Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, , 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム

Size: px
Start display at page:

Download "Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, , 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム"

Transcription

1 Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, , 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム

2 目 次 導入 Kerr 時空と測地線方程式 粒子のコリメーション条件 粒子流に対するコリメーション効果 まとめ

3 導 入 M87 の中心付近からのアウトフローの発見 (Curtis 1918) M87 Optical (Hubble Space Telescope)

4 導 入 ブラックホール近傍からのアウトフロー M87 銀河中心ブラックホール X-Ray (Chandra) Radio (Very Large Array) Optical (Hubble Space Telescope)

5 重要な 3 つの性質 導 入 1 非常に細く絞られた構造 ~1Mpc NGC 6251 s outflow 銀河中心ブラックホール ~1pc Bridle et al. 84

6 重要な 3 つの性質 導 入 2 相対論的速度のアウトフロー Radio (Very Long Baseline Array ) microquasar SS433 恒星サイズブラックホール

7 重要な 3 つの性質 導 入 2 相対論的速度のアウトフロー Radio (Very Long Baseline Array ) microquasar SS433 恒星サイズブラックホール Lorentz factor AGN microquasar gamma ray burst

8 重要な 3 つの性質 導 入 3 非常に長い構造 M87 Optical (Hubble Space Telescope) 比較 : 恒星間の距離 ~1pc 銀河のサイズ ~10kpc

9 重要な 3 つの性質 導 入 3 非常に長い構造 M87 アウトフローの長さ AGN microquasar Optical (Hubble Space Telescope) 比較 : 恒星間の距離 ~1pc 銀河のサイズ ~10kpc

10 導 入 ブラックホール近傍からのアウトフロー ( 回転する ) ブラックホール 降着円盤 NASA

11 重要な 3 つの性質 1 非常に細く絞られた構造 導 入 ブラックホール近傍からのアウトフロー 2 相対論的速度のアウトフロー ( 回転する ) ブラックホール 降着円盤 NASA 3 非常に長い構造

12 重要な 3 つの性質 1 非常に細く絞られた構造 導 入 ブラックホール近傍からのアウトフロー 2 相対論的速度のアウトフロー ( 回転する ) ブラックホール 降着円盤 NASA 3 非常に長い構造

13 非常に細く絞られた構造 導 入 コリメーションメカニズム 1 磁場による効果 Mckinney 06 磁気張力によるコリメーション Shibata et al. 90

14 非常に細く絞られた構造 導 入 コリメーションメカニズム 1 磁場による効果 Mckinney 06 磁気張力によるコリメーション Shibata et al. 90

15 非常に細く絞られた構造 導 入 コリメーションメカニズム 2 Kerr 時空の幾何学的効果 測地線運動の偏り 球対称時空

16 非常に細く絞られた構造 導 入 コリメーションメカニズム 2 Kerr 時空の幾何学的効果軸対称時空測地線運動の偏り 球対称時空 軸対称時空

17 非常に細く絞られた構造 導 入 コリメーションメカニズム 2 Kerr 時空の幾何学的効果軸対称時空測地線運動の偏り 回転軸方向にコリメーションされる可能性を指摘 Bicak et al. 93 de Felice et al. 97 軸対称時空

18 非常に細く絞られた構造 導 入 コリメーションメカニズム 2 Kerr 時空の幾何学的効果 2 Kerr 時空の幾何学的効果 軸対称時空 測地線運動の偏り 回転軸方向にコリメーションされる可能性を指摘 Bicak et al. 93 de Felice et al. 97 軸対称時空

19 Kerr 時空と測地線方程式 Kerr 時空を構成するメトリック where (t,r,θ,φ) : Boyer-Lindquist coordinate unit: : 定常 軸対称

20 Kerr 時空と測地線方程式 Kerr 時空を構成するメトリック 事象の地平線 の外側の領域を考える

21 Kerr 時空と測地線方程式 測地線方程式 where Christoffel symbol 時空の対称性による運動の定数が存在 エネルギー z 方向の角運動量 非自明な定数 Carter 定数 (Carter. 68)

22 Kerr 時空と測地線方程式 Carter 定数について ( ただし 球対称時空の場合での説明 ) 球対称時空では 軌道面を決める

23 Kerr 時空と測地線方程式 測地線方程式 where Christoffel symbol 時空の対称性による運動の定数が存在 エネルギー z 方向の角運動量 測地線方程式を 1 回積分可能 非自明な定数 Carter 定数 (Carter. 68)

24 測地線方程式 Kerr 時空と測地線方程式

25 Kerr 時空と測地線方程式 測地線方程式 定常軸対称放射に対するコリメーションメカニズムを調べたいので r のみの関数 θ のみの関数

26 粒子のコリメーション条件 子午線面上に射影された運動 ( ) 形式的には楕円関数で表現できるが r の 4 次多項式 μ=cosθ の 4 次多項式

27 粒子のコリメーション条件 子午線面上に射影された運動 ( ) 形式的には楕円関数で表現できるが r の 4 次多項式 μ=cosθ の 4 次多項式 effective ポテンシャルを用いた議論 polar angle θ の運動領域を制限 7 種類の運動に分類される

28 粒子のコリメーション条件 polar angle θ の運動領域 球対称時空 Kerr 時空 ( 軸対称時空 )

29 粒子のコリメーション条件 polar angle θ の運動領域 球対称時空 Kerr 時空 ( 軸対称時空 )

30 粒子のコリメーション条件 polar angle θ の運動領域 球対称時空 Kerr 時空 ( 軸対称時空 )

31 粒子のコリメーション条件 polar angle θ の運動領域 Kerr 時空 ( 軸対称時空 )

32 粒子のコリメーション条件 polar angle θ の運動領域 Kerr 時空 ( 軸対称時空 ) 赤道面周辺を動く事が禁じられている

33 粒子のコリメーション条件 polar angle θ の運動領域 Kerr 時空特有の条件 Kerr 時空 ( 軸対称時空 ) 赤道面周辺を動く事が禁じられている

34 粒子のコリメーション条件 軸方向へのコリメーション 赤道面周辺の運動禁止領域の利用 de Felice et al. 92 の slow loss de Felice et al. 97 Karas et al. 97 de Felice et al. 00

35 粒子のコリメーション条件 initial condition 数値的に解く

36 粒子のコリメーション条件 initial condition 数値的に解く しかし!!! まだ 運動の定数を決めていない 粒子の emission model を考える必要がある

37 zero-angular momentum observers(zamo) 粒子のコリメーション条件 reference frame 運動の定数を決めるパラメータ

38 zero-angular momentum observers(zamo) 粒子のコリメーション条件 reference frame

39 粒子のコリメーション条件 軸方向へのコリメーション 極 ( 回転軸 ) Bicak et al. 93 radial emission event horizon (1) (5) (1) - (3) : BH 赤道面 (4) - (5) :

40 粒子のコリメーション条件 軸方向へのコリメーション 極 ( 回転軸 ) Bicak et al. 93 radial emission event horizon 球対称時空の場合 (1) (5) (1) - (3) : BH 赤道面 (4) - (5) :

41 軸方向へのコリメーション Bicak et al. 93 θ- 方向の加速度 粒子のコリメーション条件 unbound particle 初期において極方向への加速度ブラックホール近傍において粒子を大きく曲げる

42 粒子のコリメーション条件 軸方向へのコリメーション 極 ( 回転軸 ) (1) (3) (1) - (2) : (3) : 僅かしか曲がらない BH 赤道面

43 粒子のコリメーション条件 ここまでのまとめ de Felice et al. 97 etc.. Kerr 時空特有の条件 Bicak et al. 93 アウトフローのコリメーションを議論するためには 全粒子に対するコリメーションされた粒子の割合及びその振る舞いが重要?

44 粒子流に対するコリメーション効果 回転軸 私たちのモデル 初期の粒子分布 莫大な数の粒子 球面に一様 粒子の打ち出し方向 BH ZAMO s frame おいて等方 : ランダム ただし これ以外の粒子は ほとんど BH に吸収される

45 粒子流に対するコリメーション効果 回転軸 の間に到達する粒子数 莫大な数の粒子 where 一様分布からの ずれ BH 球対称時空のように がに依存しない時

46 テスト問題 flat 時空 粒子流に対するコリメーション効果 Schwarzschild 時空 赤道極赤道極

47 テスト問題 flat 時空 粒子流に対するコリメーション効果 Schwarzschild 時空 一様分布からのずれ F~0.2% 赤道極赤道極 球対称時空 有限個の粒子数による統計誤差

48 粒子流に対するコリメーション効果 極限 Kerr 時空 (a=m) での結果

49 極限 Kerr 時空 (a=m) での結果 粒子流に対するコリメーション効果 赤道 極

50 極限 Kerr 時空 (a=m) での結果 粒子流に対するコリメーション効果 超過 一様分布からの ずれ が存在 不足 赤道 極

51 極限 Kerr 時空 (a=m) での結果 粒子流に対するコリメーション効果 超過 一様分布からの ずれ が存在 予想と正反対 の結果!!! 不足 アンチコリメーション赤道!!! 極

52 極限 Kerr 時空 (a=m) での結果 粒子流に対するコリメーション効果 矛盾? アンチコリメーション!!! 赤道 極

53 極限 Kerr 時空 (a=m) での結果 粒子流に対するコリメーション効果 矛盾? 極方向へのコリメーションの可能性がある粒子 : アンチコリメーション!!! 赤道 極

54 極限 Kerr 時空 (a=m) での結果 粒子流に対するコリメーション効果 矛盾? 極方向へのコリメーションの可能性がある粒子 : アンチコリメーション!!! 赤道 極 全体の

55 極限 Kerr 時空 (a=m) での結果 粒子流に対するコリメーション効果 矛盾? 極方向へのコリメーションの可能性がある粒子 : 矛盾はない!!! 全体の アンチコリメーション!!! 赤道 極

56 一様分布からのずれの生じ方 粒子流に対するコリメーション効果 伝搬距離による ずれ の進化 赤道 極

57 一様分布からのずれの生じ方 粒子流に対するコリメーション効果 伝搬距離による ずれ の進化 赤道 極

58 一様分布からのずれの生じ方 粒子流に対するコリメーション効果 伝搬距離による ずれ の進化 距離ともに ずれ が増幅される 赤道 極

59 一様分布からのずれの生じ方 粒子流に対するコリメーション効果 伝搬距離による ずれ の進化 距離ともに ずれ が増幅される 赤道 極

60 一様分布からのずれの生じ方 粒子流に対するコリメーション効果 伝搬距離による ずれ の進化 距離ともに ずれ が増幅される 赤道 極

61 一様分布からのずれの生じ方 粒子流に対するコリメーション効果 伝搬距離による ずれ の進化 距離ともに ずれ が増幅される 増幅率は 距離とともに小さくなる では ほとんど変化しない 赤道 極

62 粒子流に対するコリメーション効果 Kerr 時空の幾何学的効果軸方向に対する アンチコリメーション効果 その大きさは 数パーセント程度

63 粒子流に対するコリメーション効果 Kerr 時空の幾何学的効果軸方向に対する アンチコリメーション効果 その大きさは 数パーセント程度

64 粒子流に対するコリメーション効果 Kerr 時空の幾何学的効果軸方向に対する アンチコリメーション効果 その大きさは 数パーセント程度

65 粒子流に対するコリメーション効果 での無限遠に達することができる粒子の初期分布 一様等方に粒子を打ち出した時 全粒子が無限遠へ 一部の粒子がブラックホールに吸収される!!! 打ち出し条件の一様等方性を壊している

66 粒子流に対するコリメーション効果 での無限遠に達することができる粒子の初期分布 一様等方に粒子を打ち出した時 全粒子が無限遠へ 一部の粒子がブラックホールに吸収される!!! Kerr 時空の幾何学的効果だけを取り出すことができない!!!

67 粒子流に対するコリメーション効果 何故 アンチコリメーションが生じるのか? 弱重力極限での時空 Asymptotically Cartesian and Mass Centered to order 2(ACMC-2) coordinate where

68 粒子流に対するコリメーション効果 何故 アンチコリメーションが生じるのか? 弱重力極限での時空 Asymptotically Cartesian and Mass Centered to order 2(ACMC-2) coordinate where 回転の最低次の効果が含まれている

69 粒子流に対するコリメーション効果 何故 アンチコリメーションが生じるのか? 弱重力極限での時空 Asymptotically Cartesian and Mass Centered to order 2(ACMC-2) coordinate quadrupole field in Newtonian level where 回転の最低次の効果が含まれている

70 quadrupole field の性質 粒子流に対するコリメーション効果 θ 方向の加速度 常に赤道面方向への加速度が働く事を示している

71 quadrupole field の性質 粒子流に対するコリメーション効果 θ 方向の加速度 常に赤道面方向への加速度が働く事を示している quadrupole field をもつ弱い重力場 回転軸に対して アンチコリメーションの性質を持つ

72 quadrupole field の性質 粒子流に対するコリメーション効果 超過 一様分布からの ずれ が存在 Kerr 時空と同じ傾向 このアンチコリメーションは quadrupole field によってもたらされる 不足 赤道 極

73 まとめ Kerr 時空の幾何学的効果 軸周辺よりも赤道面周辺に粒子が集まる アンチコリメーション 弱重力極限での時空 アンチコリメーションは quadrupole field によって引き起こされる 観測されているような絞られたアウトフローを作るためには 別のコリメーションメカニズム ( 例えば磁場によるコリメーション ) が必要

74

ブラックホール近傍の相対論的光軌道

ブラックホール近傍の相対論的光軌道 ラックホールに落下するガスの blob 2014 年 2 月 2 日京都大学宇宙物理学教室修士 1 年森山小太郎 本研究 遠方 S 降着円盤 B ガスの塊 ( 以降 spot) 最内縁安定円軌道からずれて BH に落ち込むガスの塊について考える 遠方からどう観測されるか理論的に研究する a の決定に用いる 円運動する Spot からの 光のエネルギーフラックス スタート地点 B S a=0.9981m

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

超新星残骸Cassiopeia a と 非球対称爆発

超新星残骸Cassiopeia  a と 非球対称爆発 物理学専攻 松尾康秀 宇宙物理理論 指導教員 : 橋本正章 < 超新星残骸 > 星の外層が超新星爆発により吹き飛ばされ 爆発の際の衝撃波によって周囲の物質 ( 星周物質 ) を加熱し 輝いている天体 かに星雲 Kepler Cas A http://www.spacetelescope.o rg/images/large/heic0515a.j pg http://apod.nasa.gov/apod/i

More information

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を 2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を含まない原始ガスから形成される 宇宙で最初に誕生する星である 初代星はその後の星形成や再電離など宇宙初期の天文現象に強く関係し

More information

銀河風の定常解

銀河風の定常解 2011年 国立天文台プラズマセミナー 2011/12/02 球対称定常銀河風の遷音速解 銀河の質量密度分布との関係 筑波大学 教育研究科 教科教育専攻 つちや まさみ 理科教育コース 2年 土屋 聖海 共同研究者 森正夫 筑波大学 新田伸也 筑波技術大学 発表の流れ はじめに 銀河風とは 流出過程 エネルギー源 周囲に及ぼす影響 研究内容 問題の所在 研究の目的 方法 理論 銀河の質量密度分布 研究成果

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

BH BH BH BH Typeset by FoilTEX 2

BH BH BH BH Typeset by FoilTEX 2 GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free

More information

観測的宇宙論WS2013.pptx

観測的宇宙論WS2013.pptx ì コンテンツ イントロダクション 球対称崩壊モデル ビリアル平衡 結果 まとめ イントロダクション 宇宙磁場 銀河や銀河団など様々なスケールで磁場が存在 起源や進化について未だに謎が多い 宇宙の構造形成に影響 P(k)[h -3 Mpc 3 ] 10 6 10 5 10 4 10 3 10 10 1 10 0 10-1 10-10 -3 10-4 10-4 10-3 10-10 -1 10 0 10

More information

×××××××××× ×××××××××××××××

×××××××××× ××××××××××××××× Hoizon-penetating Tansonic Accetion Disks aound Rotating Black Holes with Causal Viscosity 高橋労太 ( 東大総合文化 ) ホライズンの内側まで解かれた ADAF の遷音速流のサンプル解 (4 元速度の 成分 ) 要旨 ブラックホール周りの定常降着流の遷音速解を外側の領域からホライズンの中まで計算できるようになった

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

極めて軽いダークマターの 新しい検出方法 In preparation

極めて軽いダークマターの 新しい検出方法 In preparation 極めて軽いダークマターの新しい検出方法 In preparation Hajime Fukuda, T.T. Yanagida, S. Matsumoto Kavli IPMU, U. Tokyo August 1, 2017 Introduction DM は最も確立した BSM の一つ 質量は? Particle DM Mass Range dsph m > M Pl Vast Region!

More information

3 6 6.1: ALMA 6.1 galaxy, galaxies the Galaxy, our Galaxy, Milky Way Galaxy G. Galilei W. Herschel cm J.C. Kapteyn H. Sharpley 30 E.P. Hubble 6.2 6.2.1 b l 6.2 b = 0 6.2: l = 0 6.2.2 6.1 6.3 ( 60-100µm)

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc)

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc) 宇宙工学基礎講義資料摂動 ( 松永担当分 ) ベクトル行列演算 ) 微分演算の定義 [ ] ) 微分公式 ( ベクトル記法と行列記法 ) E E ここで E は単位行列 チルダ演算は外積演算と等価の反対称行列を生成する演算 : ( ) ) 恒等演算式 : 次元列ベクトル ( ) ( ) ( ) ( ) ( ) E E ) ( ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

More information

日本物理学会2013年秋季大会 於 高知大学朝倉campus 講演21aSB-6 (2013年9月21日) 高スピン間の回転行列の数値評価における著しい桁落の回避方法 田嶋直樹 福井大工 1.回転演算子の角運動量固有状態基底での表現行列 D関数 をWignerの公 式で数値的に求めると 角運動量jが

日本物理学会2013年秋季大会 於 高知大学朝倉campus 講演21aSB-6 (2013年9月21日) 高スピン間の回転行列の数値評価における著しい桁落の回避方法 田嶋直樹 福井大工 1.回転演算子の角運動量固有状態基底での表現行列 D関数 をWignerの公 式で数値的に求めると 角運動量jが 日本物理学会013年秋季大会 於 高知大学朝倉campus 講演1aSB-6 (013年9月1日 高スピン間の回転行列の数値評価における著しい桁落の回避方法 田嶋直樹 福井大工 1.回転演算子の角運動量固有状態基底での表現行列 D関数 をWignerの公 式で数値的に求めると 角運動量jが大きいとき著しい桁落ちが起きる j=1/ないし1との角運動量合成に関連する漸化式 で求める場合も同程 度の桁落ちが起きる.

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

スライド 1

スライド 1 相対論的プラズマにおける PIC シミュレーションに伴う数値チェレンコフ不安定の特性ついて 宇宙物理学研究室 4 年池谷直樹 研究背景と目的 0 年 Ie Cube 国際共同実験において超高エネルギーニュートリノを検出 780Tev-5.6PeV 890TeV-8.5PeV 相互作用が殆んど起こらないため銀河磁場による軌道の湾曲が無く 正確な到来方向の情報 を得られる可能性がある ニュートリノから高エネルギー宇宙線の起源を追う

More information

偏微分方程式、連立1次方程式、乱数

偏微分方程式、連立1次方程式、乱数 数値計算法 011/6/8 林田清 大阪大学大学院理学研究科 常微分方程式の応用例 1 Rutherford 散乱 ( 原子核同士の散乱 ; 金の薄膜に α 粒子をあてる ) 1 クーロン力 f= 4 0 r r r Ze y からf cos, si f f f y f f 粒子の 方向 y方向の速度と座標について dv Ze dvy Ze y, 3 3 dt 40m r dt 40m r d dy

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038 ( ) Note 4 19 11 22 6 6.1 1 Ω m = 1 Ω m.3 6.1.1 : ( ) r-process α 1: 2 32T h(t 1/2 = 1.45 1 1 y) 2 38U(t 1/2 = 4.468 1 9 y) 2 35U(t 1/2 = 7.38 1 8 y) 2 44Pu(t 1/2 = 8.26 1 7 y) β / (J.A.Johnson and M.Bolte:

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

えられる球体について考えよ 慣性モーメント C と体積 M が以下の式で与えられることを示せ (5.8) (5.81) 地球のマントルと核の密度の平均値を求めよ C= kg m 2, M= kg, a=6378km, rc=3486km 次に (5.82) で与えら

えられる球体について考えよ 慣性モーメント C と体積 M が以下の式で与えられることを示せ (5.8) (5.81) 地球のマントルと核の密度の平均値を求めよ C= kg m 2, M= kg, a=6378km, rc=3486km 次に (5.82) で与えら 5.5 慣性モーメント (5-42) 式で与えられたマッカラーの公式は 扁球惑星体の重力加速度とその主な慣性モーメントを関連づけている その公式を使うことで 探査飛行や軌道上を周回する宇宙船によって 例えば慣性モーメントを束縛している惑星の重力場を計測することができる 慣性モーメントは惑星全体の形や内部の密度分布を反映するため 惑星の内部構造を調べるために慣性モーメントの数値を利用することができる

More information

衝突銀河団のN体+ 流体シミュレーション

衝突銀河団のN体+ 流体シミュレーション 衝突銀河団の N 体 + 流体シミュレーション 滝沢元和 Introduction 銀河団 銀河団 : 模式図 可視光 ( 銀河 ) X 線 ( 高温ガス ) 暗黒物質の重力ポテンシャル中に束縛された高温ガス (T~10 7-8 K) と銀河のかたまり 宇宙で最大のビリアライズした天体 (R ~Mpc,, M ~10 15 太陽質量 ) 宇宙の構造形成の ( 観測可能な ) 現場 プラズマ物理の実験場

More information

, 0707

, 0707 始原的ガス雲の non-biased カタログ : 始原星の初期質量関数 平野信吾 1 細川隆史 1 吉田直紀 1,2 千秋元 1 梅田秀之 1 et al 1 東京大学 2 Kavli IPMU 初代星 初代銀河研究会 2014@ 鹿児島大学 (2014/01/22-24) 始原星の質量 : 星形成過程 始原星 ( 種族 III の星 ; zero-metallicity star) 宇宙の初期進化を左右

More information

有限密度での非一様なカイラル凝縮と クォーク質量による影響

有限密度での非一様なカイラル凝縮と  クォーク質量による影響 空間的に非一様なカイラル凝縮に対する current quark mass の影響 東京高専 前段眞治 東京理科大学セミナー 2010.9.6 1 1.Introduction 低温 高密度における QCD の振る舞い 中性子星 compact star クォーク物質の理解に重要 T 0 での QCD の基底状態 カイラル対称性の破れた相 カラー超伝導相 μ 2 有限密度において fermionic

More information

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g 電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする. 以下の量を 次元極座標,, ベクトル e, e, e 用いて表せ () gad () ot A (). 以下の量を 次元円柱座標,, z 位ベクトル e e, e, z 用いて表せ () gad ()

More information

ssastro2016_shiromizu

ssastro2016_shiromizu 26 th July 2016 / 1991(M1)-1995(D3), 2005( ) 26 th July 2016 / 1. 2. 3. 4. . ( ) 1960-70 1963 Kerr 1965 BH Penrose 1967 Hawking BH Israel 1971 (Carter)-75(Robinson) BH 1972 BH theorem(,, ) Hawk 1975 Hawking

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

Microsoft PowerPoint - RohtaTakahashi

Microsoft PowerPoint - RohtaTakahashi 理論懇シンポジウム @ 京大基研 Neutrino Shadow and Explosion Mechanism of GRB 高橋労太 ( 東大総合文化 ) 長滝重博 ( 京大基研 ) 研究研究研究研究の研究研究研究研究のモチベーションモチベーションモチベーションモチベーションモチベーションモチベーションモチベーションモチベーションガンマ線バーストのセントラル エンジンガンマ線バーストのセントラル

More information

スライド 1

スライド 1 非線形数理秋の学校 パターン形成の数理とその周辺 - 反応拡散方程式理論による時 空間パターンの解析を中心に - 2007 年 9 月 25 日 -27 日 モデル方程式を通してみるパターン解析ー進行波からヘリカル波の分岐を例としてー 池田勉 ( 龍谷大学理工学部 ) 講義概要, 講義資料, 講義中に使用する C 言語プログラムと初期値データ, ヘリカル波のアニメーションをウェブで公開しています :

More information

銀河団衝突にともなう 高温ガスの運動がひきおこす特徴的な磁場構造 (Takizawa 2008 ApJ, 687, 951)

銀河団衝突にともなう 高温ガスの運動がひきおこす特徴的な磁場構造 (Takizawa 2008 ApJ, 687, 951) JVLA S-band and X-band Polarimetry of Abell 2256 Ozawa,,,,,Takizawa, Takahashi,,,,et al. to be submitted to PASJ 滝沢元和 2015.5.8 研究室談話会 Introduction: 銀河団 可視光 ( 数 100 個の銀河の集まり ) X 線数 kev の高温ガス ( シンクロトロン )

More information

Microsoft PowerPoint - komaba ppt [互換モード]

Microsoft PowerPoint - komaba ppt [互換モード] 宇宙科学 II ( 電波天文学 ) 第 10 回 ブラックホール (2) 前回の復習 1 10 0 10 3 10 6 10 9 10 12 10 15 10 18 10 21 10 24 10 27 単位 (m) 人間太陽近傍の恒星地球太陽太陽系銀河系 銀河銀河団宇宙の果てブラックホール 宇宙の階層構造 ログスケールで表示した宇宙の大きさ 強い重力により光さえ飲み込む暗黒の天体 ブラックホールの大きさ

More information

今回の目的 ブランドフォード ナエク機構での電磁場エネルギー密度 e EM - ボイヤ リンキスト座標 : e EM < 0 - カー シルト座標 : e EM > 0! 果たして, そういうことはありえるのか? はっきりさせる. 今回, カー シルト座標における電磁エネルギー密度とエネルギー流束の

今回の目的 ブランドフォード ナエク機構での電磁場エネルギー密度 e EM - ボイヤ リンキスト座標 : e EM < 0 - カー シルト座標 : e EM > 0! 果たして, そういうことはありえるのか? はっきりさせる. 今回, カー シルト座標における電磁エネルギー密度とエネルギー流束の 第 9 回ブラックホール磁気圏勉強会 2016.3.2( 水 )@ 夕張マウントレースイホテル ブラックホール回転エネルギーの 電磁場による因果的引抜き Ⅱ 熊本大学理学部小出眞路 2 年前の第 7 回磁気圏ブラックホール研究会において, 電磁エネルギー密度とエネルギー流束密度の関係式を示しまだ, この論文を読み込んでいません, ブラックホール地平面においては負の電磁気的エネルギーがブラックホールに

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

観測的宇宙論workshop.pptx

観測的宇宙論workshop.pptx 名古屋 大学宇宙論論研究室 嵯峨承平 ( 共同研究者 : 市來來淨與, 杉 山直 ) 2013/12/4 観測的宇宙論論 workshop 1/20 目次 1. イントロ 2. 2 次摂動論論 3. 重 力力波 ( 線形摂動 ) 4. 重 力力波 (2 次摂動 ) 5. まとめ 2/20 1. イントロ 非ガウス性 重 力力レンズ効果 2 次ドップラー効果 2 次重 力力波 磁場 Mode coupling

More information

l ηµν hµν g µν = η µν + h µν, h µν 1 l Transvers-Traceless (TT) h TT 0µ = 0, η ij i h TT jk = 0, η ij h TT ij = 0, η µν µ ν h TT ij = 2 c 2 t + Δ 2 h TT = 0 ij 2 Polarization l From the TT condition, h

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

Microsoft PowerPoint - NA03-09black.ppt

Microsoft PowerPoint - NA03-09black.ppt きょうの講義 数値 記号処理 2003.2.6 櫻井彰人 NumSymbol@soft.ae.keo.ac.jp http://www.sakura.comp.ae.keo.ac.jp/ 数値計算手法の定石 多項式近似 ( 復習 )» 誤差と手間の解析も 漸化式» 非線型方程式の求解 数値演算上の誤差 数値計算上の誤差 打ち切り誤差 (truncaton error)» 使う公式を有限項で打ち切る

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション モニタリング観測からわかった電波銀河 3C111 の γ 線活動期と電波ノットの噴出時期との関係 VLBI 懇談会シンポジウム 12 月 27 日 ( 火 ) 山口大学 B4 塩谷康允共同研究者 : 藤澤健太 新沼浩太郎 導入 AGN 統一モデル AGN 電波で明るい (10 %) 超大質量 BH+ 降着円盤 電波で暗い (90 %) 莫大なエネルギー放射 (10 6-14 L ) 0 いくつかの種類に大別される

More information

スライド 1

スライド 1 (8) 2017.6.7 電気通信大学大学院情報理工学研究科末廣尚士 9. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である.

More information

X u

X u X u1079037 14 4 1 X X X X X SNR X X ChandraX 0.3-10.0 kev 1 1 X 3 X 1 3 2 X 5 2.1 X... 5 2.1.1 Powerlaw... 5 2.1.2 BlackBody( )... 5 2.1.3 Disk-BlackBody... 6 2.1.4... 8 2.2 X... 9 2.2.1 HMXB:High-Mass

More information

スライド 1

スライド 1 (10) 2016.6.22 電気通信大学大学院情報理工学研究科末廣尚士 14. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である.

More information

(高エネルギー) 広がったTEVガンマ線源VER J のX線観測による放射機構の研究

(高エネルギー) 広がったTEVガンマ線源VER J のX線観測による放射機構の研究 広がった TeV ガンマ線源 VER J2019+368 の X 線観測 2016 年 9 月 14 日日本天文学会秋季年会 @ 愛媛大学 田中慎之 ( 広島大学 ) 水野恒史 高橋弘充 勝田隼一郎 ( 広島大学 ) 林克洋 ( 名古屋大学 ) 山崎了 ( 青山学院大学 ) 1 目次 Introduction 4P VER J2019+368 の過去の観測 XMM の解析 2P イメージスペクトル

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります

More information

1

1 http://www.is.oit.ac.jp/~shinkai/ 1 2 3 一般相対性理論 重力場の方程式 1916 空間の曲がりがモノの運動を決める アインシュタイン曲率テンソル 空間の歪み モノがあると空間が曲がる エネルギー運動量テンソル モノの分布 4 一般相対性理論 重力場の方程式 1916 空間の曲がりがモノの運動を決める モノがあると空間が曲がる 定常的な宇宙モデルをつくるために

More information

サブ課題Cの目標 大規模な宇宙論的構造形成シミュレーションの共分散解析による広域銀 河サーベイの統計解析 (吉田 石山) ブラックホール降着円盤の一般相対論的輻射磁気流体シミュレーション及 びグローバルシミュレーション 松元 大須賀 大規模なプラズマ粒子シミュレーションによる磁気再結合と高エネルギー

サブ課題Cの目標 大規模な宇宙論的構造形成シミュレーションの共分散解析による広域銀 河サーベイの統計解析 (吉田 石山) ブラックホール降着円盤の一般相対論的輻射磁気流体シミュレーション及 びグローバルシミュレーション 松元 大須賀 大規模なプラズマ粒子シミュレーションによる磁気再結合と高エネルギー 多次元高精度ブラソフソルバーの開発 素粒子 原子核 宇宙 京からポスト京に向けて シンポジウム 2017年2月17日 筑波大学 東京キャンパス 筑波大学 計算科学研究センター 吉川 耕司 サブ課題Cの目標 大規模な宇宙論的構造形成シミュレーションの共分散解析による広域銀 河サーベイの統計解析 (吉田 石山) ブラックホール降着円盤の一般相対論的輻射磁気流体シミュレーション及 びグローバルシミュレーション

More information

Title ブラックホールと重力波天文学 Author(s) 長峯, 健太郎 Citation 高大連携物理教育セミナー報告書. 28 Issue Date Text Version publisher URL DO

Title ブラックホールと重力波天文学 Author(s) 長峯, 健太郎 Citation 高大連携物理教育セミナー報告書. 28 Issue Date Text Version publisher URL   DO Title ブラックホールと重力波天文学 Author(s) 長峯, 健太郎 Citation 高大連携物理教育セミナー報告書. 28 Issue Date 2017-03 Text Version publisher URL http://hdl.handle.net/11094/60516 DOI rights Osaka University Knowledge Archive : OUKA

More information

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63> 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

eq2:=m[g]*diff(x[g](t),t$2)=-s*sin(th eq3:=m[g]*diff(z[g](t),t$2)=m[g]*g-s* 負荷の座標は 以下の通りです eq4:=x[g](t)=x[k](t)+r*sin(theta(t)) eq5:=z[g](t)=r*cos(the

eq2:=m[g]*diff(x[g](t),t$2)=-s*sin(th eq3:=m[g]*diff(z[g](t),t$2)=m[g]*g-s* 負荷の座標は 以下の通りです eq4:=x[g](t)=x[k](t)+r*sin(theta(t)) eq5:=z[g](t)=r*cos(the 7. 制御設計の例 7.1 ローディングブリッジの制御装置 はじめに restart: ローディング ブリッジは 負荷をある地点から別の地点に運びます 台車の加速と減速は好ましくない振動を発生してしまいます そのため負荷はさらに安定し難くなり 時間もかかってしまいます 負荷がある地点から他の地点へ素早く移動し すみやかに安定するような制御装置を設計します 問題の定義 ローディング ブリッジのパラメータは以下の通りです

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

Microsoft PowerPoint - LectureB1handout.ppt [互換モード]

Microsoft PowerPoint - LectureB1handout.ppt [互換モード] 本講義のスコープ 都市防災工学 後半第 回 : イントロダクション 千葉大学大学院工学研究科建築 都市科学専攻都市環境システムコース岡野創 耐震工学の専門家として知っていた方が良いが 敷居が高く 入り口で挫折しがちな分野をいくつか取り上げて説明 ランダム振動論 地震波形に対する構造物応答の理論的把握 減衰と地震応答 エネルギーバランス 地震動の各種スペクトルの相互関係 震源モデル 近年では震源モデルによる地震動予測が良く行われている

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

CG

CG Grahics with Processig 7-6 座標変換と同次座標 htt://vilab.org 塩澤秀和 6-7 H. SHIOZAWA htt://vilab.org 6. * 座標系 座標系の変換 座標系 目盛りのつけかた 原点の位置 軸と 軸の方向 軸と 軸の目盛りの刻み 論理座標系 描画命令で使う目盛り ( 座標系 ) をつけかえることができる 論理座標系 描画命令で使う 座標 画面座標系

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小 折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

JPS-Niigata pptx

JPS-Niigata pptx l l 1916 Ø 2016/12/10 日本物理学会新潟支部 2 l l 1916 Ø l 2016/12/10 日本物理学会新潟支部 3 l 2015 9 14 UTC Ø Advanced LIGO l 2016 2 11 2 12 Ø LIGO & Virgo https://losc.ligo.org/events/gw150914/ http://media1.s-nbcnews.com/

More information

測光 分光同時モニター観測によるアウトフローの電離状態変動シナリオの検証 信州大学大学院総合工学系研究科 D1 堀内貴史

測光 分光同時モニター観測によるアウトフローの電離状態変動シナリオの検証 信州大学大学院総合工学系研究科 D1 堀内貴史 測光 分光同時モニター観測によるアウトフローの電離状態変動シナリオの検証 信州大学大学院総合工学系研究科 D1 堀内貴史 目次 導入 研究の目的 観測 結果 電離状態変動シナリオの考察 展望 まとめ アウトフローガスの重要性 クェーサーの降着円盤より放出される アウトフローは 1) 降着円盤より角運動量を排除し 新たなガスの降着を促進する. そのため クェーサーの成長に不可欠な要素である (Murray

More information

3回

3回 30 第 3 章ベクトルの微分法 キーワードベクトル ベクトルの演算 ゼロベクトル マイナスのベクトル ベクトルの定数倍 定数ベクトル 関数ベクトル ベクトルの成分表示 ベクトルの微分法 速度ベクトル 加速度ベクトル 極率 極率半径 ベクトルのスカラー積 ベクトル積 3.1 ベクトルの演算 1kgの質量や m 3 の体積などのように量で与えるものをスカラーと呼ぶ これに対し 北東の風 風速 m/sのように方向と大きさで与えるものをベクトルと呼ぶ

More information

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣 自由落下と非慣性系における運動方程式 1 1 2 3 4 5 6 7 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣性力があるか... 7 1 2 無重力 (1) 非慣性系の住人は無重力を体感できる (a) 併進的な加速度運動をしている非慣性系の住人

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

学力スタンダード(様式1)

学力スタンダード(様式1) (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ

More information

スライド 1

スライド 1 グループ発表天体核研究室 低光度ガンマ線バーストの起源 D2 当真賢二 宇宙ひもを重力レンズで探る D3 須山輝明 2006 年度物理学第二教室教室発表会 @ 第四講義室 天体核研究室の大雑把な研究グループ 天体物理学中村 犬塚 井岡 山田 PD: 町田 石津 三浦 D3: 道越 宇宙論中村 田中 早田 D3: 須山 D2: 横山 D1: 泉 M2: 棚橋 村田 D2: 井上 ( 剛 ) 当真 D1:

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

素材

素材 七夕星の色とスペクトル 福江純 ( 大阪教育大学 ) 光とスペクトル 光の分解 ( 分光 ) ニュートン 2011/7/13 天体色彩学入門 2 X 線 電磁波のスペクトル 可視光 赤外線 電波 ガンマ線 2011/7/13 天体色彩学入門 3 色の認識 2011/7/13 天体色彩学入門 4 連続スペクトル 白熱電球 ホタル 2011/7/13 天体色彩学入門 5 こと座 α 星ベガ alphalyr.dat

More information

On the X-ray and Mass Distribution in the Merging Galaxy Cluster 1E

On the X-ray and Mass Distribution in the Merging Galaxy Cluster 1E 衝突銀河団に関する話題 : 質量分布 質量評価 磁場進化 滝沢元和 ( 山形大学理学部物理学科 ) 研究会 : マクロでミクロな銀河団 (2007.10.24 26@ 26@ 山形蔵王 たかみや瑠璃倶楽リゾート ) 目次 Introduction ダークマター分布 vs ガス分布 質量評価の不定性について 銀河団磁場の進化 まとめ Introduction(1): 銀河団衝突の痕跡 (X 線 weak

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 原始惑星系円盤内でロスビー波不安定性によって形成される渦 小野智弘 ( 京都大 ), 武藤恭之 ( 工学院大 ), 富田賢吾 ( 大阪大 ), 野村英子 ( 東工大 ) Dec. 20th, 2016 理論懇シンポジウム 2016@ 東北大 1 様々な原始惑星系円盤構造 若い星の周りにあるガス円盤 円盤内のダストが合体成長し 惑星を形成 近年 詳細な円盤構造が明らかになってきている ALMA によるダスト連続光観測

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

高次元一般相対論とブラックホール

高次元一般相対論とブラックホール 第 8 回湯川記念財団 木村利栄理論物理学賞受賞記念講演 2015 年 1 月 21 日於京都大学基礎物理学研究所 高次元の一般相対論とブラックホール 石橋明浩 近畿大学理工学部 お話しすること 何に興味をもってきたか 何をやっているのか これから ( 高次元 ) 一般相対論研究の進展 1916: Schwarzschild 解 1963: Kerr 解 1965~1970: 特異点定理 1992:

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

新たな宇宙基本計画における宇宙科学・宇宙探査の位置付け及び主な関連事業の概要

新たな宇宙基本計画における宇宙科学・宇宙探査の位置付け及び主な関連事業の概要 2. 我が国の主要な宇宙科学 宇宙探査 有人宇宙活動プログラムの概要 ( 宇宙科学プログラム ) 1. 宇宙物理学 天文学 1.1 X 線天文学 1.1.1 X 線天文衛星 すざく (ASTRO-EII) 1.1.2 次期 X 線天文衛星 (ASTRO-H) 1.2 赤外線天文学 1.2.1 赤外線天文衛星 あかり (ASTRO-F) 1.2.2 次期赤外線天文衛星 (SPICA) 2. 太陽系科学

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

Microsoft PowerPoint Aug30-Sept1基研研究会熱場の量子論.ppt

Microsoft PowerPoint Aug30-Sept1基研研究会熱場の量子論.ppt 原子核における α 粒子の Bose-Einstein 凝縮 大久保茂男 S. Ohkubo ( 高知女子大 環境理学科 ) @ 1999 クラスター模型軽い領域だけでなく重い領域 40 Ca- 44 Ti 領域での成立理論 実験 1998 PTP Supplement 132 ( 山屋尭追悼記念 ) 重い核の領域へのクラスター研究 44 Ti fp 殻領域 40 Ca α の道が切り開かれた クラスター模型の歴史と展開

More information

Microsoft PowerPoint - komaba ppt [互換モード]

Microsoft PowerPoint - komaba ppt [互換モード] 宇宙科学 II ( 電波天文学 ) 第 12 回 ブラックホール (II) 前回の復習 1 ブラックホール 強い重力により光さえ飲み込む暗黒の天体 ブラックホールの大きさ ( シュバルツシルト半径 ) R g = 2GM / c 2 無限遠から初速 0 で BH 近傍の円軌道まで物質を落とすと E = ¼ m c 2 という莫大なエネルギーが取り出せる ( ニュートン力学の近似 実際は静止質量の ~

More information