 pa (2) DRAM (1) 7.9 DRAM 7.10 DRAM

110 108 c ROM W V B1 V B2 FET M 1 FET R L FET M 2 R D V DD V DD M 1 W M 2 B 1 B ROM EPROM SiO 2 SiO 2 n + p n + (A) (B) (1) (A) (B) (2) EPROM (A) (B) 7.9 (A) (B) (C) (J) EPROM (A) (C) (D) (B) (B) (E) (A) MOSFET (F) (A) (B) (E) (G)

111 c (B) (H) (I) (B) (J) α (3) EPROM (a) V G Q F Q I 7.10 (b) 7.10 (b) C U C D C U V U C D V D C U Q U C D Q D V G 制御ゲート フローティング ゲート C U V U Q F n + C D V D n + n + Q I (a) (b) (1) V G V U V D (2) V U Q U C U (3) V D Q D C D (4) Q U Q D Q F (5) Q D Q I (6) Q I V G C U C D Q F (7) Q F 0 Q I Q I0 Q F 0 Q I Q I0 V G + V G V G V G C U C D Q F (8) V G 3.3 V C U 2.6 ff C D 1.2 ff (7) V 0.50 V Q F (9) (8)

112 110 c EPROM Si SiO ev 7.16 EEPROM (A) (F) 7.11 EEPROM EEPROM (A) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E) (A) (A) (F) (A) (B) n + n + SiO EEPROM (1) EEPROM (2) 7.12 EEPROM n + n + SiO (3) 7.12 EEPROM (4) EEPROM 7.12 MNOS MNOS

113 c (5) MNOS EEPROM (a) (n) (a) FET V SS B (b) FET 3 FET FET 7 8 W W V SS B B V SS B V SS B (a) (b) (a) (b) (c) (d) NAND (e) (f) NOR (g) (h) (i) (j) NOR (k) (l) NAND (m) (n)

114 112 c HEMT (1) (2) (3) HEMT (4)

115 c (1) (2) (3) 2 (4) (8.5) SIT 83 (4.16) (4.17) SIT g m g D 8.4 ( ) g m = d I 0 exp qη ( ) V G + V DS µ = qη dv G kt kt I 0 exp qη V G + V DS µ = qηi D kt kt g D = d dv DS (8.1) ( ) I 0 exp qη ( ) V G + V DS µ = qη kt µkt I 0 exp qη V G + V DS µ = qηi D kt µkt (8.2) 8.5 v sat 10 5 m/s f 50 GHz l (8.6) l v sat 2f = 105 m/s = 1 µm (8.3) 2 50 GHz

116 114 c β 1 β 2 C B b 1 b 2 E I C2 C I B2 B b 1 b 2 I C1 I E1 = I B2 E 8.2 I C1 = β 1 I B1 (8.4) I C2 = β 2 I B2 (8.5) I B2 = I E1 = I C1 + I B1 = (β 1 + 1) I B1 (8.6) I C1 + I C2 = β 1 I B1 + β 2 I B2 = β 1 I B1 + β 2 (β 1 + 1) I B1 = (β 1 β 2 + β 1 + β 2 ) I B1 (8.7) I C1 + I C2 I B1 = β 1 β 2 + β 1 + β 2 (8.8) 8.7

117 c p r B1 2 p r B2 V P I E V E V BB I E E p B 1 n B 2 E B 2 B 1 0 V P V E (a) 構造 (b) 図記号 (c) 特性 8.7 I E 1 p V E V E = r B1V BB r B1 + r B2 (8.9) V E pn V E = V E V E V P V P = r B1V BB r B1 + r B2 (8.10) v i 1 i 2 v i 1 i 2 0 v G v G

118 116 c l 2.0 cm w 2.0 mm d 0.50 mm V x 25 mv x I x 1.0 ma 0.20 T B z V y 25 µv (1) (2) (3) (4) 9.1 (1) R H = wv y 2.0 mm ( 25 µv) = B z I x 0.20 T 1.0 ma = m 3 /C (9.1) (2) R H < 0 n n = (3) x R x 1 q R H = C m 3 /C = /m 3 (9.2) R x = V x 25 mv = = 25 Ω (9.3) I x 1.0 ma

119 c (4) σ σ = l R x wd = 2.0 cm 25 Ω 2.0 mm 0.50 mm = S/m (9.4) σ = qµn = µ R H (9.5) µ = σ R H = S/m m 3 /C = 0.20 m 2 /(V s) (9.6) 9.2 N D /m 3 N A /m 3 pn 300 K ϕ D (9.40) ϕ D = kt q ln N DN A n i 2 = J/K 300 K C ln /m m 3 ( /m 3) 2 = 1.05 V (9.7) n n (1) N D (2) 190 (9.42) E g (3) (4) 190 (9.41) E D [ev] (5) 9.3

120 118 c T [K] n [/m 3 ] (1) T 273 K 373 K N D = n = /m 3 (9.8) (2) T 800 K 900 K ( n = N 0 exp qe ) g 2kT (9.9) ( = N 0 exp qe ) g 1600k ( = N 0 exp qe ) g 1800k ( ( qeg 1 = exp k )) 1600 (9.10) (9.11) (9.12) (3) (9.9) N 0 N 0 = n exp k E g = q ( ) ln = 1.20 ev (9.13) ( ) ( qeg = /m 3 19 ) C 1.20 ev exp 2kT J/K 800 K = /m 3 (9.14) ( N 0 exp qe ) g = N D (9.15) 2kT

121 c qe g T = 2k ln N = 714 K (9.16) 0 N D (4) T 30 K 40 K ( n = N F exp qe ) D 2kT (9.17) (2) (5) (9.17) N F N F = n exp k E D = q ( ) ln = ev = 45 mev (9.18) ( ) ( qed = /m 3 19 ) C 45 mev exp 2kT J/K 30 K = /m 3 (9.19) (3) qe D T = 2k ln N = 57.6 K (9.20) F N D K kg (9.51) τ = µm q = 0.15 m2 /(V s) kg C = s (9.21) 9.5 S L x 196

122 120 c (9.71) G p n t = G n n 0 τ n (9.22) p t = G p p 0 τ p (9.23) (1) n(= n n 0 ) (2) σ (3) V I L (4) Q (5) I L Q g (6) t n (7) t p (8) g τ n τ p t n t p (9) t 0 t > 0 σ(t) 9.5 (1) 0 n t = 0 (2) p (1) G n n 0 = 0 τ n (9.24) n = n n 0 = Gτ n (9.25) p = Gτ p (9.26) σ σ = q ( µ n n + µ p p ) = qg ( µ n τ n + µ p τ p ) (9.27) (3) R R = 1 σ l S (9.28)

123 c I I = V R = σsv l (9.29) I L = σsv l = qg ( µ n τ n + µ p τ p ) V S l (9.30) (4) Sl G (5) q Q = qgsl (9.31) g = I L Q = qg ( ) ( ) µn τ n + µ p τ p V S 1 l qgsl = µn τ n + µ p τ p V l 2 (9.32) (6) v n v n = µ n V l (9.33) t n t n = l = l2 v n µ n V (9.34) (7) (6) t p = l = l2 v p µ p V (9.35) (8) g = ( µn τ n + µ p τ p ) V l 2 = µ nτ n V l 2 + µ pτ p V l 2 = τ n t n + τ p t p (9.36) (9) t > 0 n d( n) dt = d(n n 0) dt = dn dt = n n 0 = n (9.37) τ n τ n t = 0 n = Gτ n ( n = Gτ n exp t ) τ n (9.38)

124 122 c t > 0 p ( p = Gτ p exp t ) τ p σ(t) σ(t) = q ( µ n n + µ p p ) [ ( = qg µ n τ n exp t ) ( + µ p τ p exp t )] τ n τ p (9.39) (9.40) 9.6 (1) K 1 K 2 ( x n(x) = K 1 exp L n 196 (9.73) (2) n(0) = N 0 n(w ) = 0 n(x) ) ) + K 2 exp ( xln + n 0 (9.41) (3) (2) npn [ n(x) N 0 1 x ] W B (9.42) 1 x 1 exp x 1 + x 9.6 (1) [ ( ) ) ] x K 1 exp + K 2 exp ( xln + n 0 = K ( ) 1 x exp K ) 2 exp ( xln x L n L n L n L n (9.43) [ ( ) K1 x exp K )] 2 exp ( xln = K 1 x L n L n L n ( x 2 L exp n L n = 1 L n 2 [ K 1 exp ) + K 2 ( x L n ) 2 ( L exp xln n ) + K 2 exp ( xln )] = 1 L n 2 (n n 0) (9.44)

125 c L n 2 = D n τ n (9.45) D n 2 n x 2 n n 0 τ n = 0 (9.46) (2) n(0) = K 1 + K 2 + n 0 = N 0 (9.47) ( ) ) W n(w ) = K 1 exp + K 2 exp ( WLn + n 0 = 0 (9.48) L n K 1 K 2 ) (N 0 n 0 ) exp ( W + n Ln 0 K 1 = ( ) ) (9.49) exp W exp ( W Ln Ln ( ) (N 0 n 0 ) exp W + n Ln 0 K 2 = ( ) ) (9.50) exp W exp ( W Ln Ln ) (N 0 n 0 ) exp ( W + n ( ) Ln 0 x n(x) = ( ) ) exp exp W exp ( W L n Ln Ln ( ) (N 0 n 0 ) exp W + n ) Ln 0 + ( ) ) exp ( exp W exp ( xln + n 0 W Ln Ln = (N 0 n 0 ) exp [(W x) /L n] exp [(x W /L n ] exp ( ) ( ) W/L n exp W/Ln [1 exp ( ) ( ) ] (9.51) x/l n exp x/ln + n 0 exp ( W/L n ) exp ( W/Ln ) (3) W W B x < W L n ( ) W exp 1 + W ), exp ( WLn 1 W (9.52) L n L n L n ( ) W x exp 1 + W x ( ) x W, exp 1 + x W (9.53) L n L n L n L n

126 124 c n(x) (N 0 n 0 ) = (N 0 n 0 ) 1 + W x L n 1 + W L n 2(W x) L n 2W [ = (N 0 n 0 ) 1 x W L n + n 0 ( ) 1 + x W L n ) + n 0 (1 W Ln [ 1 ] + n 0 [ 1 x W 2x L n 2W L n ] ] = N 0 [ 1 x W ) 1 + x L n (1 x Ln 1 ) 1 + W L n (1 W Ln ] (9.54) 9.1 N D n n T 9.1 1/T log n log n (A) (B) (C) /T (1) (A) (C) (2) (A) (C) (3) (A) (4) (A) exp( qe g/2kt ) E g [ev] q k (A) E g (5) (B) (6) (B) (7) (C)

127 c n p E c E v E F ( n = N c exp E ) c E F kt ( p = N v exp E ) F E v kt (9.55) (9.56) k T N c N v (1) n i E g (2) E Fi (3) N D n E Fn (4) N A p E Fp (5) (3) (4) pn V D N D N A n i 9.3 N D n n p n p N D n = [i] (9.57) p n n i pn = [ii] (9.58) n [iii] (9.59) n n = [iv] (9.60) N D n i 1 n [v] (9.61) N D n i 2 n [vi] (9.62) 1 2

128 126 c pn l x [i] [xiii] pn Q(x) x < 0 N D n x > 0 N A p Q(x) = { [i] ( ln < x < 0) [ii] (0 < x < l p ) (9.63) l n n l p p ϕ(x) q ε d 2 ϕ dx 2 = Q ε { [iii] ( ln < x < 0) [iv] (0 < x < l p) (9.64) (9.64) x E = dϕ dx x = l n x = l p 0 { dϕ [v] ( ln dx = < x < 0) [vi] (0 < x < l p ) (9.65) E x = 0 (9.65) l n l p = [vii] (9.66) (9.65) x x = 0 ϕ = 0 ϕ(x) = { [viii] ( ln < x < 0) [ix] (0 < x < l p ) (9.67) pn V D V D = ϕ( l n) ϕ(l p) = [x] (9.68) (9.66) l n = [xi] (9.69) l p = [xii] (9.70) l l = [xiii] (9.71) V D = kt q ln N AN D n i 2 (9.72)

129 c l w d x V x I x z B z y V y z y x V y - V + B z w d l A I x V x (1) (2) [i] [ix] R H n x v x (< 0) B y F B = [i] y y y V y (< 0) V y E y E y = [ii] F y F B [iii] V y V y = [iv] x J x q(> 0) n v x J x = [v] J x I x J x = [vi] [v] [vi] I x = [vii] [iv] [vii] v x V y = [viii] R H = 1 qn R H = [ix] I x B V y R H n σ q n µ σ = [x] σ R H µ = [xi] µ (3) R H (4) n p

130 128 c (5) σ (6) µ 9.6 [i] [vii] m q(> 0) E v [i] 3 4 τ τ mv E [ii] [iii] v d [iv] n J q, n, v d [v] v d [vi] J = σe σ [vii] 9.7 R H n µ n p µ p q V y 9.2 l w d x V x I x z B z (1) x E x V x l w d (2) y E y V y l w d (3) I x q l w d n p µ n µ p V x (4) R H R H = wv y B z I x (9.73) R H q E x E y B z n p µ n µ p (5) x (6) y q E x E y B z µ n (7) x (8) y q E x E y B z µ n (9) m dv dt = F m τ v (9.74) 3 4

131 c µ τ µ = qτ m (9.75) 6 F v q µ F (10) (6) (8) (9) y v yn v yp (11) 7 (10) y (12) y y 0 (11) E y (13) (4) (12) R H q n p µ n µ p 9.8 (1) [i] [viii] x x x + x p x yz D p p/ x [i] x x + x [ii] [i] [ii] x x + x [iii] E µ p [iv] E [v] p 0 τ p [vi] [vii] (9.76) n [viii] (9.77) (9.76) (9.77) (2) (9.45) (9.51) 7 14 (1.25)

132 130 c (3) p(= p p 0 ) t p t=0 = p 0 p (4) 8 0 (5) p x p x=0 = p 0 p x= = 0 0 p D p τ p = L p 9 (6) (7) V p q k T ( ) qv p = p 0 exp kt (9.78) E V = Ex (6) D p µ p npn V N B /m 3 W B 0.50 µm (1) n B0 (2) V BE n B ( ) qvbe n B0 exp kt (9.79) V n B (3) (4) D Bn m 3 /s (5) (6) 20 µm 30 µm 8 9 L p 10

133 c A K q C ε F/m k J/K h J s c m/s Si N Si /m 3 Si n i /m 3 Si E g 1.12 ev 300 K) Si µ n 0.15 m 2 /(V s) Si µ p m 2 /(V s) Si ε r 11.8 SiO 2 ε ox 3.95

134 132 c 2019 B 1.1. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 1.2. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) [1] 4, [2], [3] 5, [4], [5], [6], [7], [8], [9] n, [10] 3, [11], [12] [13] p, [14], [15] (a) (d) (b) (c) 1.7. (b) n (c) p (a) 1.8. (c) (a) (b) 1.9. (i) vµe (ii) nvs (iii) qn (iv) qnvs (v) qnµes (vi) V l (vii) qnµs l (viii) V I (ix) l σs (x) qnµ (1) ρl/s (2) V/l (3) I/S (4) E = ρj (5) Snv (6) qsnv (7) qnv (8) µe (9) ρ = 1/(qµn) µ n = cm 2 /(V s) µ p = cm 2 /(V s) V (1) J (2) 25.9 mev (1) /m 3 (2) (3) S/m (4) Ω m (1) q ( µ n + µ p ) ni (2) 2q µ n µ p n i (3) S/m (4) S/m (1) 12 kv/m (2) 1.9 (3) 1.8 km/s (4) 0.60 km/s (1) m/s (2) 50 V (1) (2) /m 3 (3) /m 3 (4) S/m (5) Ω m

135 1.19. (1) 16 S/m (2) /m 3 c (1) n (2) S/m (3) /m 3 (4) /m (1) m 2 /(V s) (2) 0.31 Ω m (3) 3.2 S/m (4) /m (1) 20 kω (2) 1.85 ks/m (3) 0.46 m 2 /(V s) (4) 23 km/s m 2 /(V s) (1) 0.45 m 2 /(V s) (2) /m 3 (3) 0.05 m 2 /(V s) 2.1. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 2.2. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 2.3. (1) A: K: (2) K (3) (4) (4) 2.3 (a) 2.4. (1) [1] [2] p [3] n [4] [5] [6] [7] (2) (3) C 2.5. (1) 2.7 (a) (2) (3) (4) 2.7 (b) 2.6. (1) p (2) (3) 2.7 (b) (4) (1) p (b) (2) p (3) (4) (5) (6) 2.8. (1) 1.62 (2) (1) V = RI + V D (3) V D = 0.80 V I = 20 ma (1) 24 mw (2) 3.4 pa (3) 1.42 V (1) 25.0 µa (2) V (3) 4.62 V (4) ma (5) ma (6) 18.9 kω (1) 1.47 (2) V (1) A (2) A (3) 17 ma (4) A (5) 0.55 ma (1) V 0 = V R 0 = 2.00 Ω (2) A (3) 4.70 ma V (1) (2) (3) (4) (4) /m 3 (5) /m 3 (6) /m 3 (7) /m (1) J (x) = q D [ ( ) ] p qv ( L p 0 exp 1 exp x ) (2) q D [ ( ) ] p qv kt L L p 0 exp 1 (3) kt

136 134 c 2019 B [1] [2] [3] [4] [5] (1) V V (2) 3.45 µm 49.3 nm (2) C 0 = 45 pf ϕ D = 0.64 V (1) F/m 2 (2) 0.81 V (3) 5.7 pf (4) 1.1 V (5) 0.15 µm (1) 2.34 V (2) /m 3 (3) 0.20 µm (4) m [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] (1) ) (2) (3) R L E (4) V B (5) E (1 + RRL V B R + R L 3.1. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 3.2. (1) (2) α (3) β (4) (5) (6) (7) (8) (9) 3.3. (1) pnp (2) npn (3) (iii) (vi) (4) (ii) (iv) (5) (i) (v) 3.4. (1) (a) n (b) p (c) (d) (e) (f) (g) (h) (i) (j) (2) I E = I B + I C 3.5. (1) 3.7 (a) (2) 3.7 (b) (3) 3.41 (a) 3.7. (1) (2) E (1) (1) (2) 2.0 ma (3) 15 µa (1) 3.9 (2) 300 (3) (4) (5) 1.6 µm (1) (2) (3) 3.0 ma (4) 8.0 µa (1) V CE = V CC R C I C (2) I C = βi B (3) I C = β I B (4) V CE = R C I C (5) V CE = R C β I B (6) R Cβ h ie (1)(a) 5.88 µa (b) 1.18 ma (c) 4.12 V (2)(a) ma (b) 1.00 µa (c) V (3)(a) 1.98 ma (b) 9.90 µa (c) V (1) (2) 3.7 (a) (3) V CE = V CC R C I C (4) V (5) 1.0 ma [ (6) ( 8.0 ) V (7) ] 2.5 mv (8) 0.10 ma (9) 0.20 V (10) 80 [ ] (1) I = I 0 exp qvd kt 1 (2) V = ri + V D (3) V = ri + kt q ln I I (4) r D = r + kt qi (5) r i = r B + kt qi B b (1) v BE = h ie i B +h re v CE (2) i C = h fe i B +h oe v CE (3) r E = h re /h oe, r C = (h fe +1)/h oe,

137 c r B = (h ie h oe h re (h fe + 1))/h oe, α = h fe /(h fe + 1) (4) r B = 475 Ω, r E = 25 Ω, r C = 20 MΩ, α = (1) V (2) 6.00 ma (3) V (4) 5.88 ma (1) v BE = h ie i B (2) i C = h fe i B (3) v CE = R L i C (4) h fer L h ie (1) kt qi B (2) 2.6 kω (1) I C0 V A (2) 30 µs (1) v BE = r π i B (2) i C = g m v BE + v CE [ r o 1 + V CE V A (4) h ie = kt, h re = 0, h fe = β 0 qi B (1) 99 (2) 1.0 MHz (3) 21 (3) h ie = r π, h re = 0, h fe = g m r π, h oe = 1 ] r o, h oe = β 0I B V A (1) T (2) π (3) (4) 5.0 pf (1) 2.0 ma (2) 10 µa (1) 10 ma (1) iii (2) i V CC βr L (1) 3.0 ma (2) 20 µa (3) 0.60 V (4) 0.57 MΩ (1) 1.18 ma (2) 7.65 V (3) 1.73 ma (4) 6.54 V (5) (1)(a) 12.0 µa (b) 2.40 ma (c) 4.79 V (d) 5.39 V (2)(a) V (b) 2.80 ma (c) 5.60 V (d) 6.20 V (3) r π r π g m r π (1) r B + (2) (3) g m v B 1 + j ωc π r π r B + r π + j ωc π r B r E (4) (5) g m r π π 1 + j ωc π r π 1 (6) (7) g m C π r π C π 4.1. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) 4.2. (1) (Field Effect Transistor) (2) (3) (4) (5) (6) 4.3. (5) 4.4. (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) 4.5. (1) (2) (3) (4) (5) (6) (7) 4.6. (1) (2) 4.4 (b) (3) (4) 4.5 (c) (5) (6) 4.5 (d) (7) 4.7. (1-i) GV DS, (1-ii) σw t L, (1-iii) qµn, (1-iv) qnt, (1-v) µq t, (1-vi) µqw L, (1-vii)

MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated

MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated 1 -- 7 6 2011 11 1 6-1 MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated Injection Logic 6-3 CMOS CMOS NAND NOR CMOS 6-4 6-5 6-1 6-2 CMOS 6-3 6-4 6-5 c 2011 1/(33)

More information

jse2000.dvi

jse2000.dvi pn 1 2 1 1947 1 (800MHz) (12GHz) (CPUDSP ) 1: MOS (MOSFET) CCD MOSFET MES (MESFET) (HBT) (HEMT) GTO MOSFET (IGBT) (SIT) pn { 3 3 3 pn 2 pn pn 1 2 sirafuji@dj.kit.ac.jp yoshimot@dj.kit.ac.jp 1 3 3.1 III

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

13 2 9

13 2 9 13 9 1 1.1 MOS ASIC 1.1..3.4.5.6.7 3 p 3.1 p 3. 4 MOS 4.1 MOS 4. p MOS 4.3 5 CMOS NAND NOR 5.1 5. CMOS 5.3 CMOS NAND 5.4 CMOS NOR 5.5 .1.1 伝導帯 E C 禁制帯 E g E g E v 価電子帯 図.1 半導体のエネルギー帯. 5 4 伝導帯 E C 伝導電子

More information

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H 6 ( ) 218 1 28 4.2.6 4.1 u(t) w(t) K w(t) = Ku(t τ) (4.1) τ Ξ(iω) = exp[ α(ω) iβ(ω)] (4.11) (4.1) exp[ α(ω) iβ(ω)] = K exp( iωτ) (4.12) α(ω) = ln(k), β(ω) = ωτ (4.13) dϕ/dω f T 4.3 ( ) OP-amp Nyquist Hurwitz

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Acrobat Distiller, Job 2

Acrobat Distiller, Job 2 2 3 4 5 Eg φm s M f 2 qv ( q qφ ) = qφ qχ + + qφ 0 0 = 6 p p ( Ei E f ) kt = n e i Q SC = qn W A n p ( E f Ei ) kt = n e i 7 8 2 d φ( x) qn = A 2 dx ε ε 0 s φ qn s 2ε ε A ( x) = ( x W ) 2 0 E s A 2 EOX

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

untitled

untitled MOSFET 17 1 MOSFET.1 MOS.1.1 MOS.1. MOS.1.3 MOS 4.1.4 8.1.5 9. MOSFET..1 1.. 13..3 18..4 18..5 0..6 1.3 MOSFET.3.1.3. Poon & Yau 3.3.3 LDD MOSFET 5 3.1 3.1.1 6 3.1. 6 3. p MOSFET 3..1 8 3.. 31 3..3 36

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe) 1001 µµ 1.... 2 2.... 7 3.... 9 4. InGaAs/GaAs PIN... 10 5. InGaAs... 17 6. PbS/PbSe... 18 7. InSb... 22 8. InAs/InSb... 23 9. MCT (HgCdTe)... 25 10.... 28 11.... 29 12. (Si)... 30 13.... 33 14.... 37

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

MOS FET c /(17)

MOS FET c /(17) 1 -- 7 1 2008 9 MOS FT 1-1 1-2 1-3 1-4 c 2011 1/(17) 1 -- 7 -- 1 1--1 2008 9 1 1 1 1(a) VVS: Voltage ontrolled Voltage Source v in µ µ µ 1 µ 1 vin 1 + - v in 2 2 1 1 (a) VVS( ) (b) S( ) i in i in 2 2 1

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

™…

™… i 1 1 1 2 3 5 5 6 7 9 10 11 13 13 14 15 15 16 17 18 20 20 20 21 22 ii CONTENTS 23 24 26 27 2 31 31 32 32 33 34 37 37 38 39 39 40 42 42 43 44 45 48 50 51 51 iii 54 57 58 60 60 62 64 64 67 69 70 iv 70 71

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

電子回路I_4.ppt

電子回路I_4.ppt 電子回路 Ⅰ 第 4 回 電子回路 Ⅰ 5 1 講義内容 1. 半導体素子 ( ダイオードとトランジスタ ) 2. 基本回路 3. 増幅回路 電界効果トランジスタ (FET) 基本構造 基本動作動作原理 静特性 電子回路 Ⅰ 5 2 半導体素子 ( ダイオードとトランジスタ ) ダイオード (2 端子素子 ) トランジスタ (3 端子素子 ) バイポーラトランジスタ (Biolar) 電界効果トランジスタ

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63> スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

untitled

untitled SPring-83 22(2010)730 MBE PLD MBE 0.002% PLD p Π n p n PF PF = S 2 S =V/ΔT V: [V] ΔT: [K] S[V/K], T[K], σ[s/m] TeBi 2 Te 3 (Bi,Se) 2 Te 3 (n-type) Ar KrF Ar gas 2. A. 3. c-si a-si InP GaAs 1g (μm) PV(W/g

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

K 1 mk(

K 1 mk( R&D ATN K 1 mk(0.01 0.05 = ( ) (ITS-90)-59.3467 961.78 (T.J.Seebeck) A(+ T 1 I T 0 B - T 1 T 0 E (Thermoelectromotive force) AB =d E(AB) /dt=a+bt----------------- E(AB) T1 = = + + E( AB) α AB a b ( T0

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

7 i 7 1 2 3 4 5 6 ii 7 8 9 10 11 1 12 13 14 iii.......................................... iv................................................ 21... 1 v 3 6 7 3 vi vii viii ix x xi xii xiii xiv xv 26 27

More information

9 i 9 1 2 3 4 5 6 ii 7 8 9 10 11 12 .......................................... iii ... 1... 1........................................ 9 iv... v 3 8 9 3 vi vii viii ix x xi xii xiii xiv 34 35 22 1 2 1

More information

i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi 2 3 4 5 6 7 $ 8 9 10 11 12 13 14 15 16 17 $ $ $ 18 19 $ 20 21 22 23 24 25 26 27 $$ 28 29 30 31 $ $ $ 32 33 34 $ 35 $ 36 $ 37 38 39 40 $ 41 42 43 44

More information

C: PC H19 A5 2.BUN Ohm s law

C: PC H19 A5 2.BUN Ohm s law C: PC H19 A5 2.BUN 19 8 6 3 19 3.1........................... 19 3.2 Ohm s law.................... 21 3.3.......................... 24 4 26 4.1................................. 26 4.2.................................

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Microsoft PowerPoint - semi_ppt07.ppt [互換モード]

Microsoft PowerPoint - semi_ppt07.ppt [互換モード] 1 MOSFETの動作原理 しきい電圧 (V TH ) と制御 E 型とD 型 0 次近似によるドレイン電流解析 2 電子のエネルギーバンド図での考察 理想 MOS 構造の仮定 : シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない 金属 (M) 酸化膜 (O) シリコン (S) 電子エ金属 酸化膜 シリコン (M) (O) (S) フラットバンド ネルギー熱平衡で 伝導帯 E

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

Microsoft PowerPoint - semi_ppt07.ppt

Microsoft PowerPoint - semi_ppt07.ppt 半導体工学第 9 回目 / OKM 1 MOSFET の動作原理 しきい電圧 (V( TH) と制御 E 型と D 型 0 次近似によるドレイン電流解析 半導体工学第 9 回目 / OKM 2 電子のエネルギーバンド図での考察 金属 (M) 酸化膜 (O) シリコン (S) 熱平衡でフラットバンド 伝導帯 E c 電子エネルギ シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1998 v C O N T E N T S PART 1 vi vii viii ix x xi xii PART 2 xiii PART 3 xiv P A R T 1 3 1 2 PART 3 4 2 1 1 2 4 3 PART 1 4 5 5 6 PART 1 7 8 PART 1 9 1 2 3 1 2 3 10 PART 1 1 2

More information

ii 4 5 RLC 2 LC LC OTA, FDNR 6

ii 4 5 RLC 2 LC LC OTA, FDNR 6 There is nothing more practical than a good theory. James Clerk Maxwell ( 1831 1879) 1.1 1.1 2 3 MOSFET 3 MOSFET MOS CMOS CMOS CMOS ii 4 5 RLC 2 LC LC OTA, FDNR 6 iii 1 (90 30 ) 6 5 1 1 2013 3 1. 1.1...

More information