数学ノート 2018-

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "数学ノート 2018-"

Transcription

1 (Sakaé Fuchino) I 2 II I I II 2012 update : (02:14JST)

2 download fml-6 3 2

3 I II A Th( Q, < ) Th( N, S, 0 ) Presburger Th( R, +,, 0, 1 )

4

5 I parti 1 introduction (symbolic logic) (mathematical logic) (foundation of mathematics) 1) : A. ( (logical system)) Gottfried Wilhelm von Leibniz (1646( 23 ) ( 1 )) (Leibniz ) Ernst Schröder (1841( 12 ) ( 35 )) Friedrich Ludwig Gottlob Frege (1848( 1 ) ( 14 )) 1) 5

6 2) Hilbert Paul Bernays (1888( 21 ) ( 52 )) 1 2 B. Hilbert Ackermann 1928 [5] ([4] ) C. Yes: Kurt Gödel (1906( 39 ) 1978( 53 )) (Completeness Theorem, 1929) I 8 D. : 3.6 () E. David Hilbert ( , 2 18 ) ( Hilbert ) F () E. Kurt Gödel ( ) (Incompleteness Theorems, l931) 15 2) Boole, de Morgan, Dodgeson (Luis Carrol), Russel l9 20 Peano 6

7 G. E.... [9], [11] II [1] : (2011). [2] H.-.D. Ebbinghaus J. Flum, W. Thomas: Einfürung in die mathematische Logik, Wissenschaftsverlag (1992, ). [3] Herbert B. Enderton, A Mathematical Introduction to Logic, Second Edition, Academic Press (2001). [4] G. Gentzen, Untersuchungen über das logische Schließen, Mathematische Zeitschrift. 39 (1934), , [5] D. Hilbert and W. Ackermann, Grundzüge der theoretischen Logik, Springer- Verlag (1928/1972). [6] : (1996). [7] : (1977). [8] Joseph R. Shoenfield, Mathematical Logic, A K Peters/CRC Press; 2Rev Ed. (1967/2001). [9] G. Takeuti, Two applications of Logic, Iwanami Shoten & Princeton University Press (1978). [10] : (1956/1974). [11] : 2 (1997). [12] : (2012). 7

8 1.1 φ x y(( z(z z + x z + y > 0) z(0 > z z + x z + y)) z(z z + x z + y 0)) (formula) x : for all x holds y : there exists x such that : and : implies 3) φ R, 0, + R, R, < R 4) R, 0, + R, R, < R = φ Q, 0, + Q, Q, < Q Q, 0, + Q, Q, < Q = φ 2 1 pred-logic x y(( z(z z + x z + y < 0) z(0 < z z + x z + y)) z(z z + x z + y 0)) : 0 : +, 3) objects = 4) + R, R, < R R + Q, Q, < Q Q 8

9 : < : : x, y, z :, :, : (, ),...,, ( ), : : x, y, z, x 0, x 1,..., etc. :,,, :, : (, ),, x, y, z x, y, z etc. L (language) L (constant symbol) (function symbol) 9

10 (relation symbol) L (arity) L L + L z z + x z + y L- (L-term) : (2.1) L ( 1 ) L-; term-0 (2.2) f L n-t 1,..., t n L-f(t 1,..., t n ) L- term-1 (2.3) L- (2.1) (2.2) term-2 (2.3) f 2 + +(t 1, t 2 ) (t 1 + t 2 ) t 1 + t 2 z z + x z + y ((z z) + (x z)) + y, z (((z + x) z) + y) + ((z z) + (x z)) + y L- t t (closed term) L- (closed L-term) L (( (( 1 + 1) + 1) + ) + 1 ) }{{} n 1 L 1 + n L- t x 1,..., x n t = t(x 1,..., x n ) 10

11 5) x 1,..., x n t L- L- L L- (L-structure) : L = {c i : i I} {f j : j J} {r k : k K} c i, f j, r k L f j m j - r k n k - A L- A A = A, c A i, fj A, rk A i I,j J,k K A c A i, i I A j J f j A : A m j A k K r k A A n k- (r k A Am k ) c A i, fj A, rk A A c i, f j, r k t = t(x 1,..., x n ) L- t(x 1,..., x n ) A t A (x 1,..., x n ) : A n A L- 6) (2.4a) t c i term-3 t A (x 1,..., x n ) : A n A ; a 1,..., a n c i A ; (2.4b) t x i (1 i n) t A (x 1,..., x n ) : A n A ; a 1,..., a n a i ; (2.5) t f j (t 1,..., t mj ) term-5 5) x 1,..., x n V ar V ar x 1,..., x n 6) (2.4a) (2.4b), (2.5) L- (2.1) (2.2) (2.3) (2.4a) (2.4b), (2.5) L- t = t(x 1,..., x n ) t A (x 1,..., x n ) 11

12 t A (x 1,..., x n ) : A n A ; a 1,..., a n f j A (t A 1 (x 1,..., x n )(a 1,..., a n ),..., t A m j (x 1,..., x n )(a 1,..., a n )) 2.1 L 2 +, 1 R = R, + R, R, 1 R,... + R R 1 R 1 L- t(x, y) x x + y + 1 t R (x, y) 2 t R (x) : R 2 R ; r, s r 2 + s + 1 t A (x 1,..., x n ) x 1,..., x n L- (2.1) (2.3) : 2.1 t L-x 1,..., x n l 1,..., l k (k n) 1, 2,..., n t = t(x l1, x l2,..., x lk ) t = t(x 1,..., x n ) L- A = A,... a 1,..., a n A term-a-i t A (x 1,..., x n )(a 1,..., a n ) = t A (x l1,..., x lk )(a l1,..., a lk ) L- t L-a 1,..., a n A t c i (2.4a) t A (x 1,..., x n )(a 1,..., a n ) = c A i = t A (x l1,..., x lk )(a l1,..., a lk ) t x i t = t(x l1, x l2,..., x lk ) i l 1,..., l k (2.4b) t A (x 1,..., x n )(a 1,..., a n ) = a i = t A (x l1,..., x lk )(a l1,..., a lk ) 12

13 t f j (t 1,..., t mj ) t 1,..., t mj (2.5) t A (x 1,..., x n )(a 1,..., a n ) = f A j (t A 1 (x 1,..., x n )(a 1,..., a n ),..., t A m j (x 1,..., x n )(a 1,..., a n )) = 7) f A j (t A 1 (x l1,..., x lk )(a l1,..., a lk ),..., t A m j (x l1,..., x lk )(a l1,..., a li )) = t A (x l1,..., x lk )(a l1,..., a lk ) L- (L-formula) : (2.6) t 1, t 2 L- t 1 t 2 L- ; fml-0 (2.7) t 1,..., t n L- r L n-r(t 1,..., t n ) L- fml-1 ; (2.8) φ, ψ L- φ, (φ ψ), (φ ψ), (φ ψ) L- fml-2 ; (2.9) φ L-x 1 xφ, xφ L- fml-3 ; (2.10) fml-4 (2.6) (2.7) (atomic formula) φ (2.8) φ (literal) xφ xφ x φ, x x φ x b f(x)dx x a (bounded variable) (free variable) 8) x V ar φ φ i x 7) 8)

14 φ i x φ : φ xψ xψ φ i x x φ : i x φ i x φ L- φ x 1,..., x n φ = φ(x 1,..., x n ) x 1,..., x n φ () Fml L L- Fml L = {φ : φ L- } L- L- (L-sentence) Sent L L- Sent L = {φ : φ L- } L- L- V ar V ar L L- φ L- A = A,... φ A L-A L- A V ar A I I (V ar A ) (interprepation) L- A = A,... φ I (A, I) = φ 14

15 : I : V ar A x V ar a A I x,a : V ar A v V ar I(v) v x I x,a (v) = a v x 9) (2.11) L- t 1 = t 1 (x 1,..., x n ), t 2 = t 2 (x 1,..., x n ) φ t 1 t 2 fml-5 (A, I) = φ t A 1 (I(x 1 ),..., I(x n )) = t A 2 (I(x 1 ),..., I(x n )); (2.12) k- r L- t 1 = t 1 (x 1,..., x n ),..., t k = t k (x 1,..., x n ) fml-6 φ r(t 1,..., t k ) (A, I) = φ r A (t A 1 (I(x 1 ),..., I(x n )),..., t A k (I(x 1 ),..., I(x n ))); (2.13) L- θ, η fml-7 (a) φ θ η (A, I) = φ (A, I) = θ (A, I) = η; (b) φ θ η (A, I) = φ (A, I) = θ (A, I) = η; (c) φ θ (A, I) = φ (A, I) = θ ; (d) φ θ η (A, I) = φ (A, I) = θ (A, I) = η; (2.14) L- θ fml-8 (a) φ xθ (A, I) = φ a A (A, I x,a ) = θ ; (b) φ xθ (A, I) = φ a A (A, I x,a ) = θ. 2.1 : 2.2 φ = φ(x 1,..., x n ) L- A = A,... L- I : V ar A, I : V ar A I(x 1 ) = I (x 1 ),..., I(x n ) = I (x n ) (A, I) = φ (A, I ) = φ 9) I x,a I x a formula-a-i 15

16 2.2 φ = φ(x 1,..., x n ) (A, I) = φ I(x 1 ),..., I(x n ) a 1,..., a n A A = φ(a 1,..., a n ) (2.15) I(x 1 ) = a 1,..., I(x n ) = a n I : V ar A fml-8-0 (A, I) = φ φ L- L- (A, I) = φ I I A = φ A L- Th(A) = {φ Sent L : A = φ} Th(A) A 1 ((first order) theory) Th(A) A A = A, A 10) Th(A) A Q, < R, < 11) Th( Q, < ) = Th( R, < ) A Th(A) A L = {+,, 0, 1} L- x(x x = 1 + 1) φ R = R, + R, R, 0, 1, Q Q, + Q, Q, 0, 1 R = φ Q = φ Th(R) Th(Q) 3 L- L- T L- A L- A = T T L- φ A = φ A = T A T theorys-and-models 10) A A = A, A A 11) p.18 16

17 φ = φ(x 1,..., x n ) L- x 1 x n φ(x 1,..., x n ) L- L- φ - forall-closure T - T φ = φ(x 1,..., x n ) L- L- A A = T T A A = x 1 x n φ T = φ φ T L- T (consequences) Cn L (T ) Cn L (T ) = {φ Sent L : T = φ} L- A Th(A) = {φ Sent L : A = φ} L- T Th(A) Cn L (T ) = Th(A) T Th(A) (axiomatization) L n N \ {0} L- φ n x 1 x n ( 1 i<j n x i x j ) finite-str-inf-str-isom x i x j x i x j L- φ i,j, 1 i < j n ) ( φ 1 i<j n i,j 1 i < j n φ i,j L- A = A,... A = φ n A n L- T T = {φ n : n N \ {0}} 12) L- A = A,... A = T A 12) N = {0, 1, 2, 3,...} N \ {0} {0} N \ {0} = {1, 2, 3,...} 17

18 A A = A,... A L L- A T L L- L- n A A n : 3.2 L n N \ {0} L- φ n! (( ) ( )) x 1 x n x 1 i<j n i x j x x x 1 i n i ) L- φ i, 1 < i < n ( φ 1 i n i n-factorial A = φ n! A n φ = φ(x, y 1,..., y k ) x 1,..., x n φ n xφ (( ) ( )) x 1 x n x 1 i<j n i x j φ(x 1 i n i, y 1,..., y k ) L- A = A,... a 1,..., a k A A = n xφ(a 1,..., a k ) A = φ(a, a 1,..., a k ) a A n φ(a, a 1,..., a k ) a A n n! xφ n, m N\{0} φ n!, φ m! T = {φ n!, φ m! } 1 T T T T L = {c i : i I} {f j : j J} {r k : k K} A = A, c A i, f A j, r A k i I,j J,k K, B = B, c B i, f B j, r B k i I,j J,k K L- isomorphic A B g : A B : 18

19 (3.1) g A B 1 1 ; (3.2) i I g(c A i ) = c B i ; (3.3) j J a, a 1,..., a mj A f A j (a 1,..., a mj ) = a f B j (g(a 1 ),..., g(a mj )) = g(a); (3.4) k K a 1,..., a nk r A k (a 1,..., a nk ) r B k (g(a 1 ),..., g(a nk )). g A B A B L- id A : A A A A A A A B A = B : 3.1 L A = A,... B = B,... L- g : A B A B L- φ = φ(x 0,..., x n 1 ) a 0,..., a n 1 A isomorphic-str A = φ(a 0,..., a n 1 ) B = φ(g(a 0 ),..., g(a n 1 )) φ φ 3.2 L, A, B, g : A B 3.1 L- t = t(x 0,..., x n 1 ) g(t A (a 0,..., a n 1 )) = t B (g(a 0 ),..., g(a n 1 )) t 3.3 L L- A L- φ A L- B finite-structures 19

20 B = A B = φ A A : L- A φ A 3.3 L 2 r A = A, r A L- A = {a 0,..., a n 1 } a 0,..., a n 1 L- φ : ( ( ) ( ) x 1 x n x i<j<n i x j x x x i<n i ( ) ( ) ) r(x i,j<n, i,j r A i, x j ) r(x i,j<n, ij r A i, x j ) φ x 1 x n φ 0 φ x 1 x n φ 0 φ φ!n B = B,... L- B = φ b 1,..., b n B B = φ 0 (b 1,..., b n ) φ 0 B = {b 1,..., b n } g : A B g(a i ) = b i, 1 i n φ 0 g 1 1 φ 0 A B α 1, α 2 - ex-of-theories 3.3 L = {<} < 2 (dense linear order without end-points) T DLO α 1,..., α 6 T DLO = {α 1,..., α 6 } α 1 : x < y y < z x < z α 4 : x < y z (x < z z < y) α 2 : (x < x) α 5 : y (y < x) α 3 : x < y y < x x y α 6 : y (x < y). 20

21 R, < R Q, < Q T DLO Cn L (T DLO ) = Th( R, < R ) = T h( Q, < Q ) (Tarski ) L = {β, δ} β 3 δ 4 β(x, y, z) δ(x, y, x, y ) y x z xy x y A1 A13 : A1: β(x, y, x) x y A2: (β(x, y, u) β(y, z, u)) β(x, y, z) A3: (β(x, y, z) β(x, y, u) x y) (β(x, z, u) β(x, u, z)) A4: δ(x, y, y, x) A5: δ(x, y, z, z) x y A6: (δ(x, y, z, u) δ(x, y, v, w)) (z, u, v, w) A7: (Pasch ) v((β(x, t, u) β(y, u, z)) (β(x, v, y) β(z, t, v))) A8: (Euclid ) v w((β(x, u, t) δ(y, u, z) x u) (β(x, z, v) β(x, y, w) β(v, t, w))) A9: (δ(x, y, x, y ) δ(y, z, y, z ) δ(x, u, x, u ) δ(y, u, y, u ) β(x, y, z) β(x, y, z) x y) δ(z, u, z, u ) A10: z(β(x, y, z) δ(y, z, u, v)) A11: x y ( β(x, y, z) β(y, z, x) β(z, x, y)) A12: (δ(x, u, x, v) δ(y, u, y, v) δ(z, u, z, v) u u) (β(x, y, z) β(y, z, x) β(z, x, y)) A13: L- φ = φ(x, v, w,...), ψ = ψ(y, v, w,...) ( y, z, u φ x, z, u ψ ): z x y((φ ψ) β(z, x, y)) u x y((φ ψ) β(x, u, y))) 3.5 Peano L PA = {0, S, +, } 0 S

22 S(x) x x + 1 p 1, p 2, p 3,, T PA = {p 1, p 2, p 3, a 1, a 2, m 1, m 2 } {p φ : φ(x, x) Fml L } T PA Peano (Peano arithmetic) T PA p 1 : x y S(x) S(y) p 3 : x 0 y (S(y) x) p 2 : 0 S(x) a 1 : x + 0 x m 1 : x 0 0 a 2 : x + S(y) S(x + y) m 2 : x S(y) (x y) + x T PA p φ φ p φ : φ(0, x) x (φ(x, x) φ(s(x), x)). x φ(x, x) N = N, 0 N, +1, +, T PA 0 S k- S k (0) S k (0) = S( (S( 0 )) ) }{{}}{{} k k T PA f : N k N L PA - φ f = φ f (x 0,..., x k ) a 0,..., a k 1 N k f(a 0,..., a k 1 ) = b T = φ f (S a 0 (0),..., S a k 1 (0), b) PA Th(N) Cn LPA (PA) Th(N) T T Th(N) T Th(N) ( 12, 15 ) 3.6 (Zermelo-Fraenkel ) E. Zermelo A. Fraenkel ZF ZF 22

23 13) : L = {ε} ε 2 ZF ZF = {,,,,,, } { φ, φ : φ Fml L } 14) () () L- : : z (zεx zεy) x y z t (t εz) : z t (tεz t x t y) : s t [tεs y (yεx tεy)] φ, ψ φ ψ ((φ ψ) (ψ φ)) t εz tεz z x y (yεz yεx) x u (uεx) {x}, x y L- : p t [tεp t x] : : x [ y (yεx y ) t (tεx t {t}εx)] x [x y (yεx z (zεy z εx))] φ(y, x 1,..., x n ) = φ(y, x) L- φ : s t [tεs tεx φ(t, x)] φ(x, y, x) Fml L 13) Zermelo Fraenkel Skolem 14) (informal ) xεy ( ) x ( ) y 23

24 φ : x [xεa y φ(x, y, x)] x y y [φ(x, y, x) φ(x, y, x) y y ] b y [yεb x (xεa φ(x, y, x))]. ZF ZF [1] A. Tarski, What is elementary geometry?, Proceedings of an International Symposium held at the Univ. of Calif., Berkeley, Dec. 26, 1957 Jan. 4, 1958, Studies in Logic and the Foundations of Mathematics, Amsterdam, North- Holland (1959), [2] K. Kunen, Set-theory, North-Holland (1983) (2.8) (φ ψ) 4.1 L φ L- (1) φ L- φ 0, φ 1, φ 0, φ 1 φ = (φ 0 φ 1 ), φ = (φ 0 φ 1) φ 0 = φ 0, φ 1 = φ 1 addendum unambiguity unambiguous (2) φ L- φ 0, φ 1, φ 0, φ 1 φ = (φ 0 φ 1 ), φ = (φ 0 φ 1) φ 0 = φ 0, φ 1 = φ 1 24

25 (3) φ L- φ 0, φ 1, φ 0, φ 1 φ = (φ 0 φ 1 ), φ = (φ 0 φ 1) φ 0 = φ 0, φ 1 = φ L φ ψ L-φ == ψ L A V ar A I (A, I) = φ (A, I) = ψ φ == ψ φ ψ φ ψ L A V ar A I (A, I) = φ ψ φ == ψ φ ψ () == Fml L : minimal-setting 4.1 L φ, ψ, η L- (1) φ == φ; (2) φ == ψ ψ == φ ; (3) φ == ψ ψ == η φ == η L (2.11) (2.14) : 4.2 L φ ψ L- abbrev-0 (1) (φ ψ) == ( φ ψ); (2) (φ ψ) == (φ ψ); (3) xφ == x φ. L Φ : Fml L Fml L : (4.1) φ Φ(φ) = φ; fml-9 (4.2a) φ ψ Φ(φ) = Φ(ψ); fml-10 (4.2b) φ φ 0 φ 1 Φ(φ) = ( Φ(φ 0 ) Φ(φ 1 )); (4.2c) φ φ 0 φ 1 Φ(φ) = (Φ(φ 0 ) Φ(φ 1 )); 25

26 (4.3a) φ xψ Φ(φ) = xφ(ψ); fml-11 (4.3b) φ xψ Φ(φ) = x Φ(ψ). φ Φ(φ),, 4.3 L Φ : Fml L Fml L L- φ φ == Φ(φ) abbrev-1,,,,,,, φ,, Ψ(φ),,,,,,,, 4.4 L φ, ψ, η L-: (1) ((φ ψ) η) == (φ (ψ η)); (2) ((φ ψ) η) == (φ (ψ η)). 4.4 ((φ ψ) η) (φ (ψ η)) (φ ψ η) φ 0,..., φ n 1 φ 0 φ n 1 i<n φ i, {φi : i < n} : 4.5 φ, ψ, η ((φ ψ) η) == (φ (ψ η)) and-and 4.3 subformula 26

27 L L- φ SubF ml(φ) φ φ (4.4) L- t 1, t 2 φ t 1 t 2 SubF ml(φ) = subfml-1 {φ} ; (4.5) L- t 1,..., t n L n- r φ r(t 1,..., t n ) subfml-2 SubF ml(φ) = {φ} ; (4.6) L- φ 1, φ 2 SubF ml(φ 1 ), SubF ml(φ 2 ) subfml-3 (a) φ φ 1 SubF ml(φ) = SubF ml(φ 1 ) {φ} ; (b) φ φ 1 φ 2, φ 1 φ 2, φ φ 2 SubF ml(φ) = SubF ml(φ 1 ) SubF ml(φ 2 ) {φ} ; (4.7) L- ψ SubF ml(ψ), φ xψ subfml-4 xψ SubF ml(φ) = SubF ml(ψ) {φ} L- φ, ψ ψ φ (subformula) ψ SubF ml(φ) L- t L- φ freev ar(t), freev ar(φ) L- t freev ar(t) : (4.8a) t freev ar(t) = ; freevar-0 (4.8b) t x V ar freev ar(t) = {x} ; (4.9) L- t 1,..., t n L n- f t = f(t 1,..., t n ) freevar-1 freev ar(t 1 ),..., freev ar(t n ) freev ar(t) = freev ar(t 1 ) freev ar(t n ) L- t freev ar(t) {x 1,..., x n } t = t(x 1,..., x n ) L- φ freev ar(φ) : 27

28 (4.10) L- t 1, t 2 φ t 1 t 2 freev ar(φ) = freevar-1 freev ar(t 1 ) freev ar(t 2 ) ; (4.11) L- t 1,..., t n L n- r φ r(t 1,..., t n ) freevar-2 freev ar(φ) = freev ar(t 1 ) freev ar(t n ) ; (4.12) L- φ 1, φ 2 freev ar(φ 1 ), freev ar(φ 2 ) freevar-3 (a) φ φ 1 freev ar(φ) = freev ar(φ 1 ) ; (b) φ (φ 1 φ 2 ), (φ 1 φ 2 ), (φ φ 2 ) freev ar(φ) = freev ar(φ 1 ) freev ar(φ 2 ) ; (4.13) L- ψ freev ar(ψ), φ xψ freevar-4 xψ freev ar(φ) = freev ar(ψ) \ {x} L- φ freev ar(φ) {x 1,..., x n } φ = φ(x 1,..., x n ) L- φ L- freev ar(φ) = (propositional logic) : normal-form sentential-logic (5.1) : A 1, A 2,..., B 1, B 2,..., etc. (5.2) :,,, (5.3) : (, ) (5.4) ; 28

29 (5.5) φ, ψ (φ ψ), (φ ψ), φ, (φ ψ) ; (5.6) φ A 1,..., A n φ = φ(a 1,..., A n ) A 1,..., A n 2 = {0, 1} 1 0 (true) (false) on off f n f : 2 n 2 f 2 2 n 2 n = { i 1,..., i n : i 1,..., i n 2} φ = φ(a 1,..., A n ) f φ(a1,..., A n) : 2 n 2 : (5.7) φ A i (1 i n) p 1,..., p n 2 f φ(a1,..., A n)(p 1,..., p n ) = p i ; (5.8) a-0 (a) φ (ψ 0 ψ 1 ) p 1,..., p n 2 1, f ψ0 (A 1,..., A n)(p 1,..., p n ) = 1 f φ(a1,..., A n)(p i,..., p n ) = f ψ1 (A 1,..., A n)(p 1,..., p n ) = 1 ; 0, ; (b) φ (ψ 0 ψ 1 ) p 1,..., p n 2 1, f ψ0 (A 1,..., A n)(p 1,..., p n ) = 1 f φ(a1,..., A n)(p 1,..., p n ) = f ψ1 (A 1,..., A n)(p 1,..., p n ) = 1 ; 0, ; (c) φ ψ 0 p 1,..., p n 2 1, f ψ0 (A 1,..., A n)(p 1,..., p n ) = 0 f φ(a1,..., A n)(p 1,..., p n ) = 0, ; 29

30 ; (d) φ (ψ 0 ψ 1 ) p 1,..., p n 2 1, f ψ0 (A 1,..., A n)(p 1,..., p n ) = 0 f φ(a1,..., A n)(p 1,..., p n ) = f ψ1 (A 1,..., A n)(p 1,..., p n ) = 1 ; 0, A 1,..., A n φ = φ(a 3, A 1 ) φ φ = φ(a 1, A 2, A 3 ) p 1, p 2, p 3 2 f φ(a1,a 2,A 3 )(p 1, p 2, p 3 ) = f φ(a3,a 1 )(p 3, p 1 ) 5.1 k n 1 i 1,..., i k n prop-l-0 φ = φ(a i1,..., A ik ) φ φ = φ(a 1,..., A n ) p 1,..., p n 2 f φ(a1,..., A n)(p 1,..., p n ) = f φ(ai1,..., A ik )(p i1,..., p ik ) φ,, (6.1 ) I PropVar I : PropVar 2 I A I(A) I φ = φ(a 1,..., A n ) I = φ f φ(a1,..., A n)(i(a 1 ),..., I(A n )) = 1 30

31 I = φ I φ I φ 5.1 A 1,..., A n = φ I I = φ = φ φ (universally valid) φ (tautology) 5.2 φ = φ(x 1,..., x n ) L φ 1 = φ 1 (x 1...x m ),..., φ n = φ n (x 1,..., x m ) L- A = A,... L- a 1,..., a m A 0 < k < n 1, A = φ k (a 1,..., a m ) i k = 0, prop-l-1 A = φ(φ 1,..., φ n )(a 1,..., a m ) f φ(x1,..., x n)(i 1,..., i n ) = φ = φ(x 1,..., x n ) L φ 1 = φ 1 (x 1...x m ),..., φ n = φ n (x 1,..., x m ) L- L- A prop-l-2 A = x 1 x m φ(φ 1,..., φ n ) φ = φ(a 1,..., A n ) ψ = ψ(a 1,..., A n ) φ == ψ (φ φ functionally equivalent) f φ(a1,..., A n) = f ψ(a1,..., A n) L- φ, ψ φ == ψ L- A A = φ A = ψ (4.2 ) 5.4 φ = φ(a 1,..., A n ) ψ = ψ(a 1,..., A n ) φ == ψ L η 1,..., η n Fml L φ(η 1,..., η n ) == ψ(η 1,..., η n ) 5.2 φ 31

32 5.3 φ(φ 1,..., φ n ) Fml L φ φ φ = φ(a 1,..., A n ) 2 n p 2 n f φ(a1,..., A n)(p) = 1 ψ Fml L φ φ 1,..., φ n Fml L ψ = φ(φ 1,..., φ n ) φ φ ((A 1 A 2 ) A 3 ) f φ(a1,a 2,A 3 ) : sentential-logic-a functional-completeness A 1 A 2 A 3 (A 1 A 2 ) ((A 1 A 2 ) A 3 ) ((A 1 A 2 ) A 3 ) (A 1 A 2 ) ((A 1 A 2 ) A 3 ) φ 1, φ 2, φ 3 (φ 1 φ 2 ) == (φ 1 φ 2 ) ((φ 1 φ 2 ) φ 3 ) == (φ 1 (φ 2 φ 3 )) functionally equivalence ( ) (6.1) ((φ 1 φ 2 ) φ 3 ) (φ 1 φ 2 φ 3 ) i {1,2,3} φ i, {φ i : i b-a {1, 2, 3}} 32

33 t 2 n φ t(a 1,..., A n ) 0<i n φ t,i φ t,i = A i t i entry 1 A i f φ t(a 1,..., A n) f φ t(a 1,..., A n)( s) = 1 s = t f : 2 n 2 φ f = φ f (A 1,..., A n ) {φ t : t 2 n, f( t) = 1} f 0 φ f A 1 A 1 f = f φf (A 1,..., A n) ( ) : 6.1 f : 2 n 2,, φ = φ(a 1,..., A n ) f = f φ(a1,..., A n) func-comp-1 {,, } (functionally complete) φ, ψ (φ ψ) == ( φ ψ) (φ ψ) == ( φ ψ) ( ) {, } {, } (φ ψ) == ( φ ϕ) ( ) 6.3 {, } {,, },, φ = φ(a 1,..., A n ) f φ(a1,..., A n)(1, 1,..., 1) = 1 ( 1, 1,..., 1 1 n ),, 33

34 6.2 T T (satisfiable) sentential-compactness I : PropVar 2 φ T I = φ T (finitely satisfiable) T T T T ( ) 6.4 T φ T comp-1 T {φ} T { φ} T T {φ} T { φ} T T, T T T {φ} T { φ} T T T I : PropVar 2 I = T T I = φ I T {φ} T {φ} I = φ (5.8), (c) I = φ I = T { φ} T { φ} comp ( ) T T T PropVar 15) PropVar A 1, A 2, A 3,... (PropVar ) T n, n N (6.2) T 0 = T ; a-1 15) (Prime Ideal Theorem) (ZF) T ( PropVar ) PropVar (ZF ) 2 ( PropVar ) ( ) 34

35 (6.3) T n {A n+1 } T n+1 = T n {A n+1 } a-2 T n+1 = T n { A n+1 } 6.4 T n T = n N T n Claim T T T n N T T n T n T Claim n N A n+1 T A n+1 T A n+1 T A n+1 T n+1 (6.3) A n+1 T n+1 T A n+1, A n+1 T m A n+1, A n+1 T m {A n+1, A n+1 } T m I : PropVar 2 1, A n+1 T I (A n+1 ) = 0, I T Claim φ T I = φ n φ A 1, A 2,..., A n φ i, i = 1, 2,..., n A i, A i T φ i = A i, Weak König s Lemma 35

36 {φ, φ 1, φ 2,..., φ n } T I = {φ, φ 1, φ 2,..., φ n } I φ 1,..., φ n i = 1,..., n I(A i ) = 1 A i T I (A i ) = 1 I {A 1,..., A n } = I {A 1,..., A n } I = φ 5.1 I = φ 6.3 G, E G E G E appl-comp-thm ( ) x, y G x E y y E x () x G x E x G x E y x, y E 1 G, E ( G ) E G, E G G, E χ : G {1, 2,..., n} G n x, y G x E y χ(x) χ(y) n 2 G, E n χ Appel Haken 6.6 () (K. Appel and W. Haken, 1976) 4 36

37 ( ) 16) 4 G, E G, E G G x, y G x E y x E y 6.7 () G, E G, E 4 PropVar = {c x,i : x G, i {1, 2, 3, 4}} c x,i, x G, i {1, 2, 3, 4} c x,i x i T (6.4) T = {(c x,1 c x,2 c x,3 c x,4 ) : x G} a-3 {c x,i c x,j : x G, i, j {1, 2, 3, 4}, i j} {c x,i c y,i : x, y G, x E y, i {1, 2, 3, 4}}. T 1 1, 2, 3, T T I f : G {1, 2, 3, 4} f(x) = i I(c x,i ) = 1 f G, E 4 16) ( )

38 7 3 L T L-φ = φ(x 1,..., x n ) L- L- A A = T T A A = x 1 x n φ T = φ φ T φ T L- K 17) T φ T K T K φ : formal-system-of-proof (7.1) K (correct) 18) T K φ T = φ K-0 (7.2) K (complete) T = φ T K φ K-1 (7.3) T K φ φ T P K-2 P T P K φ T P P T φ T P K φ K T = φ T P K φ P P φ T K : K L K L A, R = A L, R L (L L ) A L- R p, φ p L- φ L- φ A φ K p R p K ρ = p, φ p = {φ 1,..., φ n } 17) K Kalkül logisches Kalkül 18) K (sound) 38

39 (ρ) φ 1,..., φ n φ K A, R L K L- Γ, L- P L- φ Γ P K φ P φ Γ K Γ K φ φ K Γ : L- P = φ 1,..., φ n φ Γ K (7.4) (7.5) : (7.4) φ n = φ; K-3 (7.5) 1 i n : K-4 (a) φ i A Γ (b) (p, ψ) R p {φ 1,..., φ i 1 } φ i = ψ. P φ Γ K Γ P K φ Γ K φ φ Γ K Γ P K φ P Γ P K φ n P Γ n K φ K n K n P K Γ P K φ, Γ K φ,... Γ P K φ, K φ,... Γ P K φ, Γ K φ,... L Γ P,L K φ, Γ L K φ,... (7.3) L L- L L- A R K K (7.1), (7.2), L L- Γ L- φ Γ K φ Γ = φ Γ K φ K K (7.1), (7.2), (7.3) K 39

40 K (7.1), (7.2), (7.3) φ 1,..., φ k, φ φ 1 φ k φ (φ 1 (φ 2 ( (φ k 1 (φ k φ)) ))) (φ ψ) φ ψ (2.9) 2 A = xφ A = x φ 4.2, 4.3 (2.9) φ xφ xφ x φ L 1 K 3 : 1. Fml L K 2. x, y, z, x 1, x 2,..., y 1, y 2,... K : (7.6) x x ; eq-a (7.7) x y y x ; eq-b (7.8) x y y z x z ; eq-b-0 (7.9) x 1 y 1 x n y n f(x 1,..., x n ) f(y 1,..., y n ), eq-c f L n ; (7.10) x 1 y 1 x n y n r(x 1,..., x n ) r(y 1,..., y n ), eq-d r L n. 3. () φ Fml L, x V ar, t L-φ x t y yψ φ t φ x φ(t/x) xφ K 19) 19) φ(t/x) φ x L- t 40

41 K : 1. () φ, ψ Fml L φ, φ ψ K ψ ; 2. () φ, ψ Fml L x V ar φ ψ K xφ ψ x ψ K (7.1), (7.2), (7.3) K P, n P K, n K L 1 L L-T L- φ, φ 0, φ 1,..., ψ, ψ 0,... L- 7.1 () T φ T = φ. soundness n n N \ {0} (7.11) T n φ T = φ soundness-0 n = 1 φ T φ T T = φ φ 5.3 T = φ φ T = φ φ = φ : φ α(t/x) α x t A = φ I : V ar A (A, I) = α(t/x) (A, I) = xα I : V ar A (A, I) = α(t/x) t = t(x 1,..., x k ) x α(t/x) φ = φ(x) φ x 41

42 a = t A (I(x 1 ),..., I(x k )) (A, I x,a ) = α (A, I) = xα A = φ n > 1 1 m < n (7.11) n m φ T n = 1 A = φ φ 1,..., φ n φ φ = φ n φ 1,..., φ n 1 φ i, j < n φ j = φ i φ φ i, φ i φ φ φ 1,..., φ i φ 1,..., φ j φ i φ j T i φ i, T j φ j A = T (7.12) A = φ i s-0 (7.13) A = φ i φ s-1 I : V ar A (7.13) (A, I) = φ i (A, I) = φ (7.12) (A, I) = φ i (A, I) = φ I : V ar A A = φ φ i < n φ i φ φ i η ν x x ν φ xη ν A T (A L- A = T ) I : A V ar (A, I ) = η ν (A, I x,a ) = η a A (A, I x,a ) = ν x ν (A, I) = ν (A, I) = x η ν a A (A, I x,a ) = η (A, I) = η (A, I) = x η ν 42

43 I A = x η ν A = φ K K (meta-theorem) 7.2 ( 7.3) 8.4, ( 8.5) implication 7.2 T φ 1 φ k φ T φ 1,..., T φ k T φ φ 1 φ k φ φ 1,..., φ k T φ T P 1 φ 1 φ k φ T P 2 T φ 1 T φ 1 φ k φ φ 1 (φ 2 φ k φ) φ 2 φ k φ φ 1 φ 1 φ k φ P 1 P 2 φ 2 φ k φ T φ 2 φ k φ 20) T φ P 1, P 2,..., T φ T {φ 1,..., φ k } φ T, φ 1,..., φ k φ 7.3 ( Deduction Theorem) (1) L- T L- Deduction-Thm φ, ψ T φ ψ T, φ ψ (2) φ L-T, φ ψ T φ ψ. 20) 2 S = s 1,..., s n, T = t 1,..., t m S T s 1,..., s n, t 1,..., t m 43

44 7.2 (1) φ ψ T ψ T {φ} ()(2) φ L- ψ T {φ} φ ψ T (1): φ 1,..., φ n φ ψ T φ n = φ ψ φ 1,..., φ n φ ψ T {φ} φ, φ 1,..., φ n, φ, ψ φ, φ ψ ψ ψ T {φ} (2): (1) n N \ {n} (7.14) φ L- T, φ n ψ T φ ψ reduction-0 n n = 1 ψ = φ ψ T ψ 1 φ = ψ φ ψ T φ ψ ψ T T ψ ψ (φ ψ) 21) T ψ (φ ψ) 7.2 T φ ψ 22) n > 1 1 m < n (7.14) P = φ 1,..., φ n ψ T {φ} P φ n = ψ 1 ψ n = 1 φ n 1 i, j < n φ j = φ i φ n φ 1,..., φ i T, φ φ i T φ φ i T φ φ i φ n 21) ψ (φ ψ) (A (B A)) A, B ψ φ (A (B A)) (A (B A)) 22) 7.2 k =

45 (φ φ i ) (φ φ i φ n ) (φ φ n ) 7.2 φ φ n (= φ ψ) T ψ = φ n 1 i < n φ i η ν φ n xη ν φ i φ n x ν T φ η ν (φ η ν) (η φ ν) T η φ ν 23) T xη φ ν ( xη φ ν) (φ xη ν) T φ ( xη ν), T φ ψ K (7.3) : 7.4 T L- φ L-T φ T T T φ endlichkeitssatz T P φ P P T T T T T P φ 8 K (7.2) : vollst-satz 8.1 () T = φ T φ T L- φ L- completeness 8.1 L- T L- φ T φ T T model-consis 23) φ L- 45

46 8.2 T T : T T T L- T x(x x) 7.1 T = x(x x) T A A = x(x x) = 8.3 L- T : inconsistent (a) T (b) L- φ T (φ φ) (c) T x x. (a) (b) T (b) (c): L- φ T (φ φ) (φ φ) x x 7.2 T x x (c) (a): T x x x x (7.6) x x x x (x x x x) T (x x x x) (b) (c) φ T φ 8.4 T φ T x 1 x n φ. n = 1 xφ x φ ( ): T φ y φ T, y y y φ T y y y φ ( y y y φ) ( φ y y y) T φ y y y vdash-forall (8.1) T x φ y y y all-0 ( x φ y y y) ( y y y x φ) (8.1) (8.2) T y y y x φ all-1 46

47 y y y (7.6) (8.2) x φ T x φ, T xφ ( ): T xφ y T, y y y x φ T y y y x φ ( y y y x φ) ( x φ y y y) T x φ y y y φ x φ ( φ x φ) ( x φ y y y) ( φ y y y) T φ y y y. ( φ y y y) ( y y y φ) T y y y φ ( ) T φ 8.5 ( Substitution Theorem) T φ L- t φ x T φ(t/x) subst-thm t φ φ(t/x) x φ ( φ(t/x) φ) ( x φ φ(t/x)) 7.2 (8.3) x φ φ(t/x) subst-0 T φ 8.4 (8.4) T x φ subst (8.3) (8.4) T φ(t/x) 8.6 ( 8.1) L- T T T completeness : φ = φ(x 1,..., x n ) = 8.4 T = φ T = x 1 x n φ T φ T x 1 x n φ 47

48 φ L- T φ T { φ} T { φ} T, φ φ T φ φ ( φ φ) φ 7.2 T φ 8.6 T { φ} T = φ T φ T = φ T L- 8.6 T : C L L C L 8.7 φ L- L-L T φ L ( T L φ ) T φ L ( T L φ ) : P = φ 1,..., φ n φ T L φ n = φ c 1,..., c m P C x 1,..., x m P m φ 1,..., φ n c 1,..., c m x 1,..., x m φ 1,..., φ n φ n = φ L- φ n = φ φ i T φ i = φ i P = φ 1,..., φ n L φ T V L = {Γ : Γ L- Γ } V L 8.7 V L V L 8.8 Γ, Γ i, i I L - (a) Γ V L L - φ Γ φ Γ {φ} V L (b) Γ V L Γ Γ Γ V L. (c) Γ V L Γ Γ Γ V L. V-L 48

49 (d) Γ i V L, i I i, j I Γ i Γ j Γ j Γ i i I Γ i V L. (e) Γ {(φ ψ)} V L Γ {φ} V L Γ {ψ} V L. (f) Γ V L L - φ Γ {φ} V L Γ { φ} V L (g) Γ V L Γ { xφ(x)} V L Γ {φ(c/x)} V L c Γ {φ(x)} ( C) Γ { xφ(x), φ(c/x)} V L (a): Γ V L Γ φ Γ {φ} V L Γ {φ} x x Γ {φ} P x x, Γ Q φ Q P x x Γ 8.3 Γ V L (b): Γ V L Γ x x Γ Γ Γ x x 8.3 Γ V L (c): (b) Γ Γ Γ V L Γ V L Γ x x 7.4 Γ Γ Γ x x 8.3 Γ V L (d): i I Γ i V L x x i I Γ i P P i 0 I P i I Γ i Γ i0 Γ i0 P x x Γ i0 V L (e): Γ {φ} V L Γ {ψ} V L Γ {φ} x x Γ {ψ} x x (8.5) Γ φ x x Γ ψ x x bbdv-0 (8.6) (φ x x) (ψ x x) (φ ψ x x) bbdv-1 (8.5), (8.6) 7.2 Γ φ ψ x x Γ {φ ψ} x x Γ {φ π} V L 49

50 (f): Γ {φ} V L Γ { φ} V L Γ {φ} x x Γ { φ} x x (8.7) Γ φ x x Γ φ x x bbdv-2 (8.8) (φ x x) ( φ x x) x x bbdv-3 (8.7), (8.8) 7.2 Γ x x Γ V L (g): Γ {φ(c/x)} V L Γ {φ(c/x)} x x Γ φ(c/x) x x P φ(c/x) x x Γ z P P c z P P φ(z/x) x x Γ P xφ(x) x x Γ Γ { xφ(x) x x} x x 8.3 Γ { xφ(x) x x} V L : Γ φ(c/x) xφ(x) Γ {φ(c/x)} xφ(x) Γ {φ(c/x)} V L (a) Γ { xφ(x), φ(c/x)} V L 8.9 T V L, T T (8.9) (8.11) : Henkin-extension (8.9) L - φ φ T φ T ; Henkin-0 (8.10) L - φ T φ φ T ; Henkin-1 (8.11) xφ T c C φ(c/x) T Henkin-2 50

51 (8.9) (8.11) T Henkin (Henkin theory) T T T Henkin T T Henkin (Henkin extension) 8.9 L - L - φ 0, φ 1, φ 2,... (8.12) L - φ Henkin-2-0 V L ( ) T 0 T 1 T 2 T 3 (8.13) (8.16) : (8.13) T 0 = T ; Henkin-3 (8.14) i N T i ( C) Henkin-4 ; (8.15) T i {φ i } V L Henkin-5 (a) φ i xψ(x) c T i {φ i } C T i+1 = T i {φ i, ψ(c)}; (b) φ i xψ(x) T i+1 = T i {φ i } (8.16) T i {φ i } V L T i+1 = T i { φ i }. Henkin-6 T i, i N (8.14) V L : 8.7 T V L (8.13) (8.14) T 0 (8.13) (8.15) (8.16) T i+1 T i T i+1 C n N (8.14) (8.15), (a) T i+1 V L 8.8, (g) (8.16) T i+1 V L 8.8, (f) T = i N T i 8.8, (d) T V L T (8.9) (8.11) 51

52 (8.9): φ L -φ T φ = φ i0 i 0 N φ i0 T i0 +1 T i0 +1 (8.16) φ = φ i0 T i0 +1 T (8.10): φ L - T φ 7.4 i 0 N T i0 φ (8.12) i 1 i 0 φ = φ i1 T i1 φ i1 T i1 {φ i1 } V L T i1 +1 (8.15) φ = φ i1 T i1 +1 T (8.11): xφ(x) T i 0 N xφ(x) T i0 i 1 i 0 xφ(x) = φ i1 (8.15), (a) φ(c) T i1 +1 T c C 8.13 Henkin T K : 8.10 L t, t, t, t 1,..., t n, t 1,..., t n L- (a) t t; (b) x(x t) x t ; (c) t t t t; (d) t t t t t t. (e) L n- f t 1 t 1 t n t n f(t 1,..., t n ) f(t 1,..., t n) ; terms (f) L n- r t 1 t 1 t n t n r(t 1,..., t n ) r(t 1,..., t n). (a): (7.6) ( 8.5) (b): φ = x t t t x(x t) (a) t t 7.2 x(x t) (c),(d), (e), (f): (7.7), (7.8), (7.9), (7.10), ( 8.5) 8.11 T Henkin Henkin-theory 52

53 (a) (b) c C c c T t, t, t L - t t, t t T t t T (c) t L - c C c t T c, c C c t, c t T c c T (d) c, c C t, t L - c t, c t T c c T t t T (e) t 1,..., t n, t 1,..., t n L-f n- t 1 t 1 T,..., t n t n T f(t 1,..., t n ) f(t 1,..., t n) T. (f) t 1,..., t n, t 1,..., t n L-r n- t 1 t 1 T,,..., t n t n T r(t 1,..., t n ) r(t 1,..., t n) T. (g) φ L - φ T φ T (h) φ, ψ L - φ ψ T (φ T ψ T ) (i) φ, ψ L - φ ψ T (φ T ψ T ) (j) φ, ψ L - φ ψ T (φ T ψ T ) (a): 8.10,(a) c c (8.10) c c T (b): (7.8) t t t t t t t t, t t T, T t t, T t t 7.2 T t t (8.10) t t T (c): 8.10,(b) (8.10) x(x t) T (8.11) c C c t T 8.10,(c),(d) c t c t c c c t, c t T 7.2 T c c (8.10) c c T (d): (c) (e): 8.10,(e), 7.2 (8.10) (f): 8.10,(f), 7.2 (8.10) (g) φ T (8.9) φ T φ T φ T T (φ φ) 8.3 T V L 53

54 (h): φ T ψ T φ T φ φ ψ 7.2 T φ ψ (8.10) φ ψ T φ T ψ T φ T ψ T (8.9) φ T ψ T φ ψ (φ ψ) 7.2 T (φ ψ) (g) φ ψ T (i), (j): (h) c, c C c c c c T 8.11,(a),(b) C c C [c] A = {[c] : c C} A L - A L D F, R c C c A = [c] d D 8.11,(c),(d) c d T c C c d A = [c] f F n- c 1,..., c n C n 8.11,(c) c f(c 1,..., c n ) T 8.11,(d), (e) c f A ([c 1 ],..., [c n ]) = [c] f A : A n A r R n- r A = { [c 1 ],..., [c n ] : r(c 1,..., c n ) T } (8.17) A = A, c A, f A, r A c D C, f F, r R A L - A T Henkin (Henkin model) 54

55 8.12 T T Henkin A Henkin Henkin-terms (a) t = t(x 1,..., x n ) L- c, c 1,..., c n C (8.18) c t(c 1,..., c n ) T [c] = t A ([c 1 ],..., [c n ]) Henkin-7 (b) t 1 = t 1 (x 1,..., x m ),..., t n = t n (x 1,..., x m ) L- c 1,..., c m C, r R n- (8.19) r(t 1 (c 1,..., c m ),..., t n (c 1,..., c m )) T Henkin-8 t A 1 ([c 1 ],..., [c m ]),..., t A n([c 1 ],..., [c m ]) r A (a): t t D (8.18) A m- f F t t = f(t 1 (x 1,..., x n ),..., t m (x 1,..., x n )) t 1 (x 1,..., x n ),..., t m (x 1,..., x n ) (8.18) 8.11, (c) c 1,..., c m C (8.20) c i t i (c 1,..., c n ) T, i = 1,..., m Henkin-9 (8.20) 8.10,(e), 7.2, (8.10) (8.21) t(c 1,..., c n ) f(c 1,..., c m) T Henkin-10 (8.20) (8.22) t A i ([c 1 ],..., [c n ]) = [c i ], i = 1,..., m Henkin-11 (8.23) t A ([c 1 ],..., [c n ]) = f A (t A 1 ([c 1 ],..., [c n ]),..., t A m([c 1 ],..., [c n ])) = f A ([c 1],..., [c m])henkin-12 c t(c 1,..., c n ) T c f(c 1,..., c m) T ; (8.21) 8.11,(b) [c] = f A ([c 1],..., [c m]) ; f A [c] = t A ([c 1 ],..., [c n ]) ; (8.23) 55

56 (b): 8.11, (c) c i C, i = 1,..., n (8.24) c i t i (c 1,..., c m ) T, i = 1,..., n Henkin-13 (a) (8.25) [c i ] = t A i ([c 1 ],..., [c m ]), i = 1,..., n Henkin-14 r(t 1 (c 1,..., c m ),..., t n (c 1,..., c m )) T r(c 1,..., c n) T ; (8.24) 8.11, (f) [c 1],..., [c n] r A ; r A t A 1 ([c 1 ],..., [c m ]),..., t A n([c 1 ],..., [c m ]) r A ; (8.25) 8.6 : 8.13 T T Henkin A Henkin L - φ A = φ φ T A C L- A L T Henkin-model L- φ = φ(x 1,..., x n ) (8.26) c 1,..., c n C Henkin-15 A = φ([c 1 ],..., [c n ]) φ(c 1,..., c n ) T φ t(x 1,..., x n ) t (x 1,..., x n ) c, c C (8.27) c t(c 1,..., c n ), c t (c 1,..., c n ) T Henkin-16 56

57 A = φ([c 1 ],..., [c n ]) t A (c 1,..., c n ) = t A (c 1,..., c n ) ; = [c] [c ] ; (8.27) 8.12, (a) c c T ; t(c 1,..., c n ) t (c 1,..., c n ) T ; 8.11, (d) φ(c 1,..., c n ) T φ m- r R r(t 1 (x 1,..., x n ),..., )t m (x 1,..., x n ) A = φ([c 1 ],..., [c n ]) t A 1 ([c 1 ],..., [c n ]),..., t A m([c 1 ],..., [c n ]) r A ; = r(t 1 (c 1,..., c n ),..., t m (c 1,..., c n )) T ; 8.12, (b) φ(c 1,..., c n ) T φ = ψ ψ (8.26) A = φ([c 1 ],..., [c n ]) A = ψ([c 1 ],..., [c n ]) ; = ψ(c 1,..., c n ) T ; ψ(c 1,..., c n ) T ; 8.11, (g) φ(c 1,..., c n ) T φ (ψ η), (ψ η), (ψ η) ψ, η (8.26) 8.11, (h), (i), (j) φ xψ(x, x 1,..., x n ) ψ (8.26) A = φ([c 1 ],..., [c n ]) c C A = ψ([c], [c 1 ],..., [c n ]) ; = c C ψ(c, c 1,..., c n ) T ; xψ(x, c 1,..., c n ) T 57

58 7.2 (8.11) 9 ( ) anwendunegen-des-vollst satzes 9.1 ( ) T L T T T L- 8.2 T ( ) T 8.6 T T T (finitely satisfiable) : 9.2 L L- A = A,... (9.1) A = φ A compact-0 L- φ φ (9.1) T = {φ} {c i c j : i, j N, i j} 58

59 c i, i N L T Ã Ã c i, i N A φ L- A c i, i N A A (9.1) φ 59

60 II partii 10 S S S A S t S t A L 24) S = S(L) := {,,,...} V ar L, Sent L Fml L S decidability 10.1 Fml L Sent L Fml L φ Fml L A canonical L A Th(A) = {φ Sent L : A = φ} (10.1) Th(A) decidable-0 canonical A A (10.1) S N successor function S : N N; n n + 1 (10.2) Th( Q, < ) 11.2 dec-0 (10.3) Th( N, 0, +, S, < ) 11.4 dec-1 (10.4) Th( R, 0, 1, +, ) 11.5 dec-2 60

61 (10.5) Th( N, 0, +,, S, < ) dec-3 1 : (10.6) Th( Q, 0, +,, S, < ) N Q, 0, +,, S, < dec-4 (Julia Robinson ) 1 (10.4), (10.5), (10.6) N Q R, 0, 1, +, N Q R, 0, 1, +, Th( R, 0, 1, +, ) Th( N, 0, +,, S, < ) Th( Q, 0, +,, S, < ) A L S = S(L) A L- T Th(A) A decidable-theories axioms Cn(T ) = Th(A) Cn(T ) = Cn L (T ) = {φ Sent L : T = φ} Cn(T ) = {φ Sent L : T φ} Th(A) A 11.1 A Th(A) T A T S L- φ T S B 0, B 1, B 2,... B i, i = 0, 1, 2,... n B n φ φ T B n φ T φ Th(A) φ Th(A) 24) 61

62 φ Th(A) Cn(T ) = Th(A) φ 25) 11.2 Th( Q, < ) Th( N, 0, S ) Presburger 11.5 Th( R, 0, 1, +, ) rationals quantifier-elimination presburger reals 12 N = N, 0, +,, E, S, < +, E (E(x, y) = x y ) S successor function (n n+1) < ; 2 ; 1 ; 2 0; +,, E; S; < L A 26) x < y z(z 0 y x + z) φ(x, y) N = x y (x < y φ(x, y)) < N x < y N N L A N E N reduction N M = N, 0, +,, S, < 27) N M 25) feasible 26) A arithmetic 27) N M M multiplicative overview 62

63 E N M E 28) E 29) successor + n (numeral) L A - S(S( (S(0 ) )) }{{}}{{} n n 1 S L A - S n (0) N ( ) 14 (?) N ( N M ) 12.1 (a) L A φ = φ(z) (z 0 x y(x y z (x S(0) y S(0)))) N = φ(n) n (b) L A ψ = ψ(z) u v w ((u 0 v 0) E(u, z) + E(v, z) E(w, z)) n 3 N = ψ(n) n- Fermat z (z > S(S(0)) ψ(z)) Fermat L A - ( N Fermat ) 30) 28) 14 N M 29) N + E ( ) 30) z > S(S(0)) u(u 0 z S(S(0)) + u) 63

64 14 L A Var {,,,...} s # s effective ( # s s Gödel number ) 14 n () Gödel number # s = n ( ) s Th(N) = {φ : φ L A - N = φ} A N N (definable) L A - φ = φ(x) n N (12.1) n A N = φ(s n (0)) b A Th(N) {#α : α A} N L A - σ N = σ A σ Goedel-1 ternary relation R (12.2) R = { a, b, c N 3 : a L A α = α(x) Gödel number c α(s b (0)) A Gödel number }. goedel-0 A coding 14 ( 14 ) R L A - ρ = ρ(v 1, v 2, v 3 ) a, b, c N R(a, b, c) N = ρ(s a (0), S b (0), S c (0)) (12.3) v 3 ρ(x, x, v 3 ) goedel-1 q Gödel number σ (12.4) v 3 ρ(s q (0), S q (0), v 3 ) goedel-2 64

65 σ A σ A σ σ A P k = #P (12.4) σ q (12.3) x S q (0) R ρ (12.5) N = ρ(s q (0), S q (0), S k (0)) goedel-3 A σ A ρ(s q (0), S q (0), S k (0)) A Th(N) N = ρ(s q (0), S q (0), S k (0)) (12.5) A σ A σ k N k σ Gödel number N = ρ(s q (0), S q (0), S k (0)) N = v 3 ρ(s q (0), s q (0), v 3 ) N = σ Tarski 12.2 ( ) #Th(N) = {#τ : τ L A - N = τ} N Th(N) ( L A - φ φ Th(N) φ Th(N) ) 12.1 σ #Th(N) N : 12.1 R (12.2) Goedel-2 (12.6) P = { a, b N 2 : a L A α = α(x) Gödel number N = α(s b (0)) }. goedel-4 P a N (12.7) P a = {b N : a, b P } goedel-5 65

66 a L A - φ a = φ a (x) Gödel number (12.8) P a = {b N : N = φ a (S b (0))} goedel-6 P a φ a N (12.9) H = {b N : b, b P } goedel-7 31) H P a N P H P T h(n), N Th(N) Th(N) weak-arith coding incompleteness 31) H 66

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P Advent Calendar 2018 @Fukuso Sutaro,,, ( ) Davidson, 5, 1 (quantification) (open sentence) 1,,,,,, 1 1 (propositional logic) (truth value) (proposition) (sentence) 2 (2-valued logic) 2, true false (truth

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s,

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s, 1 (Naturau Deduction System, N-system) 11,,,,, n- R t 1,, t n Rt 1 t n atomic formula : x, y, z, u, v, w, : f, g, h, : c, d, : t, s, r, : P, Q, : R, : A, B, C, D, 12 A A A A N-system 1 1 N-system N-system

More information

論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [

More information

lecture1.dvi

lecture1.dvi 2017 (1) ( ) - - 1/63 ( ) / 1/63 ( ) 0 2/63 ( ) 3/63 +---------+ " " +----+---------+----+ +-----+-------------------+------+ -----+--------------------------------+----- ( etc.) ( ) 4/63 5/63 (Logical

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n ) Kazuki Nakamura Department of Mathematical and Computing Science, Tokyo Institute of Technology * 1 Kashima Ryo Department of Mathematical and Computing Science, Tokyo Institute of Technology 1,,., Σ,..,.

More information

Banach-Tarski Hausdorff May 17, 2014 3 Contents 1 Hausdorff 5 1.1 ( Unlösbarkeit des Inhaltproblems) 5 5 1 Hausdorff Banach-Tarski Hausdorff [H1, H2] Hausdorff Grundzüge der Mangenlehre [H1] Inhalte

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès,

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès, Title < 特別寄稿 > 数学の無尽蔵性 と二つの哲学 -- カヴァイエスとゲーデル -- Author(s) 中村, 大介 Citation 哲学論叢 (2016), 43: 27-39 Issue Date 2016 URL http://hdl.handle.net/2433/219150 Right Type Departmental Bulletin Paper Textversion

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11]

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11] (Sakaé Fuchino) fuchino@isc.chubu.ac.jp 2002 8 24 2002 11 11 2002 11 23 2002 11 29 2003 10 30 footnote 0 2 1 3 1.1...................... 3 1.2....................... 5 1.3.......................... 6 1.4..........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34 Khomskii 1 2 3 4 Khomskii 2 / 34 Khomskii Solovay 3 / 34 Khomskii Lebesgue

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o dif engine 2017/12/08 Math Advent Calendar 2017(https://adventar.org/calendars/2380) 12/8 IST(Internal Set Theory; ) 1 1.1 (nonstandard analysis, NSA) ε ε (a) ε 0. (b) r > 0 ε < r. (a)(b) ε sin(x) d sin(x)

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

untitled

untitled 18 18 8 17 18 8 19 3. II 3-8 18 9:00~10:30? 3 30 3 a b a x n nx n-1 x n n+1 x / n+1 log log = logos + arithmos n+1 x / n+1 incompleteness theorem log b = = rosário Euclid Maya-glyph quipe 9 number digits

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information