IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

Size: px
Start display at page:

Download "IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2"

Transcription

1 IA September 5, 7 I [, b], f x I < < < m b I prtition S, f x w I k I k k k S, f x I k I k [ k, k ] I I I m I k I j m inf f x w I k x I k k m k sup f x w I k x I k inf f x w I S, f x S, f x sup f x w I x I x I I k I k I k inf x inf f x x I k x I k inf x inf x I k x I k f x w I k + w I k w I k inf f x w I k inf f x x I k x I k w I k + inf x I k f x w I k S, f S, f S, f S, f,,, S, f S, f S n, f S n, f S, f S, f

2 lim S, f f x b I f x I lower integrl lim S, f f x f x I upper integrl b I f x f x f x f x I I f x I integrble Riemnn, integrble in the sence of Riemnn b f x f x I f x I integrl of fx on I S, f f x { x : x : w I k > { sup x Ik f x inf x Ik f x m w I k w I k b k S, f 3 I [, ] f x { x {,, 3, } f x, g x I f x + g x I f x + g x I f x + g x I f x c cf x cf x c f x I I inf f x + g x inf f x + inf g x x I k x I k x I k S, f + S, g S, f + g S, f + g S, f + S, g

3 I [, b] f x uniformly continuous ε > δ > I, f x, y I, x y < δ f x f y < ε x I, ε > δ > D R n f x f x, x,, x n D ε > δ > x, y D d x, y < δ f x f y < ε ε > δ > x, y D { f x f y ε d x, y < δ x i, y i D δ > δ > d x i, y i < δ i f x i f y i ε x i D x i x D d y i, x i y i x y f x x x x i x, y i x f x x i f x i f x < ε f y i f x < ε f x i f y i < ε I [, b] ε > δ > x y < δ x y δ f x f y ε f x f y < ε I k δ sup f x inf f x x I k x I k < ε S, f S, f sup f inf f w I k x I k x I k εw I ε f x f x < εw I k 3

4 w mx w I k k S, f S, f f Drbowx f x: I I [, b] : { < < < r b} I I k [ k, k ]: S, f x I r k I k m inf f x w I k x I k k m S, f x sup f x w I k x I k k S S f x, f x f x I I f x I f x I f x I [, b] < c < b, I I I, I [, c], I [c, b] f x I I, I f x, g x I f x + g x I I I f x f x + f x I I {f x + g x} I f x + g x I c cf x I cf x c f x I 3 f x f x I f x > x f x 4

5 x f x 4 f x f x S, f S, f sup f x inf f x w I k sup f x inf f x w I k 5 f x, g x I f x g x f, g C x, y I f x, g x C f x g x f y g y f x g x f y g x + f y g x f y g y g x f x f y + f y g x g y C f x f y + g x g y 6 f x f x, I sup f x g x inf f x g x w I k x I k x I k C sup f x inf f x w I k + C sup g x inf g x w I k fx c > fx, foudmentl theorem of clculs f x: I [, b] x b < x < b, I [, x] [x, b] f x [, x] F x x f x F x [, b] I { F x f x F G x: I [, b], b G x f x G x F x + G f x f x F x + h F x x+h x+h x f x + f t dt x f x 5

6 inf f t f t sup f t t [x,x+h] t [x,x+h] α inf t [x,x+h] f t, β sup t [x,x+h] f t α h f t h α, β f x x+h x f t dt β h α h F x + h F x β h α α f x, β f x f x F G x F x F x + h F x h F x f x β H x G x F x H c H c H y c H c H G x F x + f x: I G x f x, b G x f x b f x G b G [G x] b, integrl by substitution f x, g x: C b b f x g x [f x g x] b f x g x f x g x f x g x + f x g x b f x g x b f x g x + b b [f x g x] b f x g x b f x g x f x g x 6

7 , integrl by prts φ x: J [α, β] [, b] f x: I [, b] x φ sf x x f x b f x β α f φ s dφ ds ds G β F b b F φ s G s f x G s F φ s F φ s φ s G β β α G s ds β α f φ s dφ ds ds b b log x x log x [x log x] b [x log x] b x log x b log b log b + x x sin s ds ds ds rcsin b rcsin < c < b f x: I [, b] F x x f x, b F b F b F c c b f x f c b F x f x F x F x x f x + x f x + C 7

8 x x { +x x+α + C α log x + C α x e x ex + C x log x x log x x + C 3 cos t sin tdt cos tdt sin t x tn x x sin x cos x cos x cos x log cos x 4 x sin s x s rcsin x cos s ds cos s x tn s + x s cos s rctn x cos s ds 5 b x b s b x s x s x s b s b b x b s s b s ds b b s s s ds ± s b b s s ds s t t 8

9 x 3 p x x px x < x < x sin s ds cos s p x p sin s cos s ds x cos s p sin s ds sin s sin m s sin ns px x ± x + x sinh s {sinh x ex e x cosh x ex +e x x x cosh s d sinh s ds cosh s sinh s + cosh s d cosh s ds sinh s cosh s + sinh s p x x ± sinh s p cosh s ds e ±mx x sinh s t e s > x es e s t t t xt t x + x + s log x + x + x + x tn s ds + tn s x + + tn s 9

10 x b x b x p x x s x + ds rctn x s x s b x b p x x x s b s s b s s s ds s + mα α, x α + r + x x + b r p X, Y X, Y f x p cos x, sin x s tn x cos x X s + s sin x Y s + s ds ds + tn x + s f x p cos x, sin x s p + s, s ds + s + s s b b f x g x [f x g x] b f x g x Tylor f x [, b] C n+ f n+ x < M, x [, b] f x f + + f n n! x n + x n+ M n +!

11 x x t n f n+ t dt n! [ x t n+ f n t n! ] x x n f n + n! x + [ n x t x t n f n t dt n! n! f n t ] x x + x t n f n t dt n! f x f x x n f n n! x x t n M dt n! x n+ M n +! x t n f n+ t dt n! f x [, b] C f x [, b] N,, N h b N f x h f + f + + f N + f N T N f f x T N f M 6 h b i+ i [ ] x i x i+ f x [ ] i+ x i x i+ f x [ i {x i + x i+ } f x i+ i ] i+ i+ + i i i+ i+ i f i+ i+ i f + hf i+ + i+ hf + h f i + f i+ + i i+ i f x f x f x T N f f x x i x i+ {x i + x i+ } f x i f x f x f x M M i+ M i i+ i 3 x i x i+ M Nh h M h b M b 3 N

12 optiml estimte p x x p x log x p x log x p x x p x e x p x e x [p x e x ] p x e x e x R R {x, y x b, c y d} R f x, y: R : R {R ij R ij {x, y i x i, c j y c j }} S, f inf f x, y Are R ij x,y R ij Are R ij i i c j c j S, f S, f S, f: inf sup,, : S, f S, f S, f S n, f S n, f S, f f x, y dy lim S, f lim S, f f x, y dy R R S S f R integrble f x, y dy [] [double] integrl R f, g R α, β: αf + βg dy α R liniuty f monotonicity 3 R R k : f R k R fdy R R fdy k fdy + β gdy R R k fdy

13 didturity 4 f { sup f inf f sup f inf f S, f S, f sup f inf f Are 5 fg f x, y g x, y f, g M sup fg inf g M sup f inf f + M sup inf g D D R f x, y: R f x, y dy D f:r x, y R φ D x, y { x, y D x, y / D chrcteristic function R φ D x, y dy inf φ D x, y AreR ij x,y R ij AreR ij R ij D φ D x, y sup φ D x, y AreR IJ R AreR ij R IJ D ϕ sup φd inf φ D AreR ij AreR ij R ij D ϕ R ij D R ij D AreR ij R φ D x, y dy φ D x, y dy R D D is of denite re R φ D x, y dy D re φ D x, y dy inner re R R φ D x, y dy outer re f, g D {x, y x b, f x y g x} 3

14 f x, g x: [, b] ε > δ > x x < δ f x f x < ε δ ε b ε D: f: R f D φ D : R f: R fφ D D fdy fφ D dy R D f x, y R D R g, h x D { x b, g x y h x} f x, y dy b hx D gx f x, y dy t b D t { x t, g x y h x} F t lim h> F x f x, y dy D t D t+h fdy h D t fdy fdy D t+h fdy D t fdy D t+h D t h t x t + h f x, y f t, y < ε f x, y dy f t, y dy ε h t g t + ε h D t+h D t D t+h D t F x iterted integrl x hxfx,ydy gx dy 4

15 y r x r r x r dy r r r π r x π r π πr π cos tdt cos t + dt π π r cos t r cos t dt x y dy D x x y dy x x φ t, φ α, φ β b b f x β α f φ t φ t dt,,, N : [, b] α, α,, α N : [α, β] k k φ α k α k α k f k k k f φ α k φ α k α k α k fdt f φ t φ t dt { x φ s, t y ξ s, t φ, ξ: C s, t: R {α s α + δ, β t β + ε} 4 φ α, β, ξ α, β,φ α, β + δφ s α, β, ξ α, β + δξ s α, β,φ α, β + εφ t α, β, ξ α, β + εξ t α, β,φ α, β + δφ x φ α, β + φ s α, β s α + φ t α, β t β y ξ α, β + ξ s α, β s α + ξ t α, β t β x, y det δφs εφ t δε δξ s εξ t det φs φ t ξ s ξ t s, t, u Γ x x s, t, u y y s, t, u z z s, t, u 5

16 x, y, z D f x, y, z dydz f x s, t, u, y s, t, u, z s, t, u D Γ det x s x t x u y s y t y u z s z t z u dsdtdu { x r cos θ y r sin θ r, θ: D f x, y dy G x r cos θ x θ r sin θ y r sin θ y θ r cos θ xr x det θ y r t θ r f x s, t, y s, t det xs x t dsdt y s y t D R e x +y dy G π π π e r rdrdθ R e r rdr dθ R R e r rdr e s ds π [e s ] R π e R r s Γ r R, θ π A A e x e y dy A A D e x +y dy π e A dy D dy D dy D π e A A π e A e x π e A A 6

17 A e x lim e x π A A f x e x π t e x t f t, x π f x f, x t f t, tx e x f x π g t, x x e t πt g t, x g t, x N σ, x e x σ πσ σ t σ N µ, σ, x e x µ σ πσ µ σ F t F xx e x 4t F t, x π t t x F d dt t t t F t x + t 4t F F x x t F F xx x t + F F t t t F t, x t t + t F x t, x + x t F x t, x t F x t, x + x F x t, x t F xx t, x x t F xx t, x t F t x, y F xx x, y 7

18 rndom wlk t Brownin motion ε F t, n F t, n + F t, n F t, n F t, n + + F t, n F t, n F t, n F t, x x n F t, n + + F t, n F t, n F xx t, n F t t, x F xx t, x σ G R Γ π x e x σ πσ x y e x +y σ πσ dy r 4 cos θ sin θe r σ πσ cos θ sin θdθ rdrdθ r 4 e r πσ σ r dr σ 4 t t πt e x t N x σ, x x N σ, x σ xσ x N xx σ, x + σ 4 N σ, x N xx x ±σ [, b] f x, b, ], ε > x ε x [ x ] ε ε 8

19 , b] I [, b, b f x. I I f I. h, k > b lim f x h +h lim k lim k,h b k b k +h f x f x inproper integrl b f x b α < x α +α b [ x α [log x] b ] b x +α +α x α α k h [rcsin x] k x h π π k, h Cuchy [, b b k lim k f x ε > δ > < k < k < δ b k b k b k f x f x f x < ε b k f x [, b b f x b f x b f x b k f x b k b k f x b k b k b k f x π sin x π x sin x x 9

20 [, b f x x b f x < b x α b, α > f x b b k b k f x b k [ b k b x α b x+α + α ] b k b k k+α k +α + α [, + x f x x α f x M N [ x +α f x + α ] M N M +α + N +α + α ], π π 4 4 log sin x < β < x β log sin x < x β x > sin x x sin x x log sin x log x + log sin x x x β log x x β log sin x x x β log x f x, y: D D D D f x f x OK Are D < Are D D D D f x, y D m > n D m f x, y dy D n Are D k Are D D k f x, y dy lim f x, y D k f x, y dy D m \D n D m \D n D m f x, y dy f x, y dy f dy D n f dy

21 R e x y dy π x >, Γ x e t t x dt e t t x dt t e t, t x t e t t x < t Γ x Gmm function x, y > B x, y Bet function t x t y dt. Γ, Γ π. Γ x > 3. Γ x + xγ x, Γ n + n!n 4. Γ x e r r x dr. : 3:. integrnd 4: t r Γ x + Γ e t dt [ e t] e t t x dt [ e t t x] + x e t t x dt xγ x Γ x e t t x dt e r r x rdr e r r x dr. : Γ π e r dr e r dr. B x, y π sinx θ cos y θdθ. B x, y ΓxΓy Γx+y

22 : B x, y t x t y dt t sin θ t cos θ B x, y π π sin x θ cos y θ sin θ cos θdθ sin x θ cos y θdθ : D { s r cos θ t r sin θ Γ x Γ y 4 4 D D e s s x ds e t t y dt e s +t s x t y dsdt { < r < < θ < π Γ x Γ y e r r x+y rdr r Γ x + y B x, y π cos x θ sin y θdθ B x, y Γ x Γ y Γ x + y. π Γ n n! Γ n + n n 3 Γ sin x θ cos y θdθ Γ x Γ y B x, y Γ x + y π sin n θdθ n + B, π n sin n θdθ { m!! m!! m!! m+!! π n m πγ n+ Γ n + m!! m m m 4, m +!! m + m n Br n { x,, x n x + x + + x n r } r n n-dimentionl bll of rdius r : r x r r : r πr

23 B n r V n,r V n,r r n V n, r n V n Br n { r x n r, x + + x n r x } n B n r {x n } B n r r B n V n Vn V n n y Vn dy y x n sin θ, dy cos θdθ V n V n π cos n θ cos θdθ n + V n B, n 3 n + V n V n B, n V n B, n + B, Γ n Γ V n Γ Γ n+ Γ n+ Γ n + π n V n Wllis' formul V 3 π 3 V 4 3 π, V 5 π 5 4π 3 8π 5, V 4 π 4 V π, V 6 π 6 V 4 π3 6, π lim n 4 k k π log log k k n k π log log k k 3

24 kn+ k N B x +, y Γ x + Γ y Γ x + y + x B x, y x + y xγ x Γ y x + y Γ x + y n B n +, n n + B n,. n n + n! n B, Γ Γ Γ 3 B n +, n n n n! n n! B, Γ Γ Γ π B n +, B n +, n + n 3 π n! n + n n + n n n n k π k k + k k 3 π lim Bn+, Bn+, t t x x B x +, y 3 Stirling x x+y B x, y B x, y t x t y dt B x, y B x +, y B x +, y x B x, y x + y B n, B n +, B n, B n +, n + 3 n + 4

25 n! πn n+ e n πe n+ log n n Wllis' lim n π lim n n! n n e n n π n! n + n + π lim n lim n + n n! n + lim n n! n! n! n + n + n + log x log x log + log + + log log + n n n n log n n log log + log n n log n log + n lim n + n + n n + n n e n n n + n + n en n n n n!e n n n n n! Stirling n! n! Fourier V V V f, g α, β αf + βg V f f f O αβ f α βf γ αf + βg γαf + γβg 5

26 αf + βf α + β f I R I αf x α f x f + g x f x + g x I C I I C I C I f, g g, f f, f, f, f g 3 αf + βf, g α f, g + β f, g V f, g f, g R αf + βf, g α + βf g α f g + β f g α f, g + β f, g I [ π, π] cos nx, sin nx m + n π cos m + n x π m n π cos m n x π cos mx, cos nx π π π π cos mx cos nx cos m + n x + cos m n x π m n π m n > m n m, n > cos mx, cos nx π π cos mx cos nx m, n > sin mx, sin nx sin m x sin n x π cos m n x cos m + n x π { π m n > m x, π 6

27 , π π cos nx, π π { cos nx cos mx n m, π π n m { sin mx sin nx m n, π π m n sin mx, π π cos mx sin nx, π π, cos x cos x cos mx,,, π π π π sin x sin x,, π π onyhonorml vector, k, b k [ π, π] N N f x + k cos kx + b k sin kx k k f x N b b N f x sin kx π b k f x f x cos kx k π V V v, v, v 3, V α R, v α N. α v α v α v α i v i v k k N i N α i v i v k k N V v,, v N V N α i v i i i α v 7

28 α v, v α v, α v, α, v + α v, v, α, α, v v α v, v, v α v, v v,, v N V N α i v i i α k, v k k v k, v k k { cos mx, π π } sin nx π Fourier { π R } { [ π, π] f f π f π } π f x π + m π m π π π f x m cos mx π + b m m b m sin mx π f x f, π π cos mx cos mx f, π π sin mx f, π f N f f, π π N m f, cos mx cos mx π π f N, f N N m f, sin mx sin mx π π f, f + m + m m b m 8

29 x π,, π x π f t, x f t,, f t, π t, g x f t, x, g t x g t x f τ f x f, x h x f t, x g t x t + cos mx m t + sin mx b m t π π π f τ f x Left-side t + cos mx m t + m sin mx π π m t π Right-side m m t cos mx π α constnt m m m m α m e m t b m m b m b m β m e m t m b m t sin mx π t h x α + α m cos mx + β m sin mx π π π α k cos mx h x, π [ π, π] Fourier Fourier series f t c f x f t, f t, π f t, x t + cos mx m t + b m t π π f, x h x t m c t m α m cos cmt + β m sin cmt Both-edge α m m β m sin cmt + m cos mx + b m sin mx π π π sin mx x π 9

30 I [, ] V n { n } f, g f g V n d k P k x x k k! k k { p k, p l n+ k l k l p k x k Legendre Legendre porinomil of degree k l m d l p l, p m x l+m l!m! l l d m x m m [ d l constnt x l l d m x m ] m [ d l+ constnt x l l d m x m ] + constnt. ±constnt [ x ] ± constnt { l m ±constnt ml x m m m x t x t, x t l m constnt d l+ l+ x l d l+ l+ x l d l+m l+m x l x m x x + x 4t t d m m x d m m x x m 4 m t m t m 4 m B m +, m + m Γ m + Γ m + 4 Γ m + 4 m m! m +! { p l, p l 4 m m! m! m m! m+! m+ k+ p k k,,, n p p d x x p 8 d x 4 x + 3 x p 3 d 3 x x 4 + 3x 5 x3 3 x 3

31 weight functionφ x > constnt Chebyshev {f n x} n,, : f n x f x pointwise convergent x f n x f x x n n N ε, x f n x f x < ε f n x f x imiformly convergent n n N ε x f n x f x < ε f n x f n x f x f x y x y x < δ x f y f x < ε n f n x f x < ε 3 x, y f n x y x < δ δ x f n y f y < ε 3 f n x f n y < ε 3 f y f x f y f n y + f n y f n x + f n x f x < ε I [, ], f n x n x f n, x > f n x f x lim n f n x { x x > I [, b]: f n x: I f x lim n F n x F x x x lim f n x f x f n lim f n D n F x F n x x f x n f f n < ε D n x x ε ε x ε b x f n f f n 3

32 f n x: I [, b] C c I f n c f n x f n x f x f C f n x f x f n x g n x g x G n x x g n x G x x g x G n x f n x G n c f n c f n x G n x + f n c G n c G x + e G c f x G x G c + e f n x {,, } n n x c n k f n c + r r n n r n < s < r s x [c s, c + s] f n x k r R r n n! e x x n f n x n k n! x k k! x s < r e x n r n n r n n n constnt r n A r n x c s < r n x c nn+ nn+ n s n A A nn+ n x c n n s r N+ s r s r x 3

33 f x C f n c n f x Tylor n x c n n f n x n k x c k f x f n x r f r c n nr n f n x x c < s < r f x k F x x c f x n x c n f x n n x cn+ n + x n x n log x x x x n+ n + n + x x + x 4 x 6 + rctn x x + x x x3 3 + x5 5 x7 7 + rcsin x x x f y y y f n y 3 n y n n n 3 y n y n n!! y n n! n!! n!! x n!! x n rcsin x x n x n!! n!! x n+ n + 33

34 rcsin x x x rcsin x x n!! n!! n + x x n+ x sin θ x θ π π x x n+ θ x sin n+ θdθ sin n+ θdθ B, n + Γ n! Γ n + 3 Γ n! n + n n!! n +!! π 8 rcsin n n + Γ n n n s s 4 + π 8 s n s π 8 n n n π 6 n n s S s Riemnn zet Euler S n π 6 I, J: R t, x I J, f t, x I J F t f t, x I I J {t, x t I, x J} I J R : J 34

35 f t, x I J ε > δ > d t, x, t, x < δ f t, x f t, x < ε F t F t < J J f t, x f t, x ε ε J f t, x I J C f t g t J f t C G t g t I [, b], J [c, d] G t f J G t G t g t H t t t d c d c G t g t dt d c f t, x t f t, x dt t t f t, x f t, x dt t dt C curve surfce length re R 3 prmeter representtion {x t, y t, z t t [α, β]} x, y, z t motion trjectony x t, y t, z t x t t + b y t ct + d z t et + f x t r cos t y t r sin t z t 35

36 3 cycloid 4 helicoid x t r t + cos t y t r sin t z t x t r cos t y t r sin t z t t x, y, z t C t t x t y t z t x t x t + x t t y t y t + y t t z t z t + z t t vritim x t y t z t x t + y t + z t t t t t t t x + y + z dt t C: {x t, y t, z t t [α, β]}, x, y, z C C β α x + y + z dt cycloid α t β, r x sin t y cos t x + y sin t t t π s x + y + cos s cos s 4 β+ π α+ π [ sin s cos s ds ] β+ π α+ π 36

37 helicoid α t β, r x sin t y cos t z x + y + z + β α + velocity v t x + y + z v t speed v t v t dt s f t t t C t s t g s g f g s C g s dt ds ds dt f s d dt x t s ds dt ds d d d x t s + y t s + z t s + ds ds ds dt dy + dt dz dt dt ds + ds dy + ds dz ds ds dy dz dt + + dt dt dt ds ds dy dz + + dt dt dt dt rc length prmeter t x t x t y t z t ds dt s t t + dt x + y + z dt dy + dt d dt x t x ds dt ds ds dt ds dt dt ds dt dt dt dz dt dt s: ds e s 37

38 de ds s f s e s.f s e s s de ds f f f f 3, g g g g 3 e, de ds d ds f, g df d ds d f, g ds e s e s, e s e s, e s df ds g + f dg ds f, g f g + f g + f 3 g 3 ds g dg df + f ds + ds, g + e, de e, de ds ds de ds, e + f, dg ds e, e d e, e ds x s f t curvture s s f s, β f s x s C 3 x s s + y s β s + 3 z s 3 β x, y θ β sin θ, β cos θ β sin θ s θ β rcsin s βs + cos θ cos βs βs κ de ds f s 38

39 de ds curvture rdius de ds κe s κ, e s e e e 3 e, e de s ds e τ torsion γ γ de ds γe + τe 3 de ds, e d ds e, e κ e e s de ds κe de ds κe + τe 3 e, de ds e 3 δ, ε κ, τ δ de 3 ds δe + εe de3 ds, e d ds e 3, e e 3, de ds ε de3 ds, e e 3, de τ ds κ s, τ s Frenet-Serret- κ s, τ s R 3 ++ x t e t e t e s e s, e s : x + by + cz + d {x, y, z x + by + cz + d }, b, c,, 39

40 x + y b + z c r α x + β y b + γ z c r α, β, γ, r z f x, y s, t x x s, t y y s, t z z s, t x r cos θ cos φ + y r cos θ sin φ + b z r sin θ + c π θ π, π φ π x, y, z s, t C s, t x x, y y, z z, x s, x t x y s, t z x s, t x + x s y s, t y + y s z s, t z + z s x, s + t, t y, s + t, t, s + z t, t x x y z, x x y z, x s x s y s z s, x t x t y t z t x x x x s s + x t t x tngent plne t x x tngent vector x s x t x s, t x s, x t s, t, s + δs, t, s + δs, t + δt, s, t + δt x s, t, x s + δs, t, x s + δs, t + δt, x s, t + δt x s + δs, t x s, t + x s s, t δs x s, t + δt x s, t + x t s, t δt 4

41 exterior product x s s, t δs x t s, t δt sin θ α β γ δ ε ζ x s s, t x t s, t sin θ δsδt βζ γε γδ αζ αε βδ α β γ, δ ε ζ θ α β δ ε γ ζ sin θ α β γ δ ε ζ α β γ α, δ ε ζ δ, α, δ α δ cos θ α δ sin θ α δ cos θ α, α δ, δ α, δ α + β + γ δ + ε + ζ αδ + βε + γζ βζ γε + γδ αζ + αε βδ α δ x s x t dsdt r, x x s x t cos s cos t cos s sin t sin s sin s cos t sin s sin t cos s cos s sin t cos s cos t x s, x t x x s x t cos s cos t cos s sin t sin s cos s cos t sin s cos s sin t cos s cos s cos t cos s sin t sin s 4

42 cos s π s π, π t π π π cos sds π [sin s] π π π 4π x + y b + z c x cos s cos t y b cos s sin t z c sin s cf. b > { x cos t y b sin t { ẋ sin t ẏ b cos t ẋ + ẏ sin t + b cos t + b cos t s tn t, ds dt cos t + s dt t + b cos tdt α + b + s ds + s rotting surfce f s x f s cos t y f s sin t z s π b + f s ds x t dt x s x t dsdt 4

43 s, k m, k n x y z cos kπ m sin kπ m k n m n x y z cos k+ m π sin k+ m π k+ n n m, m + n m t: x t x m t: x k, t, x k, x k ordinry dierentil eqution prtil dierentil eqution. Newton x t f x, x, t. f t c f x + f y + f z t, x, y, z liner ordinry dierntil eqution x x t x t. x n t x t A t x t x t x t principle of superposition x t, x t x + bx R x + f t x + g t x y x x y { y + f t y + g t x x y { x y y f t y g t x g t f t x y 43

44 { x A t x x x t exp B t B t A t B A t ij t t B t ij t dt exp B k B k k! x y x λ x { x y y λ x x y B B λ t λ t λ t λ t λ t λ λ exp B B k X t X t k k! B k k! + k B k B k +! cos λt sin λt λ λ cos λt exp B λ sin λt λ cos t sin λt cos λt λ sin λt λ cos t sin λt X t X cos λt + X λ x x t exp B t x x x x + tx X X sin λt 44

45 exp B t B k k! exp B exp B exp B t B B k k! A exp B exp B x y x exp B y y exp B x exp B x + exp B x A exp B x + A exp B x y y t y B x x x t exp B t y exp B t complete dierentil eqution F x, t: C F x x, t x + F t x, t F x t, t C x t d dt F x t, t F x x, t x + F t x, t eqution with seprble vribles x q t p x p dp x, P p x q dq t dt, Q q x dt p x x q t d P Q dt P Q C x + x t x + x t rctn x t C rctn x C + t x tn t + C 45

46 mx + f x x mx x + f x x mx + F x F x x f x m: mx + F x E kinetic energy potentil conservtion lw for energy x E F x x E F x m E F x m m t C y ex+ x y e x, x y e x x x x + e x e + x dt e + x e + t + C x ex+ x y dy y e e > log e y dy y 4 3y 3 y 3 t + C x t c 3 x t c

47 θ θ t sin θ θ E + cos θ θ E + cos θ dθ E + cos θ t + C E > θ θ θ t E < θ t E θ t θ x x 4x x x x x x t + C generl solution x t + c c x t, t specil solution x singulr solution f : t f x f t f x *' dt * dt A t x, A t B t x t exp B t x A t x f t * V x *' x t y t x t * x t + V x y t { dy dt A t y f t A t x f t * dt d x y dt A t x y t * x t exp B t t x A t exp B t t + exp B t t A t x t + exp B t 47

48 x A t x t f t exp B f t exp B f t t t exp B f t dt t x t exp B t exp B f t dt f x,, x n x k y x + ct, z x ct f t, x f t y, z, x y, z g y, z t c x f t k f x f t c f x t + c x x x,, x k, x k+,, x n { x x y, z y+z z t t y, z y z c t y x + ct c t z t c x y x + ct x z x t c y z x y + z x c c t z x + c c t y f 48

49 g y z g y z g z z k z K z g K z z g K z g H g g y, z H y + K z f t, x H x + ct + K x ct + f t, ±π cos nct cos nx cos nct sin nx etc f t, x n t cos nx + b n t sin nx c f t n cos n x ± ct, sin n x ± ct n n t cos nx + b n t sin nx c f x c n n t cos nx n b n sin nx n n c n n α cos nct + β sin nct f t c x + y f r, θ t f T t R r A θ T RA c T R A + r T R + r T RA x + y r + r x + r θ T RA f T T t c R R + r R R + A r A t r, θ c k T T c k T c kt 3 R R + R r R + A r A k 49

50 3 T t k T e ± c t k k > c T cos k t sin c k t k < k < k < sin θ, cos θ A θ cos nθ 3 r αr s s A θ A θ + π R R + R r R n r k < 4 r α α k s R k R R k k n r R r k R + r R + n R 5 Bessel R s n ns n 5 s n + n + n+ + n + n+ + n n n+ n+ s n + n n n 4 n + R r A θ g x, y x, y C R r cos nθ x, y C k k n, k n k n R s s n + sn+ 4 n + + s n+4 6 n + n s n+k 4 k n + n + k + J n s n Bessel Eulr q, p n L q, p q p x t n t < t E x t t L x t, ẋ t dt x E x x t L q, p p + p L x, ẋ dt x t x t x L qi x t, ẋ t d dt L p i x t, ẋ t Eulr x t t t, t 5

51 d dz ε L x + ε t, ẋ + εȧ t dt L qi x, ẋ i t + L pi x, ẋ ȧi dt ε d dz ε L q x, ẋ ȧdt [L p x, ẋ t] L x + ε t, ẋ + εȧ t dt d dt L p x, ẋ dt L qi x, ẋ d dt L p i x, ẋ i dt t i L q d dt L p i Eulr 5

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo I 22 7 9 2 2 5 3 7 4 8 5 2 6 26 7 37 8 4 A 49 B 53 big O f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v I 2 7 4 2 2 6 3 8 4 5 26 6 32 7 47 8 52 A 62 B 66 big O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Fr

Fr 2007 04 02 12 1 2 2 3 2.1............................ 4 3 6 3.1............................. 7 3.2....................... 9 3.3............................. 10 4 Frenet 12 5 14 6 Frenet-Serret 15 6.1 Frenet-Serret.......................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

[, + f : f = [, +, f 4 = =. 3 f 5 =,. f 3, f 4, f 5 R, {, }, {, } 3 R.3. I = π, π tn f I R f R f = f { R } =,, +, +.4. f 3, f 4,

[, + f : f = [, +, f 4 = =. 3 f 5 =,. f 3, f 4, f 5 R, {, }, {, } 3 R.3. I = π, π tn f I R f R f = f { R } =,, +, +.4. f 3, f 4, 865.. f f f f f f f f 3 R 4 X X R X X 5 Y X Y X 6 7 Y X Y X * 8 4 9 /3 8 4 : function; :the domin; : the rnge; : the imge. 3 set; 4 : rel numbers; : the set of rel numbers; R R R 5 : n element; : subset;

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information