トポス alg-d 年 5 月 5 日 1 トポス 定義. P, Q: C op Set を関手とする.P が Q の部分関手 ( 記号で P Q と書く ) 自然変換 θ : P Q で 各 a C について θ

Size: px
Start display at page:

Download "トポス alg-d 年 5 月 5 日 1 トポス 定義. P, Q: C op Set を関手とする.P が Q の部分関手 ( 記号で P Q と書く ) 自然変換 θ : P Q で 各 a C について θ"

Transcription

1 トポス alg-d 年 5 月 5 日 1 トポス 定義. P, Q: C op Set を関手とする.P が Q の部分関手 ( 記号で P Q と書く ) 自然変換 θ : P Q で 各 a C について θ a : P a Qa が包含写像になっているもの が存在する. P Q を部分関手とすると, 自然性より,f : a b に対して次の図式が可換である. a P a Qa f P f Qf b P b Qb 従って P f = Qf P b となる. 特に x P b に対して Qf(x) P a である. 逆に Q: C op Set を関手として, 集合族 {P a} a C が次の条件を満たすとする : a C に対して P a Qa. f : a b,x P b に対して Qf(x) P a. このとき,f : a b に対して P f := Qf P b : P b P a と定義すると P は Q の部分関手になることが容易に分かる. 定義. 有限完備な圏 C の部分対象分類子 (subobject classifier) とは, 組 Ω, true であって, 以下の条件を満たすものをいう : (1) Ω C は対象で,true: 1 Ω は射である. 1

2 (2) 任意のモノ射 f : a b に対して, ある射 χ f : b Ω が一意に存在して, 次の図式が pullback になる.! a 1 f true b χ f Ω true を省略し, 単に Ω を部分対象分類子ということも多い. 定義. トポス (topos) *1 とは, 圏 E であって以下の条件を満たすものをいう : (1) E は有限完備である. (2) E は Cartesian 閉である.( 随伴関手 の PDF を参照.) (3) E は部分対象分類子を持つ. 命題 1. C を小圏とするとき Ĉ = SetCop はトポスである. 特に Set はトポスである. 証明. まず Ĉ は完備だった ( 極限 の PDF を参照 ).Ĉ が Cartesian 閉であることを示す. P, Q Ĉ とする. もし Ĉ が Cartesian 閉であれば Q P Ĉ が存在するが, このとき米田の補題により,a C に対して HomĈ(y(a) P, Q) = HomĈ(y(a), Q P ) = Q P (a) とならなければならない. P, Q Ĉ とする.QP := HomĈ(y( ) P, Q) Ĉ と定義する. 余米田の補題 ( 余 c C op 米田の補題 の PDF を参照 ) により P a = Hom C (a, c) P c だったことに注意 *1 以下で述べる Grothendieck トポスと区別する為に, この意味のトポスを初等トポス (elementary topos) という場合がある. また,Grothendieck トポスを単にトポスと呼ぶ場合もある. 2

3 すると, 任意の X Ĉ に対して自然に HomĈ(X, Q P ) = Hom Set (Xc, Q P (c)) c C op = Hom Set (Xc, HomĈ(y(c) P, Q)) c C op ( ) = Hom Set Xc, Hom Set (Hom C (d, c) P d, Qd) c C op d C op ( = Hom Set Xc, HomSet (Hom C (d, c) P d, Qd) ) c C op d C op = Hom Set (Xc Hom C (d, c) P d, Qd) c C op d C op = Hom Set (Xc Hom C (d, c) P d, Qd) d C op c C op ( ) c C op = Xc Hom C (d, c) P d, Qd = d C op Hom Set d C op Hom Set ( P d c C op = Hom Set (P d Xd, Qd) d C op = HomĈ(X P, Q) Hom C (d, c) Xc, Qd ) である (Set が Cartesian 閉なので,P d が余極限と交換すること, 特にコエンドと交換することに注意する ). よって Ĉ が Cartesian 閉と分かった. 部分対象分類子の存在を示す.Ω を a C に対して Ω(a) := {P Ĉ P y(a)} とする. f : a b を C の射として P Ωb とする.u C に対して (Ωf(P ))(u) := {k : u a f k P u} と定めるとこれは部分関手 Ωf(P ) y(a) を与える.. ) l : u v とする.k (Ωf(P ))(v) に対して k l (Ωf(P ))(u) を示せばよい. 今 k (Ωf(P ))(v) だから f k P v である.P y(a) が部分関手だ 3

4 から l u v P u Hom C (u, a) l l P v Hom C (v, a) が可換となり, よって f k l P u である. これにより,f : a b に対して写像 Ω(f): Ωb Ωa が定まる. で定義する. これは関手 Ω: C op Set を与える.. ) 明らかに Ω(id a ) = id Ωa だから,a f b g c に対して Ω(g f) = Ω(f) Ω(g) を示せばよい. 定義より P Ωc,u C に対して (Ωf(Ωg(P )))(u) = {k : u a f k (Ωg(P ))(u)} = {k : u a g f k P u} = (Ω(g f)(p ))(u) だから Ωf Ωg(P ) = Ω(g f)(p ) である. true: 1(= 1) Ω を true a ( ) := y(a) で定める. これらが部分対象分類子を与えることを示そう. まず θ : P Q をモノ射とする. つまり a C に対して θ a : P a Qa はモノ射 ( つまり単射 ) である. これにより P a Qa とみなす.a, u C,x Qa に対して χ a (x)(u) := {k : u a Qk(x) P u} と定義する. C P Q Set u P u Qu k a P k Qk P a Qa x これは部分関手 χ a (x) y(a) を定義する. 4

5 . ) l : u v を射とするとき,k χ a (x)(v) に対して k l χ a (x)(u) となることを示せばよい. それには Qk(x) P v ならば Q(k l)(x) P u を示せばよいが, それは明らか. u P u Qu l k v a P l Ql P v Qv P k Qk P a Qa よって χ a (x) Ωa であるから,χ a : Qa Ωa は写像である. これは自然変換 χ: Q Ω を定める.. ) f : a b を射とする. 次の図式が可換であることを示せばよい. a Qa χ a Ωa f Qf Ωf b Qb χ b Ωb 即ち,x Qb に対して,y(a) の部分関手の等号 χ a (Qf(x)) = Ωf(χ b (x)) を示せばよい. つまり u C に対して χ a (Qf(x))(u) = Ωf(χ b (x))(u) を示す. これは定義より χ a (Qf(x))(u) = {k : u a Qk(Qf(x)) P u} Ωf(χ b (x))(u) = {k : u a f k χ b (x)(u)} = {k : u a Q(f k)(x) P u} となるから成り立つ. よって Ĉ における次の図式が得られた.! P 1 θ Q χ Ω true これは可換である.. ) a C に対して χ a θ a = true a! a を示せばよい. 即ち x P a に対して 5

6 χ a (θ a (x)) = y(a) を示せばよい.χ の定義より,u C に対して χ a (θ a (x))(u) = {k : u a Qk(θ a (x)) P u} だから, 任意の k : u a に対して Qk(θ a (x)) P u を示せばよい. それは θ : P Q が自然変換だから, 次の図式が可換となり成り立つ. P k P u P a θ u θ a Qu Qa Qk この図式が pullback になることを示す. その為に次の図式の実線部分が可換であるとする. X! τ σ P 1 Q θ true χ Ω a C とすると,χ a σ a = true a! a だから x Xa に対して χ a (σ a (x)) = y(a) で ある. 即ち任意の k : u a に対して Qk(σ a (x)) P u となる. 特に k = id a と取れば σ a (x) P a が分かる. 即ち, ある τ a : Xa P a が存在して θ a τ a = σ a となる. この τ a は自然変換 τ : X P を与える.. ) f : a b を C の射として次の図式を考える. τ a Xa P a Qa Xf P f Qf Xb P b Qb τ b θ a θ b θ が自然変換だから, 右側の四角は可換である. また σ a (= θ a τ a ) が a について自 6

7 然だから外側の四角も可換である. 従って τ a θ a Xa P a Qa Qa P a θ a Qa Xf = Qf = P f Xb Xb P b Qb τ b θ b Xb τ b P b となる. 今 θ a はモノ射だったから Xf Xa Xb τ a τ b P a P b P f が可換となることが分かり,τ は自然変換である. よって θ τ = σ となる自然変換 τ : X P が存在することが分かった. 逆に τ : X P が θ τ = σ を満たすとすると,θ がモノ射だから τ = τ とならなければならない. よってこのような τ が一意であることが分かる. 従ってこの図式が pullback であることが分かった. 2 層 X を位相空間,O(X) を X の開集合全体とする.O(X) は包含関係により圏となる. 関手 P : O(X) op Set を X 上の ( 集合の ) 前層というのであった. 更に, 開集合 U X と U の開被覆 {U i } に対して次が equalizer となるとき,P を層と言うのであった. ( 例: 位相空間上の層 の PDF を参照.) P (U) e P (U i ) p q i,j I P (U i U j ) ここで e(x) := x Ui で,p は U i U j U i から得られる射,q は U i U j U j から得られる射である. 定義. C を圏とする.a C に対して, 部分関手 S y(a) を a 上の sieve という. 例 2. C = O(X) の場合.S を U O(X) 上の sieve とすると S は関手 O(X) op Set 7

8 で,V O(X) に対して S(V ) y(u)(v ) = Hom O(X) (V, U) = { 0 (= ) (V U のとき ) 1 (= { }) (V U のとき ) である. よって S は写像 O(X) 2 = {0, 1}, 即ち部分集合 S O(X) とみなせる. 更 に,S が関手であることから W V に対して写像 Hom O(X) (V, U) = S(V ) S(W ) = Hom O(X) (W, U) が存在する. 故に V S ( 即ち S(V ) = 1) ならば W S ( 即ち S(W ) = 1) でなければ ならない. また V U ならば V / S である. 以上により,U 上の sieve S は部分集合 S O(U) で, 条件 を満たすものと同一視できる. V S, W O(U), W V = W S (1) {U i } を U の開被覆とする. 即ち U = U i である. このとき S := {V O(U) ある i I が存在して V U i } と定義すれば S は明らかに条件 1 を満たすので,S は U 上の sieve とみなせる. この S は U = V を満たす. V S 逆に,U 上の sieve S が U = V S V を満たすとすると S = {V O(U) ある W S が存在して V W } となる. そこで,U = V となる sieve を covering sieve と呼ぶ. V S U 上の sieve S は部分関手 θ : S y(u) であった. これにより, 前層 P に対して写像 i := HomÔ(X) (θ, P ): HomÔ(X) (y(u), P ) HomÔ(X) (S, P ) が定まる. 定理 3. 位相空間 X 上の前層 P が層 任意の開集合 U X 上の covering sieve S に対して i: HomÔ(X) (y(u), P ) HomÔ(X) (S, P ) が全単射を与える. 8

9 証明. {U i } を開被覆とする. E P (U i ) p q i,j I P (U i U j ) を p, q の equalizer とすると E := { x i } P (U i ) x i Ui U j = x j Ui U j である. S を {U i } から定まる covering sieve とする. このとき全単射 f : Hom(S, P ) E が 存在する.. ) θ Hom(S, P ) とする.S(Ui ) = 1 = { } だから θ Ui ( ) P (U i ) である. よっ て写像 f : Hom(S, P ) P (U i ) を f(θ) := θ Ui ( ) P (U i ) と定義する ことができる.f(θ) E である.. ) i, j I に対して θ Ui ( ) Ui U j = θ Uj ( ) Ui U j を示せばよい.θ が自然変換 だから θ Ui U j S(U i U j ) P (U i U j ) θ Ui U j S(U i U j ) P (U i U j ) S(U i ) P (U i ) θ Ui S(U j ) P (U j ) θ Uj は可換である. よって θ Ui ( ) Ui U j = θ Ui U j ( ) = θ Uj ( ) Ui U j となり成り立つ. よって f : Hom(S, P ) E とみなすことができる. この f の逆写像 g が存在することを示せばよい. x i E とする.V O(X) に対して θ V : S(V ) P (V ) を次のように定める : V / S のとき,θ V は一意な射 S(V ) = P (V ) とする. V S のとき,V U i となる i I を取り θ V ( ) := x i V と定める. (x i Ui U j = x j Ui U j だから, これは well-defined である.) これは V について自然である. 9

10 . ) V W に対して次の図式が可換であることを示せばよい. θ V S(V ) P (V ) S(W ) P (W ) θ W W / S, 即ち S(W ) = ならば自明だから W S とする. この場合 V S で あるから,θ W ( ) V = θ V ( ) を示せばよい. これは x i W V = x i V ということ だから成り立つ. よって自然変換 θ : S P が得られる. これにより g( x i ) := θ と定義する. つまり V S に対して g( x i ) V ( ) = x i V である. このとき ( g f(θ) ) V ( ) = ( g( θ Ui ( ) ) ) V ( 0) = θ U i ( ) V = θ V ( ) f g( x i ) = g( x i ) Ui ( ) = x i だから g = f 1 である. よって f : Hom(S, P ) P (U i ) とみなせば Hom(S, P ) f P (U i ) p q i,j I P (U i U j ) は equalizer である. 次の図式を考える. Hom(S, P ) i Hom(y(U), P ) f = P (U i ) e P (U) p q i,j I P (U i U j ) この図式の左の四角は可換である.. ) θ Hom(y(U), P ) を取る.θ に対応する x P (U) は x = θ U (id U ) で与えられ るから,θ を右回りで写したものは θ U (id U ) Ui になる. 一方, 左回りで写すと 10

11 f i(θ) = θ Ui ( ) になるから i I に対して θ U (id U ) Ui = θ Ui ( ) を示せばよい. θ が自然変換で U i U だから次が可換である. θ Ui Hom(U i, U) P (U i ) θ Ui θ U (id U ) Ui Hom(U, U) θ U P (U) id U θ U (id U ) θ U よって θ U (id U ) Ui = θ Ui ( ) が分かる. (= ) S を開集合 U X 上の covering sieve とする.{V } V S は U の開被覆である から, 上記の議論により次の図式を得る. Hom(S, P ) i Hom(y(U), P ) f = P (V ) V S e P (U) p q V,W S P (V W ) 仮定より e が equalizer となるから i は同型である. ( =) {U i } を U の開被覆とする. これから得られる covering sieve S を取り, 上記 の議論から次の図式を得る. Hom(S, P ) i Hom(y(U), P ) = P (U i ) e P (U) p q i,j I P (U i U j ) i が同型だから e が p, q の equalizer となる. よって P は層である. これを使い, 一般の圏 C 上の前層が層であることを定義することができる. その為には, まず c C 上の sieve S がいつ covering sieve になるかを定めなければならない. 定義. C を圏とする. 各対象 a C に対して,a 上の sieve からなる集合 J(a) が与えられ, 以下の条件を満たすとき,J を C の Grothendieck 位相という. (1) y(a) J(a) である.(y(a) を maximal sieve と呼ぶ.) (2) f : a b,s J(b) に対して Ωf(S) J(a) である. 11

12 (3) S J(a),R が a 上の sieve で 任意の f S(b) に対して Ωf(R) J(b) ならば R J(a) である. また J(a) に含まれる sieve を covering sieve と呼ぶ. 圏 C の Grothendieck 位相 J が与えられたとき, 組 C, J を景 (site) という. 定義. 景 C, J 上の層とは, 前層 P : C op Set であって, 任意の c C と S J(c) に対して i: HomĈ(y(c), P ) HomĈ(S, P ) が全単射となるものを言う. C, J 上の層全体がなす Ĉ の充満部分圏を Sh(C, J) と書く. 例 4. C = O(X) の場合.J(U) := {S S は U 上の covering sieve} と定義すると J は O(X) の Grothendieck 位相になる.. ) maximal sieve, 即ち S = O(U) は U 上の covering sieve であるから条件 1 は成り立つ. 次に f : U U として S を U 上の sieve とする.V O(X) に対して (Ωf(S))(V ) = {k : V U f k S(V )} だから V Ωf(S) V U かつ V S である. よって条件 2 は S が U 上の covering sieve ならば S O(U) は U 上の covering sieve である という条件となり, 成り立つ. 最後に,S を U 上の covering sieve,r を U 上の sieve とする. 条件 3 の 任意の f S(b) に対して Ωf(R) J(b) は V S ならば R O(V ) は V 上の covering sieve である という条件になり, この条件が成り立つとき R は covering sieve である, というのが条件 3 である. 故に成り立つ. この景 O(X), J 上の層は, 定理 3 より位相空間 X 上の層となる. 定理 5. Sh(C, J) はトポスである. 定義. ある景 C, J に対する Sh(C, J) と圏同値になる圏を Grothendieck トポスと呼ぶ. 参考文献 [1] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Springer,

2-category

2-category 2-ctegory lg-d http://lg-d.com/mth/kn_extension/ 2019 年 1 月 1 日 この PDF では g のように, 一部の記号で色を使用していますが, 色が分から なくても問題無いようにはなっています. 定義はここやここを参照. 圏の圏 Ct では, 対象 C, D Ct に対して Hom Ct (C, D) も圏になるのであった ( 関手が対象, 自然変換が射

More information

DVIOUT-17syoze

DVIOUT-17syoze 平面の合同変換と相似変換 岩瀬順一 要約 : 平面の合同変換と相似変換を論じる いま大学で行列を学び始めている大学一年生を念頭に置いている 高等学校で行列や一次変換を学んでいなくてもよい 1. 写像 定義 1.1 X, Y を集合とする X の各元 x に対し Y のただ一つの元 y を対応させる規則 f を写像とよび,f : X! Y のように書く f によって x に対応する Y の元を f(x)

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

Microsoft Word docx

Microsoft Word docx 有限図形の代数的表現について 三角形や星型を式で表現したいという思いから以下のことを 考察をしまし た 有限個の点と辺で 構成される図形を 関数で表現する そのため 基礎 体として 素数の有限体を考える 但し 扱うのは 点の数と辺の数が等しい 特別場合である 先ず P5 のときから 始めることにします. グラフと写像と関数について ( 特別な場合 ) 集合 F {,,,, } について 写像 f :

More information

案内最終.indd

案内最終.indd 1 2 3 4 5 6 IC IC R22 IC IC http://www.gifu-u.ac.jp/view.rbz?cd=393 JR JR JR JR JR 7 / JR IC km IC km IC IC km 8 F HPhttp://www.made.gifu-u.ac.jp/~vlbi/index.html 9 Q01a N01a X01a K01a S01a T01a Q02a N02a

More information

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語

オートマトン 形式言語及び演習 3. 正規表現 酒井正彦   正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語 オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

3-category

3-category 3-category alg-d http://alg-d.com/math/kan_extension/ 2018 年 8 月 29 日 次元がもう一つ上がり,2-morphism の間の射も存在するのが 3-category である. 即ち定義. (at-at)- 豊穣圏を strict 3-category という. 3-category の場合も weak バージョンがあり, それを tricategory

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ

2-1 / 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリ 2-1 / 32 4. 語問題 項書換え系 4.0. 準備 (3.1. 項 代入 等価性 ) 定義 3.1.1: - シグネチャ (signature): 関数記号の集合 (Σ と書く ) - それぞれの関数記号は アリティ (arity) と呼ばれる自然数が定められている - Σ (n) : アリティ n を持つ関数記号からなる Σ の部分集合 例 : 群 Σ G = {e, i, } (e Σ

More information

Microsoft Word - 実習報告書分析編10-11

Microsoft Word - 実習報告書分析編10-11 70 17.4 30.2 30.2 88 21.9 37.9 68.1 (SE) 22 5.5 9.5 77.6 18 4.5 7.8 85.3 14 3.5 6.0 91.4 20 5.0 8.6 100.0 232 57.7 100.0 97 88 21.9 82 20.4 170 42.3 402 100.0 285 q1[] (SE) q1[] 22 47 69 % 31.9% 68.1%

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

Microsoft PowerPoint - ce07-09b.ppt

Microsoft PowerPoint - ce07-09b.ppt 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? フィードバック系の内部安定性 u 内部安定性 T G だけでは不十分

More information

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1 83 ( Intrinsic ( (1 V v i V {e 1,, e n } V v V v = v 1 e 1 + + v n e n = v i e i V V V V w i V {f 1,, f n } V w 1 V w = w 1 f 1 + + w n f n = w i f i V V V {e 1,, e n } V {e 1,, e n } e 1 (e 1 e n e n

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする

1 1. はじめに ポンスレの閉形定理 Jacobi の証明 June 5, 2013 Akio Arimoto ヤコビは [2] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 2つの円があり 一方が他方を完全に含んでいるとする 大小 2 円の半径をそれぞれ Rr, とする . はじめに ポンスレの閉形定理 Jcobi の証明 Jue 5 03 Akio Aimoto ヤコビは [] においてポンスレの閉形定理に初等幾何を用いた証明を与え ている 大小 つの円があり 一方が他方を完全に含んでいるとする 大小 円の半径をそれぞれ とする 中心間の距離を とすれば 0 < + < が成立している 大きい円の周上の点 A から小さい円に接線を引く 接線と大きい円の周上に交わる

More information

Nobelman 絵文字一覧

Nobelman 絵文字一覧 Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

ピタゴラスの定理の証明4

ピタゴラスの定理の証明4 [ 証明 ] この証明を論理的に厳密に行うには 何回か三角形 四角形の合同を証明しなくてはなりません 以下では 直感的な分かりやすさを重視して この証明を行いません 三角形 において であるとする 辺 を一辺とする正方形 を三角形 の外側につくる 辺 を一辺とする正方形 を三角形 の外側につくる 辺 を一辺とする正方形 Fを三角形 の外側につくる 直線 と直線 との交点を J とし 直線 と直線 F

More information

Dehn 手術による 3 次元多様体の構成 Lickorish-Wallace の定理 B 久家正樹指導教員古宇田悠哉広島大学理学部数学科卒業論文 2017 年 2 月 10 日

Dehn 手術による 3 次元多様体の構成 Lickorish-Wallace の定理 B 久家正樹指導教員古宇田悠哉広島大学理学部数学科卒業論文 2017 年 2 月 10 日 Dehn 手術による 3 次元多様体の構成 Lickorish-Wallace の定理 B132209 久家正樹指導教員古宇田悠哉広島大学理学部数学科卒業論文 2017 年 2 月 10 日 まえがき 3 次元多様体論を 1 年間学んできた過程で, 全ての閉曲面が完全に分類できるという定理に出会い, さらに 1 つ上の次元の 3 次元多様体の分類について興味を持った. 3 次元多様体に対するこの問題は,

More information

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦   形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, オートマトン 形式言語及び演習 1 有限オートマトンとは 酒井正彦 wwwtrscssinagoya-uacjp/~sakai/lecture/automata/ 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110, } 形式言語 : 数学モデルに基づいて定義された言語 認識機械 : 文字列が該当言語に属するか? 文字列 機械 受理

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション グラフの禁止構造条件について 古谷倫貴 ( 北里大学一般教育部 ) 話の流れ 1. 禁止部分グラフ a. 問題設定 b. ハミルトン閉路のための禁止部分グラフ c. 完全マッチングのための禁止部分グラフ d. 禁止部分グラフ条件の完全決定の難易 2. 自明な禁止部分グラフ条件 3. 禁止部分グラフ条件の比較 問題設定 グラフのある性質 P について,P のための ( 十分 ) 条件として良いものを考えたい.

More information

aso1p

aso1p Euclid Minkowski (1 2012 9 22 23 U: R n, u =(u 1,,u n U, f : U R n+1 : g := Σg ij du i du j : f U (ie g(x, Y := f X, f Y f : U R n+1 Vol(f Vol(f := dv, dv := dv f U det(g ij du 1 du n 3 C F : I U R n+1

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

DVIOUT-OCTbook201

DVIOUT-OCTbook201 第 3 章 ヒルベルト空間 本節では, 量子系の理解のために必要な無限次元線形空間の理論であるヒルベルト空間の基本的事柄を概説する. 0.1 基本定理数体 K ( 実数体 R または複素数体 C; これらをスカラー体ともいう ) 上の線形空間の任意の元 x, y, z X と任意の λ K に対して, 1. hx, xi 0, = 0 x =0, 2. hx, yi = hy, xi, 3. hx,

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

2015年度 2次数学セレクション(整数と数列)

2015年度 2次数学セレクション(整数と数列) 05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ -- 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき,

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

<4D F736F F F696E74202D208AF489BD8A7782C CF97CA82A882DC82AF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D208AF489BD8A7782C CF97CA82A882DC82AF2E B8CDD8AB B83685D> 幾何学と不変量 数学オリンピックの問題への応用 北海道大学 高等教育推進機構西森敏之 この講演では, 数学の長い歴史の中で見つけられた, 不変量 とよばれるものの考え方を, 実際に数学オリンピックの問題を解きながら, 紹介します 1. ウオーミング アップ まず, 少し脳細胞のウオーミング アップをします 定義 ( 分割合同 ) 平面上の 2 つの多角形 P と Q が分割合同とは, 多角形 P をいくつかの直線で切って小片に分けてから,

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - logic ppt [互換モード]

Microsoft PowerPoint - logic ppt [互換モード] 述語論理と ( 全称 ) ( 存在 ) 回の講義の概観 : 命題論理 ( 真理値 ) 2 述語論理 ( モデルと解釈 ) 意味論 semantics 命題論理 ( 公理と推論規則 ) 述語論理 ( 公理と推論規則 ) syntax 構文論 preview 述語論理は命題論理よりも複雑 例題 : 次の文は真か偽か? ( 曖昧な文です ) すべての自然数 x に対して x < y を満たすような自然数

More information

( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π()

( 最初の等号は,N =0, 番目は,j= のとき j =0 による ) j>r のときは p =0 から和の上限は r で十分 定義 命題 3 ⑵ 実数 ( 0) に対して, ⑴ =[] []=( 0 または ) =[6]+[] [4] [3] [] =( 0 または ) 実数 に対して, π() 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 数研通信 70 号を読んで チェビシェフの定理の精密化 と.5 の間に素数がある 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 さい才 の 野 せ瀬 いちろう 一郎 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 0. はじめに このたび,

More information

2015年度 信州大・医系数学

2015年度 信州大・医系数学 05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部

More information

untitled

untitled 5 28 EAR CCLECCN ECCN 1. 2. 3. 4. 5.EAR page 1 of 28 WWW.Agilent.co.jp -> Q&A ECCN 10020A 10070A 10070B 10070C 10071A 10071B 10072A 10073A 10073B 10073C 10074A 10074B 10074C 10076A 10229A 10240B 10430A

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Microsoft PowerPoint - 13approx.pptx

Microsoft PowerPoint - 13approx.pptx I482F 実践的アルゴリズム特論 13,14 回目 : 近似アルゴリズム 上原隆平 (uehara@jaist.ac.jp) ソートの下界の話 比較に基づく任意のソートアルゴリズムはΩ(n log n) 時間の計算時間が必要である 証明 ( 概略 ) k 回の比較で区別できる場合の数は高々 2 k 種類しかない n 個の要素の異なる並べ方は n! 通りある したがって少なくとも k n 2 n!

More information

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散, . 無作為標本. 基本的用語 推測統計における基本的な用語を確認する 母集団 調査の対象になる集団のこと 最終的に, 判断の対象になる集団である 母集団の個体 母集団を構成する つ つのもののこと 母集団は個体の集まりである 個体の特性値 個体の特性を表す数値のこと 身長や体重など 特性値は, 変量ともいう 4 有限母集団と無限母集団 個体の個数が有限の母集団を 有限母集団, 個体の個数が無限の母集団を

More information

Microsoft PowerPoint - 09re.ppt [互換モード]

Microsoft PowerPoint - 09re.ppt [互換モード] 3.1. 正則表現 3. 正則表現 : 正則表現 ( または正規表現 ) とは 文字列の集合 (= 言語 ) を有限個の記号列で表現する方法の 1 つ 例 : (01)* 01 を繰り返す文字列 つまり 0(0+1)* 0 の後に 0 か 1 が繰り返す文字列 (01)* = {,01,0101,010101,01010101, } 0(0+1)*={0,00,01,000,001,010,011,0000,

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

1/15 平成 29 年 3 月 24 日午前 11 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( e, m, t ) 換で結びつく (5.12) の ( e, m ) ニュートリノ質量行列 3 種混合 n n n と質量固有状態のニュートリノ ( n1, n 2, n

1/15 平成 29 年 3 月 24 日午前 11 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( e, m, t ) 換で結びつく (5.12) の ( e, m ) ニュートリノ質量行列 3 種混合 n n n と質量固有状態のニュートリノ ( n1, n 2, n /5 平成 9 年 月 4 日午前 時 48 分第八章ニュートリノ質量行列 第八章 フレーバーニュートリノ ( t ) 換で結びつく (5.) の ( ) ニュートリノ質量行列 種混合 と質量固有状態のニュートリノ ( ) と ( ) の場合の は ユニタリー変 æ æ cosq siq æ ø -siq cosq ø ø (8.) 以外に æ æ cosq siq æ -siq cosq t ø

More information

PoincareDisk-3.doc

PoincareDisk-3.doc 3. ポアンカレ円盤上の 次分数変換この節以降では, 単に双曲的直線, 双曲的円などといえば, 全てポアンカレ円盤上の基本図形とします. また, 点 と点 B のポアンカレ円盤上での双曲的距離を,[,B] と表します. 3. 双曲的垂直 等分線 ユークリッドの原論 において 円 双曲的円, 直線 双曲的直線 の置き換えを行うだけで, 双曲的垂直 等分線, 双曲的内心, 双曲的外心などを 機械的に (

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

離散数学

離散数学 離散数学 ブール代数 落合秀也 前回の復習 : 命題計算 キーワード 文 複合文 結合子 命題 恒真 矛盾 論理同値 条件文 重条件文 論法 論理含意 記号 P(p,q,r, ),,,,,,, 2 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 3 今日のテーマ : ブール代数 ブール代数 ブール代数と束 そして 順序 加法標準形とカルノー図 4 ブール代数の法則

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

第 6 章超ゲージ対称性 2002 年 1/12 第 6 章超ゲージ対称性 Non-abelian ゲージ群 第 1 章場の変換性と演算子 - 変数 X が同じとき より T a を generators にもつ Non-abelian 群の下で に注意して カイラル超場 F が = W = ( )

第 6 章超ゲージ対称性 2002 年 1/12 第 6 章超ゲージ対称性 Non-abelian ゲージ群 第 1 章場の変換性と演算子 - 変数 X が同じとき より T a を generators にもつ Non-abelian 群の下で に注意して カイラル超場 F が = W = ( ) 第 6 章超ゲージ対称性 00 年 / 第 6 章超ゲージ対称性 o-el ゲージ群 第 章場の変換性と演算子 - 変数 X が同じとき より T を geetos にもつ o-el 群の下で に注意して カイラル超場 F が = W = W = ( ) ( gk T ) ˆ j ( gk T ) ( gk t ) ˆ j j U ˆ j U ˆ wth U ep T & ep t Ü ep - ep

More information

EOS 7D 使用説明書

EOS 7D 使用説明書 J J 2 3 6 5 9 0 0 9 7 8 3 M M Md s f a F 1 C 1 5J 4 1 2 3 4 5 6 7 8 9 10 11 12 5 1 2 Q 3 1 1 C 6 3 4 5 i A A A B O P u f S i j d s f a q h A 7 6 7 8 F R D A z k x x B H I u y b k k X K L 8 9 10 11 12 f

More information

Microsoft Word - K-ピタゴラス数.doc

Microsoft Word - K-ピタゴラス数.doc - ピタゴラス数の代数と幾何学 津山工業高等専門学校 菅原孝慈 ( 情報工学科 年 ) 野山由貴 ( 情報工学科 年 ) 草地弘幸 ( 電子制御工学科 年 ) もくじ * 第 章ピタゴラス数の幾何学 * 第 章ピタゴラス数の代数学 * 第 3 章代数的極小元の幾何学の考察 * 第 章ピタゴラス数の幾何学的研究の動機 交点に注目すると, つの曲線が直交しているようにみえる. これらは本当に直交しているのだろうか.

More information

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ 伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 漸近線の求め方に関する考察 たまい玉井 かつき克樹 伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊伊 伊伊伊伊伊伊伊伊伊伊. 漸近線についての生徒からの質問 数学において図を使って直感的な説明を与えることは, 理解を深めるのに大いに役立つ

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

融合規則 ( もっとも簡単な形, 選言的三段論法 ) ll mm ll mm これについては (ll mm) mmが推論の前提部になり mmであるから mmは常に偽となることがわかり ll mmはllと等しくなることがわかる 機械的には 分配則より (ll mm) mm (ll mm) 0 ll m

融合規則 ( もっとも簡単な形, 選言的三段論法 ) ll mm ll mm これについては (ll mm) mmが推論の前提部になり mmであるから mmは常に偽となることがわかり ll mmはllと等しくなることがわかる 機械的には 分配則より (ll mm) mm (ll mm) 0 ll m 知識工学 ( 第 5 回 ) 二宮崇 ( ninomiya@cs.ehime-u.ac.jp ) 論理的エージェント (7 章のつづき ) 証明の戦略その 3 ( 融合法 ) 証明の戦略その 1 やその 2 で証明できたときは たしかにKKKK ααとなることがわかるが なかなか証明できないときや 証明が本当にできないときには KKKK ααが成り立つのか成り立たないのかわからない また どのような証明手続きを踏めば証明できるのか定かではない

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

<8D828D5A838A817C A77425F91E6318FCD2E6D6364>

<8D828D5A838A817C A77425F91E6318FCD2E6D6364> 4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63> 1/8 平成 3 年 3 月 4 日午後 6 時 11 分 10 複素微分 : コーシー リーマンの方程式 10 複素微分 : コーシー リーマンの方程式 9 複素微分 : 正則関数 で 正則性は複素数 z の関数 f ( z) の性質として導き出しまし た 複素数 z は つの実数, で表され z i 数 u, v で表され f ( z) u i 複素数 z と つの実数, : z + i + です

More information

<95DB88E78F8A82CC8EC091D492B28DB F18D908F912E706466>

<95DB88E78F8A82CC8EC091D492B28DB F18D908F912E706466> ... 1... 2... 3... 4... 5... 6... 8... 14... 14... 14... 15... 16... 18 1... 18 2... 19 3... 20... 21... 21 1... 21 2... 23... 25 1... 25 2... 26... 27 1... 27 2... 27 ... 28 1... 28... 29 1... 29 2...

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

1

1 1 - 2 - ... - 4 -... - 4 -... - 4 -... - 4 -... - 5 -... - 5 -... - 8 -... - 9 -... - 9 -... - 9 -... - 9 -... - 9 -... - 9 -... - 10 -... - 10 -... - 10 -... - 10 -... - 10 -... - 11 -... - 11 -... -

More information

Taro-1803 平行線と線分の比

Taro-1803 平行線と線分の比 平行線と線分の比 1 4 平行線と線分の比 ポイント : 平行な直線がある つの三角形の線分の比について考える 証明 右の図で で とする (1) は と相似である これを証明しなさい と において から 平行線の ( ) は等しいから 9c = ( ) 1 = ( ) 1, より ( ) がそれぞれ等しいので 相似な図形になるので相似比を利用して () : の相似比を求めなさい 対応する線分の長さを求めることができる

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

20169 3 4 5003 n=3,000 61.8% 38.2% n=3,000 20 7.3% 30 21.3% 40 34.8% 50 36.6% n=3,000 3.0% 2.0% 1.5% 12.1% 14.0% 41.4% 25.9% n=3,000 37.7% % 24.8% 28.8% 1.9% 3.1% 0.2% n=3,000 500 64.0% 500 1,000 31.3%

More information

29 4 ... 1... 1... 1... 2... 3... 4.... 4... 4... 7... 8... 8... 8... 8...12...14...14...14...16...18...18...19...21... 42...42...42....42....46....49...51....51....51... 52...52...52...53 I. I. I. I.

More information

ã X0 1 2 3 4 5 6 7 ON STATION NO. B RATE 40 20 10 8 4 2 1 4 2 1 AJ65SBTB1-8D DA DG +24V 24G DB SLD (FG) X0 X2 X4 X6 COM X1 X3 X5 X7 COM X0 1 2 3 4 5 6 7 X8 9 A B C D E F STATION NO. B RATE

More information

30 2018 11 30 ... 3... 4... 6 1... 13... 13... 14... 16... 19 2... 21... 21... 24... 25... 27 3... 29... 29... 30... 32... 37... 42... 49... 56... 62 4... 69... 69... 71... 72... 74... 75... 76... 80...

More information

2018年度 神戸大・理系数学

2018年度 神戸大・理系数学 8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ

More information

調和系工学 ゲーム理論編

調和系工学 ゲーム理論編 ゲーム理論第三部 知的都市基盤工学 5 月 30 日 ( 水 5 限 (6:30~8:0 再掲 : 囚人のジレンマ 囚人のジレンマの利得行列 協調 (Cooperte:C プレイヤー 裏切 (Deect:D ( 協調 = 黙秘 裏切 = 自白 プレイヤー C 3,3 4, D,4, 右がプレイヤー の利得左がプレイヤー の利得 ナッシュ均衡点 プレイヤーの合理的な意思決定の結果 (C,C はナッシュ均衡ではない

More information

2

2 1 2 3 4 5 6 7 2007 30,870 2008 32,426 2009 34,971 13,000 8 9 http://www.hokkaido-marathon.com/volunteer/ http://www.hokkaido-marathon.com/volunteer/leader.html 2009 / http://www.shonan-kokusai.jp/archives/volunteer/

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

Microsoft Word - Chap11

Microsoft Word - Chap11 第 章 次元回転群とそのリー代数. SO のリー代数. 節でリー代数を定義したが 以下にその定義を再録する なお 多くの教科書に従って本章以降は ep t A の代わりに ep t と書くこととする 定義.. G を 次の線型リー群とすると 任意の実数 t に対して ep t G となる gl C の全体をGのリー代数 またはリー環 という 例えば ep t が 次の特殊直交群 SO の元であれば

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

グラフ理論における偶奇性の現象

グラフ理論における偶奇性の現象 グラフ理論における偶奇性に関連する現象 (3 回目の講義 ) 加納幹雄 (Mikio Kano) 茨城大学名誉教授 講義の概略 1 回目入門的な話証明の多くを演習問題とします 2 回目マッチングと 1- 因子の一般化に関連する話 3 回目因子 = ある条件を満たす全域部分グラフ最近の因子理論のなかで偶奇性に関連するものの紹介 連結グラフ G と G-S の成分 G S S V(G) iso(g-s)=3

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると

オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦   正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる

More information