2 H23 BioS (i) data d1; input group patno t sex censor; cards;

Size: px
Start display at page:

Download "2 H23 BioS (i) data d1; input group patno t sex censor; cards;"

Transcription

1 H BioS (i) data d1; input group patno t sex censor; cards; ; run; 1

2 proc lifetest data d1 plot(lls); time t * censor (0); strata sex group; run; log-log 1 log-log log(t) Cox Kaplan-Meier 4 1: sex 0 group 0 t *

3 Note : sex 0 group 1 t * * * *... 0 Note : sex 1 group 0 t * * *... 0 Note

4 4: sex 1 group 1 t * * *... 0 Note (ii) log-log S ij (t) (i : j : ) log( log(s ij (t))) log(t) t j S i (t j ) log( log(s i (t i ))) t j S 00 (t j ) log(t j ) log( log(s 00 (t j ))) t j S 10 (t j ) log(t j ) log( log(s 10 (t j ))) t j S 01 (t j ) log(t j ) log( log(s 01 (t j ))) t j S 11 (t j ) log(t j ) log( log(s 11 (t j ))) (i) (iii) Proc Phreg Cox proc phreg data d1; model t * censor(0) group sex / ties efron; run; 4

5 PHREG WORK.D1 t censor 0 EFRON (GCONV1E-8) - LOG L AIC SBC : BETA0 Pr > ChiSq Score Wald

6 Pr > ChiSq group sex Wald group 1.87 χ.564 p *1 (iv) Cox (a) Cox λ(t x i, y j ) λ 0 (t) exp(αx i + βy j ) (i 0, 1, j 0, 1) x 0 0, x 1 1, y 0 0, y 1 1 ( ) λ 00 (t) λ(t 0, 0) λ 0 (t) (1) ( ) λ 10 (t) λ(t 1, 0) λ 0 (t) exp(α) () ( ) λ 01 (t) λ(t 0, 1) λ 0 (t) exp(β) () ( ) λ 11 (t) λ(t 1, 1) λ 0 (t) exp(α + β) (4) * 0 t λ ij (t) λ(t x i, y j ) Λ(t x i, y j ) t 0 t 0 ( t 0 λ(u x i, y j )du λ 0 (u) exp(αx i + βy j )du ) λ 0 (u)du exp(αx i + βy j ) t 0 λ 0(u)du Λ 0 (t) ( ) Λ 00 (t) Λ(t 0, 0) Λ 0 (t) ( ) Λ 10 (t) Λ(t 1, 0) Λ 0 (t) exp(α) ( ) Λ 01 (t) Λ(t 0, 1) Λ 0 (t) exp(β) ( ) Λ 11 (t) Λ(t 1, 1) Λ 0 (t) exp(α + β) (b) (a) H 0 : β 0 H 1 : β 0 *1 Wald Wald * λ ij (t) λ(t x i, y j ) i j λ ij (t) x i, y j λ(t x i, y j ) 6

7 (c) λ(t 0, 0) λ 10(t) λ 00 (t) λ 0(t) exp(α) exp(α) λ 0 (t) λ 01(t) λ 00 (t) λ 0(t) exp(β) exp(β) λ 0 (t) λ 11(t) λ 00 (t) λ 0(t) exp(α + β) exp(α + β) λ 0 (t) t log(λ 00 (t)) log(λ 0 (t)) log(λ 10 (t)) log(λ 0 (t)) + α log(λ 01 (t)) log(λ 0 (t)) + β log(λ 11 (t)) log(λ 0 (t)) + α + β t β 1 α, β t log( log) α, β, α + β t 4 * Cox + 1 λ(t x i, y j ) λ 0 (t) t t exp(αx i + βy j ) α, β 1 (d) λ ij (t) T λ ij (t) λ(t x i, y j ) lim dt 0 P r(t < T t + dt x i, y j, t T ) dt F ij (t) i j *4 F ij (t) 1 S ij (t) 1 P r(t > t x i, y j ) P r(t t x i, y j ) λ(t x i, y j ) lim dt 0 P r(t < T t + dt x i, y j, t T ) dt P r(t < T t + dt x i, y j ) 1 lim dt 0 dt P r(t T x i, y j ) F ij (t + dt) F ij (t) 1 lim dt 0 dt 1 F ij (t) * y t + 1 y t + 5 y t y t + 10 *4 F ij (t) F (t x i, y j ) 7

8 F ij (t) S ij (t) (1 S ij(t)) S ij (t) S ij (t) S ij (t) t 0 d log(s ij (t)) dt d log(s ij (t)) dt dt λ(t x i, y j ) t 0 λ(t x i, y j )dt log(s ij (t)) log(s ij (0)) Λ(t x i, y j ) (a) S ij (t) exp (Λ(t x i, y j )) ( S ij (0) 1) S 00 (t) exp (Λ(t 0, 0)) exp (λ 0 (t)) S 10 (t) exp (Λ(t 1, 0)) exp (λ 0 (t)) exp(α) S 01 (t) exp (Λ(t 0, 1)) exp (λ 0 (t)) exp(β) S 11 (t) exp (Λ(t 1, 1)) exp (λ 0 (t)) exp(α + β) (e) log( log(s ij (t))) S 00 (t) exp (λ 0 (t)) log(s 00 (t)) λ 0 (t) log( log(s 00 (t))) log(λ 0 (t)) (5) S 10 (t) exp (λ 0 (t) exp(α)) log(s 10 (t)) λ 0 (t) exp(α) log( log(s 10 (t))) log(λ 0 (t)) + α (6) S 01 (t) exp (λ 0 (t) exp(β)) log(s 01 (t)) λ 0 (t) exp(β) log( log(s 01 (t))) log(λ 0 (t)) + β (7) S 11 (t) exp (λ 0 (t) exp(α + β)) log(s 11 (t)) λ 0 (t) exp(α + β) log( log(s (t))) log(λ 0 (t)) + α + β (8) (f) (5) (8) log( log(s ij (t))) y log(t) y log( log(s ij (t))) y log( log(s 00 (t)) log(λ 0 (t)) 8

9 y log( log(s 10 (t)) log(λ 0 (t)) + α y log( log(s 01 (t)) log(λ 0 (t)) + β y log( log(s 11 (t)) log(λ 0 (t)) + α + β log(λ 0 (t)) log(λ 0 (t)) α, β, α + β *5 log( log(s ij (t))) 1 (g) at risk number *5 a, b log( log(λ 0 (t))) a + bt log( log(λ 0 (t))) exp(a + bt + bt ) Cox 9

10 (1) (0 1 ) at risk number ( ) (0 1 ) (0) t L t 4 at risk number L 4 λ(4 0, 0) λ(4 0, 0) + 5 λ(4 1, 0) + 6 λ(4 0, 1) + 5 λ(4 1, 1) λ 0 (4) λ 0 (4) + 5 λ 0 (4) exp(α) + 6 λ 0 (4) exp(β) + 5 λ 0 (4) exp(α + β) exp(α) + 6 exp(β) + 5 exp(α + β) 10

11 1 1 7 at risk number 6 4 L 7 λ(7 0, 1) λ(7 0, 0) + λ(7 1, 0) + 6 λ(7 0, 1) + 4 λ(4 1, 1) λ 0 (7) exp(β) λ 0 (7) + λ 0 (7) exp(α) + 6 λ 0 (7) exp(β) + 4 λ 0 (7) exp(α + β) exp(β) + exp(α) + 6 exp(β) + 4 exp(α + β) 8 Kaplan-Meier at risk number at risk number 5 4 L 8 λ(8 1, 1) λ(8 0, 0) + λ(8 1, 0) + 5 λ(8 0, 1) + 4 λ(4 1, 1) λ 0 (8) exp(α + β) λ 0 (8) + λ 0 (8) exp(α) + 5 λ 0 (8) exp(β) + 4 λ 0 (8) exp(α + β) exp(α + β) + exp(α) + 5 exp(β) + 4 exp(α + β) 0 at risk number 0 L 0 λ(0 1, 1) λ(0 1, 0) + λ(8 0, 1) + λ(4 1, 1) λ 0 (0) exp(α + β) λ 0 (0) exp(α) + λ 0 (0) exp(β) + λ 0 (0) exp(α + β) exp(α + β) exp(α) + exp(β) + exp(α + β) Efron at risk number L λ( 0, 0) 4 λ( 0, 0) + 6 λ( 1, 0) + 6 λ( 0, 1) + 5 λ( 1, 1) ( 4 1 ) λ( 0, 0) + ( 6 1 λ( 1, 0) ) (10) λ( 1, 0) + 6 λ( 0, 1) + 5 λ( 1, 1) λ 0 () 4 λ 0 () + 6 λ 0 () exp(α) + 6 λ 0 () exp(β) + 5 λ 0 () exp(α + β) λ 0 () exp(α) 7 λ 0() + 11 λ 0() exp(α) + 6 λ() exp(β) + 5 λ 0 () exp(α + β) exp(α) + 6 exp(β) + 5 exp(α + β) exp(α) exp(α) + 6 exp(β) + 5 exp(α + β) 1 (9) 1 1 (9) 11

12 1/ (10) 1/ 1 5 at risk number / 1 L 5 λ(5 1, 0) λ(5 0, 0) + 5 λ(5 1, 0) + 6 λ(5 0, 1) + 5 λ(5 1, 1) λ(5 1, 0) λ(5 0, 0) + 4 λ(5 1, 0) + 6 λ(5 0, 1) + 5 λ(5 1, 1) λ 0 (5) exp(α) λ 0 (5) + 5 λ 0 (5) exp(α) + 6 λ 0 (5) exp(β) + 5 λ 0 (5) exp(α + β) λ 0 (5) exp(α) λ 0 (5) + 4 λ 0 (5) exp(α) + 6 λ(5) exp(β) + 5 λ 0 (5) exp(α + β) exp(α) + 5 exp(α) + 6 exp(β) + 5 exp(α + β) exp(α) + 4 exp(α) + 6 exp(β) + 5 exp(α + β) 15 at risk number / / 1/ L 15 λ(15 0, 0) λ(15 0, 0) + λ(15 1, 0) + 5 λ(15 0, 1) + λ(15 1, 1) λ(15 0, 0) ( ) ( λ(15 0, 0) + λ(15 1, 0) ) λ(15 0, 1) + λ(15 1, 1) λ(15 0, 1) ( ) ( λ(15 0, 0) + λ(15 1, 0) ) λ(15 0, 1) + λ(15 1, 1) λ 0 (15) λ 0 (15) + λ 0 (15) exp(α) + 5 λ 0 (15) exp(β) + λ 0 (15) exp(α + β) λ 0 (15) 4 λ 0(15) + λ 0 (15) exp(α) + 14 λ(15) exp(β) + λ 0(15) exp(α + β) λ 0 (15) exp(β) λ 0(15) + λ 0 (15) exp(α) + 1 λ(15) exp(β) + λ 0(15) exp(α + β) 1 + exp(α) + 5 exp(β) + exp(α + β) exp(α) + exp(β) + exp(α + β) + exp(α) + 1 exp(β) exp(β) + exp(α + β) α, β L(α, β) L t L(α, β) L L 4 L 5 L 7 L 8 L 15 L 0 (11) 1

13 l(α, β) (11) l(α, β) log L + log L 4 + log L 5 + log L 7 + log L 8 + log L 15 + log L 0 (1) log L α log (4 + 6 exp(α) + 6 exp(β) + 5 exp(α + β)) log log L 4 log ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) ( ) exp(α) + 6 exp(β) + 5 exp(α + β) log L 5 α log ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) + α log ( + 4 exp(α) + 6 exp(β) + 5 exp(α + β)) α log ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) log ( + 4 exp(α) + 6 exp(β) + 5 exp(α + β)) log L 7 β log ( + exp(α) + 6 exp(β) + 4 exp(α + β)) log L 8 α + β log ( + exp(α) + 5 exp(β) + 4 exp(α + β)) ( 4 log L 15 log ( + exp(α) + 5 exp(β) + exp(α + β)) log ( ) 1 +β log + exp(α) + exp(β) + exp(α + β) β log ( + exp(α) + 5 exp(β) + exp(α + β)) log ( ) 1 log + exp(α) + exp(β) + exp(α + β) log L 0 (α + β) log ( exp(α) + exp(β) + exp(α + β)) (1) l(α, β) 5α + 4β log (4 + 6 exp(α) + 6 exp(β) + 5 exp(α + β)) log + exp(α) + 14 ) exp(β) + exp(α + β) ( ) exp(α) + exp(β) + exp(α + β) ( ) exp(α) + 6 exp(β) + 5 exp(α + β) log ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) log ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) log ( + 4 exp(α) + 6 exp(β) + 5 exp(α + β)) log ( + exp(α) + 6 exp(β) + 4 exp(α + β)) log ( + exp(α) + 5 exp(β) + 4 exp(α + β)) log ( + exp(α) + 5 exp(β) + exp(α + β)) ( ) ( ) log + exp(α) + exp(β) + exp(α + β) log + exp(α) + exp(β) + exp(α + β) log ( exp(α) + exp(β) + 4 exp(α + β)) (h) Newton-Raphson α, β α, β 11 l α (α, β) 5 6 exp(α) + 5 exp(α + β) exp(α) + 6 exp(β) + 5 exp(α + β) exp(α) + 5 exp(α + β) exp(α) + 6 exp(β) + 5 exp(α + β) exp(α) + 5 exp(α + β) + 5 exp(α) + 6 exp(β) + 5 exp(α + β) 5 exp(α) + 5 exp(α + β) + 5 exp(α) + 6 exp(β) + 5 exp(α + β) 4 exp(α) + 5 exp(α + β) + 4 exp(α) + 6 exp(β) + 5 exp(α + β) exp(α) + 4 exp(α + β) + exp(α) + 6 exp(β) + 4 exp(α + β) exp(α) + 4 exp(α + β) + exp(α) + 5 exp(β) + 4 exp(α + β) exp(α) + exp(α + β) + exp(α) + 5 exp(β) + exp(α + β) exp(α) + exp(α + β) 4 + exp(α) + 14 exp(β) + exp(α + β) exp(α) + exp(α + β) 1 + exp(α) + exp(β) + exp(α + β) exp(α) + 4 exp(α + β) exp(α) + exp(β) + exp(α + β) 1

14 l β (α, β) 4 6 exp(β) + 5 exp(α + β) exp(α) + 6 exp(β) + 5 exp(α + β) 6 exp(β) + 5 exp(α + β) 7 exp(α) + 6 exp(β) + 5 exp(α + β) exp(β) + 5 exp(α + β) + 5 exp(α) + 6 exp(β) + 5 exp(α + β) 6 exp(β) + 5 exp(α + β) + 5 exp(α) + 6 exp(β) + 5 exp(α + β) 6 exp(β) + 5 exp(α + β) + 4 exp(α) + 6 exp(β) + 5 exp(α + β) 6 exp(β) + 4 exp(α + β) + exp(α) + 6 exp(β) + 4 exp(α + β) 5 exp(β) + 4 exp(α + β) + exp(α) + 5 exp(β) + 4 exp(α + β) 5 exp(β) + exp(α + β) + exp(α) + 5 exp(β) + exp(α + β) exp(α) + 14 exp(β) + exp(α + β) exp(β) + exp(α + β) exp(β) + 4 exp(α + β) exp(α) + exp(β) + exp(α + β) F(θ) 1 + exp(α) + 1 exp(β) + exp(α + β) exp(β) + exp(α + β) θ (α, β) l(α, β) 1 F(θ) l α (α, β) l β (α, β) Newton-Raphson F(θ) α, β l exp(α) + 56 exp(α + β) + 0 exp(α + β) (α) 4 α (4 + 6 exp(α) + 6 exp(β) + 5 exp(α + β)) exp(α) + exp(α + β) + 0 exp(α + β) exp(α) + 6 exp(β) + 5 exp(α + β)) ( exp(α) + 45 exp(α + β) + 0 exp(α + β) 10 exp(α) + 40 exp(α + β) + 0 exp(α + β) ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) 8 exp(α) + 4 exp(α + β) + 0 exp(α + β) 6 exp(α) + 6 exp(α + β) + 4 exp(α + β) ( + 4 exp(α) + 6 exp(β) + 5 exp(α + β)) ( + exp(α) + 6 exp(β) + 4 exp(α + β)) 6 exp(α) + exp(α + β) + 0 exp(α + β) 4 exp(α) + 14 exp(α + β) + 10 exp(α + β) ( + exp(α) + 5 exp(β) + 4 exp(α + β)) ( + exp(α) + 5 exp(β) + exp(α + β)) exp(α) + 1 exp(α + β) + exp(α + β) exp(α) + 10 exp(α + β) + exp(α + β) ( exp(α) + exp(β) + exp(α + β)) ( + exp(α) + 1 exp(β) + exp(α + β)) 6 exp(α + β) + 1 exp(α + β) ( exp(α) + exp(β) + exp(α + β)) l α β 16 exp(α + β) (4 + 6 exp(α) + 6 exp(β) + 5 exp(α + β)) + 1 exp(α + β) ( exp(α) + 6 exp(β) + 5 exp(α + β)) 15 exp(α + β) ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) 0 exp(α + β) ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) 14 exp(α + β) ( + 4 exp(α) + 6 exp(β) + 5 exp(α + β)) 10 exp(α + β) ( + exp(α) + 6 exp(β) + 4 exp(α + β)) 7 exp(α + β) ( + exp(α) + 5 exp(β) + 4 exp(α + β)) 6 exp(α + β) ( + exp(α) + 5 exp(β) + exp(α + β)) ( 4 0 exp(α + β) 14 + exp(α) + exp(β) + exp(α + exp(α + β) β)) ( + exp(α) + 1 exp(β) + exp(α + β)) 6 exp(α + β) ( exp(α) + exp(β) + exp(α + β)) 101 l exp(β) + 56 exp(α + β) + 0 exp(α + β) 1 exp(β) + 4 β (4 + 6 exp(α) + 6 exp(β) + 5 exp(α + β)) + exp(α + β) + 55 exp(α + β) ( exp(α) + 6 exp(β) + 5 exp(α + β)) 14

15 18 exp(β) + 45 exp(α + 0β) + exp(α + β) 1 exp(β) + 40 exp(α + β) + 5 exp(α + β) ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) ( + 5 exp(α) + 6 exp(β) + 5 exp(α + β)) 1 exp(β) + 4 exp(α + β) + 0 exp(α + β) 1 exp(β) + 0 exp(α + β) + 1 exp(α + β) ( + 4 exp(α) + 6 exp(β) + 5 exp(α + β)) ( + exp(α) + 6 exp(β) + 4 exp(α + β)) 10 exp(β) + exp(α + β) + 1 exp(α + β) 10 exp(β) + 14 exp(α + β) + 4 exp(α + β) ( + exp(α) + 5 exp(β) + 4 exp(α + β)) ( + exp(α) + 5 exp(β) + exp(α + β)) 56 9 ( 4 exp(β) + 1 exp(α + β) + 4 exp(α + β) exp(β) + 10 exp(α + β) + 4 exp(α + β) 14 + exp(α) + exp(β) + exp(α + β)) ( + exp(α) + 1 exp(β) + exp(α + β)) 6 exp(α + β) + 8 exp(α + β) ( exp(α) + exp(β) + exp(α + β)) Newton-Raphson θ (α, β) m θ m (α m, β m ) 6 9 ( ) 1 F θ m θ m1 θ (θ m1) F(θ) * * ; %macro ln(alpha, beta, a, b, c, d); log(&a + &b * exp(&alpha) + &c * exp(&beta) + &d * exp( &alpha + &beta)) %mend ln; * ; %macro f(alpha, beta); 5*&alpha + 4*&beta - %ln(&alpha, &beta, 4, 6, 6, 5) - %ln(&alpha, &beta, 7/, 11/, 6, 5) - %ln(&alpha, &beta,, 5, 6, 5) - %ln(&alpha, &beta,, 5, 6, 5) - %ln(&alpha, &beta,, 4, 6, 5) - %ln(&alpha, &beta,,, 6, 4) - %ln(&alpha, &beta,,, 5, 4) - %ln(&alpha, &beta,,, 5, ) - %ln(&alpha, &beta, 4/,, 14/, ) - %ln(&alpha, &beta, /,, 1/, ) - %ln(&alpha, &beta, 0,,, ) %mend f; * 1 ; %macro frac1(alpha, beta, a, b, c, d); (&b * exp(&alpha) + &d * exp(&alpha + &beta)) / (&a + &b*exp(&alpha) + &c*exp(&beta) + &d*exp(&alpha + &beta)) %mend frac1; %macro frac(alpha, beta, a, b, c, d); (&c * exp(&beta) + &d * exp(&alpha + &beta)) / (&a + &b*exp(&alpha) + &c*exp(&beta) + &d*exp(&alpha + &beta)) %mend frac; 15

16 * ; %macro frac11(alpha, beta, a, b, c, d); (&a * &b * exp(&alpha) + (&a * &d + &b * &c)*exp(&alpha + &beta) + &c * &d * exp(&alpha + *&beta)) / (&a + &b*exp(&alpha) + &c*exp(&beta) + &d*exp(&alpha + &beta))** %mend frac11; %macro frac1(alpha, beta, a, b, c, d); ( (&a * &d - &b * &c)*exp(&alpha + &beta) ) / (&a + &b*exp(&alpha) + &c*exp(&beta) + &d*exp(&alpha + &beta))** %mend frac1; %macro frac(alpha, beta, a, b, c, d); (&a * &c * exp(&beta) + (&a * &d + &b * &c)*exp(&alpha + &beta) + &b * &d * exp(*&alpha + &beta)) / (&a + &b*exp(&alpha) + &c*exp(&beta) + &d*exp(&alpha + &beta))** %mend frac; * 1 l alpha; %macro f1(alpha, beta); 5 - %frac1(&alpha, &beta, 4, 6, 6, 5) - %frac1(&alpha, &beta, 7/, 11/, 6, 5) - %frac1(&alpha, &beta,, 5, 6, 5) - %frac1(&alpha, &beta,, 5, 6, 5) - %frac1(&alpha, &beta,, 4, 6, 5) - %frac1(&alpha, &beta,,, 6, 4) - %frac1(&alpha, &beta,,, 5, 4) - %frac1(&alpha, &beta,,, 5, ) - %frac1(&alpha, &beta, 4/,, 14/, ) - %frac1(&alpha, &beta, /,, 1/, )- %frac1(&alpha, &beta, 0,,, ) %mend f1; * 1 l beta; %macro f(alpha, beta); 4 - %frac(&alpha, &beta, 4, 6, 6, 5) - %frac(&alpha, &beta, 7/, 11/, 6, 5) - %frac(&alpha, &beta,, 5, 6, 5) - %frac(&alpha, &beta,, 5, 6, 5) - %frac(&alpha, &beta,, 4, 6, 5) - %frac(&alpha, &beta,,, 6, 4) - %frac(&alpha, &beta,,, 5, 4) - %frac(&alpha, &beta,,, 5, ) - %frac(&alpha, &beta, 4/,, 14/, ) - %frac(&alpha, &beta, /,, 1/, ) - %frac(&alpha, &beta, 0,,, ) %mend f; * l alpha alpha; %macro f11(alpha, beta); - %frac11(&alpha, &beta, 4, 6, 6, 5) - %frac11(&alpha, &beta, 7/, 11/, 6, 5) - %frac11(&alpha, &beta,, 5, 6, 5) - %frac11(&alpha, &beta,, 5, 6, 5) - %frac11(&alpha, &beta,, 4, 6, 5) - %frac11(&alpha, &beta,,, 6, 4) - %frac11(&alpha, &beta,,, 5, 4) - %frac11(&alpha, &beta,,, 5, ) - %frac11(&alpha, &beta, 4/,, 14/, ) - %frac11(&alpha, &beta, /,, 1/, ) - %frac11(&alpha, &beta, 0,,, ) %mend f11; 16

17 * l alpha beta; %macro f1(alpha, beta); - %frac1(&alpha, &beta, 4, 6, 6, 5) - %frac1(&alpha, &beta, 7/, 11/, 6, 5) - %frac1(&alpha, &beta,, 5, 6, 5) - %frac1(&alpha, &beta,, 5, 6, 5) - %frac1(&alpha, &beta,, 4, 6, 5) - %frac1(&alpha, &beta,,, 6, 4) - %frac1(&alpha, &beta,,, 5, 4) - %frac1(&alpha, &beta,,, 5, ) - %frac1(&alpha, &beta, 4/,, 14/, ) - %frac1(&alpha, &beta, /,, 1/, ) - %frac1(&alpha, &beta, 0,,, ) %mend f1; * l beta beta; %macro f(alpha, beta); - %frac(&alpha, &beta, 4, 6, 6, 5) - %frac(&alpha, &beta, 7/, 11/, 6, 5) - %frac(&alpha, &beta,, 5, 6, 5) - %frac(&alpha, &beta,, 5, 6, 5) - %frac(&alpha, &beta,, 4, 6, 5) - %frac(&alpha, &beta,,, 6, 4) - %frac(&alpha, &beta,,, 5, 4) - %frac(&alpha, &beta,,, 5, ) - %frac(&alpha, &beta, 4/,, 14/, ) - %frac(&alpha, &beta, /,, 1/, ) - %frac(&alpha, &beta, 0,,, ) %mend f; *Newton-Raphson ; * Newton-Raphson Fisher s scoring ; %macro seq n(x1, x); x1 &x1; x &x; f1 %f1(x1, x); f %f(x1, x); f11 %f11(x1, x); f1 %f1(x1, x); f %f(x1, x); det f11*f - f1**; y1 x1 - (f * f1 - f1*f) / det; y x - (- f1*f1 + f11*f ) / det; %mend seq n; 17

18 * ; %macro exe(init1, init, method, no); data d&no; length i.0 diff x1 x y1 y f1 f %if &method n %then %do; f11 f1 f %end; %else %if &method f %then %do; I11 I1 I %end; det sol1 sol check1 check 8.0; i 1; diff 10; x1 &init1; x &init; do until(diff < 10**(-8) or det 0 or i > 1000); %seq &method(x1, x) output; diff sqrt((y1-x1)** + (y-x)**); x1 y1; x y; i i +1; end; sol1 y1;*newton-raphson ; sol y; check1 %f1(sol1, sol);* 0 ; check %f(sol1, sol);* 0 ; output; run; %mend exe; %exe(0.1, 0.1, n, 1) proc print proc print datad1; run; 18

19 i diff x1 x y1 y f1 f f11 f1 f det sol1 sol check1 check E E-16 α sol β sol SAS 19

20 (j) α, β (i) *6 λ(t x i, 1) λ(t x i, 0) λ 0(t) exp( αx i + β) exp( β) exp(1.86) 0.90 λ 0 (t) exp( αx i ) λ(t 1, y j) λ(t 0, y j ) λ 0(t) exp( α + βy j ) exp( α) exp(0.4684) 0.66 λ 0 (t) exp( βy j ) (k) Wald Wald H 0 H 1 H 0 : β 0 H 1 : β 0 L L ( 0 1 ) ( L θ 0 1 ) ( α β ) β H 0 H 1 H 0 : L θ 0 H 1 : L θ 0 θ (α, β) θ ( α, β) Fisher I(θ) I 11(θ) I 1 (θ) (I(θ)) 1 I11 (θ) I 1 (θ) Wald χ I 1 (θ) I (θ) I 1 (θ) I (θ) χ W ald (L θ) (L I( θ) 1 L) 1 (L θ) ( ( 0 1 ) ( α β )) ( ( 0 1 ) ( I 11 ( θ) I 1 ( θ) I 1 ( θ) I ( θ) ) ( 0 1 )) 1 ( ( 0 1 ) ( α β )) ( β) I ( θ) χ W ald 5% χ W ald > χ (1, 0.95) *6 x i 0

21 *7 F(θ) [ ] F I(θ) E θ (θ) [ E [ E ] l α l α β ] l α (α, β) l α β (α, β) [ E E l α β ] [ ] l β l α β (α, β) l β (α, β) Newton-Raphson θ (0.4684, 1.86) f11, f1, f I 11 ( θ), I 1 ( θ), I ( θ) ( ) I( θ) ( ) det ( ) ( ) I( θ) I ( θ) χ W ald (1.84) χ (1, 0.95).84 H 0 SAS p data d1; p 1 - cdf( chisq,.566, 1) run; p SAS β I ( θ) SAS *7 1

22 ( ) b exp(α) + d exp(α + β) α a + b exp(α) + c exp(β) + d exp(α + β) ( ) b exp(α) + d exp(α + β) β a + b exp(α) + c exp(β) + d exp(α + β) ( ) c exp(β) + d exp(α + β) β a + b exp(α) + c exp(β) + d exp(α + β) ab exp(α) + (ad + bc) exp(α + β) + cd exp(α + β) (a + b exp(α) + c exp(β) + d exp(α + β)) (ad bc) exp(α + β) (a + b exp(α) + c exp(β) + d exp(α + β)) ac exp(β) + (ad + bc) exp(α + β) + bd exp(α + β) (a + b exp(α) + c exp(β) + d exp(α + β))

*1 * Wilcoxon 2 2 t t t t d t M t N t M t n t N t n t N t d t N t t at ri

*1 * Wilcoxon 2 2 t t t t d t M t N t M t n t N t n t N t d t N t t at ri Wilcoxon H23 BioS 1 Wilcoxon 2 2.1 1 2 1 0 1 1 5 0 1 2 7 0 1 3 8 1 1 4 12 0 2 5 2 0 2 6 3 1 2 7 4 1 2 8 10 0 Wilcoxon 2.2 S 1 t S 2 t Wilcoxon H 0 H 1 H 0 : S 1 t S 2 t H 1 : S 1 t S 2 t 1 *1 *2 2.3 2.3.1

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat =

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat = H BioS t (i) treat treat data d; input patno treat treat; cards; 3 8 7 4 8 8 5 5 6 3 ; run; (i) treat treat data d; input group patno period treat y; label group patno period ; cards; 3 8 3 7 4 8 4 8 5

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I H BioS (i) I treat II treat data d; input group patno treat treat; cards; 8 7 4 8 8 5 5 6 ; run; I II sum data d; set d; sum treat + treat; run; sum proc gplot data d; plot sum * group ; symbol c black

More information

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ t 2 Armitage t t t χ 2 F χ 2 F 2 µ, N(µ, ) f(x µ, ) = ( ) exp (x µ)2 2πσ 2 2 0, N(0, ) (00 α) z(α) t * 2. t (i)x N(µ, ) x µ σ N(0, ) 2 (ii)x,, x N(µ, ) x = x + +x ( N µ, σ2 ) (iii) (i),(ii) x,, x N(µ,

More information

スライド 1

スライド 1 61 SAS SAS LOHAS 18 18 12 01 LOHAS ( ) ( ) LOHAS 29% 35% LOHAS LOHAS 18 5 20 60 GMO 500 Yes No Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 LOHAS Q25 LOHAS / 2

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

t sex N y y y Diff (1-2)

t sex N y y y Diff (1-2) Armitage 1 1.1 2 t 1.2 SAS Proc GLM 2 2.1 1 1 2.1.1 50 1 1 t sex N y 50 116.45 119.6 122.75 11.071 1.5657 93.906 154.32 y 50 127.27 130.7 134.13 12.072 1.7073 102.68 163.37 y Diff (1-2) -15.7-11.1-6.504

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P + Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672

More information

i Armitage Q. Bonferroni 1 SAS ver9.1.3 version up 2 *1 *2 FWE *3 2.1 vs vs vs 2.2 5µg 10µg 20µg 5µg 10µg 20µg vs 5µg vs 10µg vs 20µg *1 *2 *3 FWE 1

i Armitage Q. Bonferroni 1 SAS ver9.1.3 version up 2 *1 *2 FWE *3 2.1 vs vs vs 2.2 5µg 10µg 20µg 5µg 10µg 20µg vs 5µg vs 10µg vs 20µg *1 *2 *3 FWE 1 i Armitage Q Boferroi SAS ver93 versio up * * FWE *3 vs vs vs 5µg 0µg 0µg 5µg 0µg 0µg vs 5µg vs 0µg vs 0µg * * *3 FWE 3 A B C D E (i A B C D E (ii A B C D E (iii A B C D E (iv A B C D A < B C D A < B

More information

PROC OPTIONS; NOTE: XXXXXXXXSASV8.2 SASV9.1 SASV9.1 LIBNAME source ""; LIBNAME target V9 ""; PROC MIGRATE IN=source OUT=target ; RUN ; LIBNAME v8lib V8 "d: saslib v8lib"; LIBNAME v9lib V9 "d: saslib

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

.......p...{..P01-48(TF)

.......p...{..P01-48(TF) 1 2 3 5 6 7 8 9 10 Act Plan Check Act Do Plan Check Do 11 12 13 14 INPUT OUTPUT 16 17 18 19 20 21 22 23 24 25 26 27 30 33 32 33 34 35 36 37 36 37 38 33 40 41 42 43 44 45 46 47 48 49 50 51 1. 2. 3.

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

総合薬学講座 生物統計の基礎

総合薬学講座 生物統計の基礎 2013 10 22 ( ) 2013 10 22 1 / 40 p.682 1. 2. 3 2 t Mann Whitney U ). 4 χ 2. 5. 6 Dunnett Tukey. 7. 8 Kaplan Meier.. U. ( ) 2013 10 22 2 / 40 1 93 ( 20 ) 230. a t b c χ 2 d 1.0 +1.0 e, b ( ) e ( ) ( ) 2013

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

Microsoft PowerPoint - SAS2012_ZHANG_0629.ppt [互換モード]

Microsoft PowerPoint - SAS2012_ZHANG_0629.ppt [互換モード] SAS による生存時間解析の実務 張方紅グラクソ スミスクライン ( 株 バイオメディカルデータサイエンス部 Practice of Survival Analysis sing SAS Fanghong Zhang Biomedical Data Science Department, GlaxoSmithKline K.K. 要旨 : SASによる生存時間解析の実務経験を共有する. データの要約

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ 17 6 8.1 1: Bragg-Brenano x 1 Bragg-Brenano focal geomer 1 Bragg-Brenano α α 1 1 α < α < f B α 3 α α Barle 1. 4 α β θ 1 : α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ Θ θ θ Θ α, β θ Θ 5 a, a, a, b, b, b

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Autumn 2005 1 9 13 14 16 16 DATA _null_; SET sashelp.class END=eof; FILE 'C: MyFiles class.txt'; /* */ PUT name sex age; IF eof THEN DO; FILE LOG; /* */ PUT '*** ' _n_ ' ***'; END; DATA _null_;

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1 ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

Web XXX.XXX.XXX.XXX - - [02/May/2010:12:52: ] "GET /url/url2/page2.htm HTTP/1.1" "http://www.domain.co.jp/url/url2/page1.htm" "(compatibl

Web XXX.XXX.XXX.XXX - - [02/May/2010:12:52: ] GET /url/url2/page2.htm HTTP/1.1 http://www.domain.co.jp/url/url2/page1.htm (compatibl Web Web-Site Analytics Fukuoka Financial Group, Inc. Mahiru Sunaga SAS Institute Japan Ltd. Kiyoshi Murakami (Combind log format) Apache Web 2 1 Web XXX.XXX.XXX.XXX - - [02/May/2010:12:52:55 +0900] "GET

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

DATA Sample1 /**/ INPUT Price /* */ DATALINES

DATA Sample1 /**/ INPUT Price /* */ DATALINES 3180, 3599, 3280, 2980, 3500, 3099, 3200, 2980, 3380, 3780, 3199, 2979, 3680, 2780, 2950, 3180, 3200, 3100, 3780, 3200 DATA Sample1 /**/ INPUT Price @@ /* @@1 */ DATALINES 3180 3599 3280 2980 3500 3099

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

untitled

untitled . x2.0 0.5 0 0.5.0 x 2 t= 0: : x α ij β j O x2 u I = α x j ij i i= 0 y j = + exp( u ) j v J = β y j= 0 j j o = + exp( v ) 0 0 e x p e x p J j I j ij i i o x β α = = = + +.. 2 3 8 x 75 58 28 36 x2 3 3 4

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

直交座標系の回転

直交座標系の回転 b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

Kumagai09-hi-2.indd

Kumagai09-hi-2.indd CSR2009 CONTENTS 1 2 3 4 5 6 7 8 9 10 350 11 12 13 14 15 16 17 18 Do Check Action Plan 19 20 INPUT r r r r k k OUTPUT 21 22 Plan Action Check Do 23 24 25 26 27 28 16:50 7:30 8:00 8:30 9:30 10:00 18:00

More information