Size: px
Start display at page:

Download ""

Transcription

1

2 2

3 1. 10/ / / / / / / /28 11/ / / /19 skyline 12. 1/ 9 ALE 13. 1/ /23 3

4 , A [B]. [B] A Ω, Ω Ω, Ω Ω D. t, ρg, u V., ρ, g, V. A t Ω D ρg Ω 1: 4

5 . [B] t, g, u V. [1 ] (Cauchy 1 ) [2 ] x T + ρg =0 X (S F T) + ρ 0 g =0 u = u on Ω D T T n = t on Ω Ω D ( S F T ) T N = t [3 ] [4 ] [1], [2] [4] [3] [4] 5

6 1 T T, u U. Ť T, ǔ U,. ( x Ť + ρg) ǔ dv =0 v,., s t,s u t, u s, s = s t + s u. Ť :(ǔ x )dv = t ǔ ds + n Ť u ds + v s t s u, s u w =0 w W. ǔ U, w W ǔ + w U. Cauchy T,. v v ρg ǔdv T :(ǔ x )dv = t ǔ ds + n T u ds + ρg ǔdv v s t s u v T : {(ǔ + w) x } dv = t (ǔ + w)ds + n T u ds + ρg (ǔ + w)dv s t s u v 6

7 2 Cauchy T,. v T :(ǔ x )dv = t ǔ ds + n T u ds + ρg ǔdv v s t s u v T : {(ǔ + w) x } dv = t (ǔ + w)ds + n T u ds + ρg (ǔ + w)dv s t s u v. T :(w x )dv = t w ds + v s t. T : δa (L) dv = v v t w ds + v v ρg wdv ρg w dv δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j 2 x j x i S : δe dv = t w ds + ρg w dv V V V 7

8 2 v T : δa L dv V dv = V v S : δedv 1 J dv T = 1 J F S F T S ij = JFim 1 T mnfjn 1 δe = F T δa L F (F T δa L F ) ij = F ki δa Lkl F lj = x { ( k 1 δuk + δu )} l xl X i 2 x l x k X j = 1 ( xk δu k x l + x ) k δu l x l 2 X i x l X j X i x k X j = 1 ( xk δu k + x ) l δu l 2 X i X j X i X j = 1 {( ) u k δuk δ ki + δu ( )} l u k δ li 2 X i X j X j X i = 1 ( δui + δu j + δu k u k + u ) k δu k 2 X j X i X i X j X i X j = δe ij 8

9 V S : δedv = (F T δa L F ):(JF 1 T F T ) 1 v J dv = J(F ki δa Lkl F lj )(Fim 1 T mnfjn 1 ) 1 v J dv = δ km δ ln A Lkl T mn dv v = T : δa L dv v 9

10 T ij δe ij dv T ij δe ij = {δe}{t } = {δu} T [B] T [D][B]{u} {δe} =[B]{δu} {T } =[D]{E} =[D][B]{u} S ij δe ij dv S ij δe ij = {δe}{s} = {δu} T [B]{S} {δe} {δu} u {S} 10

11 {E} {E} u E = 1 ( ui + u j + u ) k u k e i e j 2 X j X i X i X j δe = 1 ( δui + δu j + δu k u k + u ) k δu k 2 X j X i X i X j X i X j 11

12 Newton-Raphson 1,. find u h V h such that δu ht (Q(u h ) F )=0 δu h V h, V h V, V h V. Q, F,., Q(u) =F,. F {F k } 0=F 1 < F 2 < < F n = F. Newton-Raphson, Q(u k )=F k u k u k 1. 12

13 Newton-Raphson 2 u k 1, u k F k F K k 1 K k 2 Q k 2 Q k Q k 1 F k 1 u k 1 u k 2 u k 0 = u k 1 u k 1 u k 2 u k $mbu$ u k 0 = u k 1 Q k 0 = Q(uk 0 ) K k 1 = Q u. K. u=u k 0 13

14 , K k 1 uk 1 = F k Q k 0 u k 1 = u k 0 + u k 1 u k 1, uk 0 uk 1 uk. 14

15 Newton-Raphson 3 F k F K k 1 K k 2 Q k 2 Q k Q k 1 F k 1 u k 1 u k 2 u k 0 = u k 1 u k 1 u k 2 u k $mbu$, u k i 1 u k i. Q k i 1 = Q(uk i 1 ) K k i = Q u u=u k i 1 K k i uk i = F k Q k i 1 u k i = uk i 1 + uk i u k i 1 uk i u k, u k i u k, F k Q k i 0. 15

16 , F k Q k i =0,. 16

17 v T : δa (L) dv = v t w ds + v ρg w dv δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j 2 x j x i t 0 S : δe dv = t w ds + ρg w dv V V updated Lagrange Total Lagrange Total Lagrange V 17

18 Ω.. Ω = e Ω e,,. dω = dω Ω e Ω e ds = ds Ω e Ω e u N (i), u i., u (i) i u i = N (n) u (n) i, (n). X i = N (n) X (n) i 18

19 1 δr.. δr = Ω δu k t k ds + Ω ρ 0 δu k g k dω,. δr = = e Ω {δu} = {δu 1,δu 2,δu 3 } T {t} = {t 1,t 2,t 3 } T {g} = {g 1,g 2,g 3 } T {δu} T {t} ds + ρ 0 {δu} T {g} dω [ Ω ] {δu} T {t} ds + Ω e ρ 0 {δu} T {g} dω Ω e N (i) 0 0 [N i ]= 0 N (i) N (i) [N] =[[N 1 ][N 2 ] [N n ]] (1), 3 3n [N]. 19

20 {δu (n) } {δu (n) } = 2 { } T δu (1) 1 δu(1) 2 δu(1) 3 δu (n) 1 δu(n) 2 δu(n) 3,, δr = e } {δu} =[N] {δu (n) [ { } T [ ]] δu (n) [N] T {t} ds + ρ 0 [N] T {g} dω Ω e Ω e 20

21 1 δe ij S ij dω = δr δe ij, S ij i, j, Ω δe ij S ij = δe 11 S 11 + δe 22 S 22 + δe 33 S 33 +2δE 12 S 12 +2δE 23 S 23 +2δE 31 S 31 =(δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 )(S 11 S 22 S 33 S 12 S 23 S 31 ) T,. {δe} = {δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 } T {S} = {S 11 S 22 S 33 S 12 S 23 S 31 } T, δe ij S ij dω = {δe} T {S} dω Ω Ω = {δe} T {S} dω = δr e Ω e 21

22 2 δe ij, δe ij = 1 2 ( δui + δu j + δu k u k + u ) k δu k X j X i X i X j X i X j [Z 1 ] 1+ u 1 u X u X X u 0 1 X u 2 u X X 2 0 u u X X u 3 X 3 u 1 X 2 1+ u 1 X u 2 u 2 u X 2 X u 3 X 2 X 1 0 u 0 1 u 1 u X 3 X X 3 1+ u 2 X u 3 u 3 X 3 X 2 u 1 X u 1 u 2 u X 1 X X 1 1+ u 3 u X X 1 } { δu X { δu1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 } T,. {δe} =[Z 1 ] { } δu X (2) u i X j u i = N(n) u (n) i X j X j 22

23 3 δu i X j. { } δu X δu 1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 = N (1) X 1 N (1) X 2 N (1) X 3 N (1) X 1 N (1) δu i = N(n) δu (n) i X j X j X 2 N (1) X 3 N (1) X 1 N (1) X 2 N (1) X 3 N (n) X 1 N (n) X 2 N (n) X 3 N (n) X 1 N (n) X 2 N (n) X 3 N (n) X 1 N (n) X 2 N (n) X 3 δu (1) 1 δu (1) 2 δu (1) 3. δu (n) 1 δu (n) 2 δu (n) 3 9 3n [Z 2 ], { } δu =[Z 2 ]{δu (n) } X 23

24 4 [B] [B] [Z 1 ][Z 2 ] {δe} =[B]{δu (n) }. [B (n) ] u 1 X 2 N (n) X 2 + ( ) 1+ u 1 N (n) u 2 N (n) u 3 N (n) X 1 X 1 X 1 X 1 X 1 X 1 ( ) u 1 N (n) X 2 X 2 1+ u 1 N (n) u 3 X 2 X 2 N (n) X 2 X ( ) 2 u 1 N (n) u 2 N (n) X 3 X 3 X 3 X 3 1+ u 3 X 3 ( ) ( ) 1+ u 1 N (n) X 1 X 2 1+ u 2 N (n) X 2 u 1 X 3 N (n) X 2 + u 1 X 2 N (n) X 3 u 2 X 3 N (n) X 2 + ( ) ( ) 1+ u 2 N (n) X 2 X 3 1+ u 3 N (n) X 3 N (n) X 3 X 1 + u 2 N (n) u 3 N (n) X 1 X 2 X 2 X 1 + u 3 N (n) X 1 X 2 ( ) 1+ u 1 N (n) X 1 X 3 + u 1 N (n) u 2 N (n) X 3 X 1 X 1 X 3 + u 2 N (n) u 3 N (n) X 3 X 1 X 1 X 3 + ( ) 1+ u 3 X 3 X 2 + u 3 N (n) X 2 X 3 N (n) X [B (n) ], [ ] [B] = [B (1) ] [B (n) ]. 24

25 ,. e Ω e {δe}{s} dω = e ] [{δu (n) } T [B] T {S} dω Ω e 25

26 total Lagrange ] [{δu (n) } T [B] T {S} dω = e Ω e e [ ]] [{δu (n) } T [N] T {t} ds + ρ 0 [N] T {g} dω Ω e Ω e,, Q = F = u = [B] T {S} dω Ω e [N] T {t} ds + ρ 0 [N] T {g} dω Ω e Ω } e {u (n) [ T δuh (Q(u h ) F ) ] =0, e find u h V h such that [ T δuh (Q(u h ) F ) ] =0 e for δu h V h, Newton-Raphson. 26

27 1 Newton-Raphson, K = Q u, dq dt = Q du u dt = K u,,. ( Ω S ij δe ij dv ) = Ω Ṡ ij δe ij + S ij δėijdω S ij = C ijkl E kl C ijkl Ṡ ij = C ijkl Ė kl Hooke S ij = λ(tre ij )δ ij +2µE ij C ijkl = λδ kl δ ij +2µδ ki δ jl 27

28 2 Ṡ ij δe ij + S ij δėijdω Ω = C ijkl Ė kl δe ij + S ij δėijdω Ω 1 ( = C ijkl Ė kl δe ij + S ij δfki F kj + F Ω 2 ) ki δf kj dω ( ) = C ijkl Ė kl δe ij + S ij δfki F kj dω Ω S ij, Ė kl k, l S ij = C ij 11 Ė 11 + C ij 22 Ė 22 + C ij 33 Ė (C ij 12 + C ij 21 )2Ė (C ij 23 + C ij 32 )2Ė (C ij 31 + C ij 13 )2Ė31 C ij kl 1 2 (C ij kl + C ij lk ) 28

29 , S. S 11 S 22 S 33 S 12 S 23 S 31 = C C11 22 C11 33 C11 12 C11 23 C11 31 C C22 22 C22 33 C22 12 C22 23 C22 31 C C33 22 C33 33 C33 12 C33 23 C33 31 C C12 22 C12 33 C12 12 C12 23 C12 31 C C23 22 C23 33 C23 12 C23 23 C23 31 C C31 22 C31 33 C31 12 C31 23 C31 31 Ė 11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31 29

30 3 C ijkl 6 6 [D]. C ijkl, ij, kl, [D].,, {S} = {S 11 S 22 S 33 S 12 S 23 S 31 } T {Ė} = {Ė11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31 } T, δe ij S ij dω Ω = δe ij C ijkl Ė kl dω Ω T = {δe} [D]{Ė} dω Ω { } { } T u (n) u (1) 1 u (1) 2 u (1) 3 u (n) 1 u (n) 2 u (n) 3, {Ė} { =[B] u (n)}. Ė ij = 1 2 ( ui + u j + u k u k + u ) k u k X j X i X i X j X i X j 30

31 4, 1 δe ij Ṡ ij dω = Ω e. [ { δu (n) } T Ω e [B] T [D][B]dΩ { } ] u (n) 31

32 , δf ki S ij 5 F kj S 11 S 12 S 13 δf ki S ij F kj = {δf 11 δf 12 δf 13 } S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 +{δf 21 δf 22 δf 23 } S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 +{δf 31 δf 32 δf 33 } S 21 S 22 S 23 S 31 S 32 S 33 F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 32

33 , [σ] = S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 [σ] [Σ] = [σ] [σ] {δf} = {δf 11 δf 12 δf 13 δf 21 δf 22 δf 23 δf 31 δf 32 δf 33 } T { F } = { F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 } T, δf ki S ij F kj = {δf} T [Σ]{ F} 33

34 6, δf ij = δx i X j = δu i X j F ij = ẋ i X j = u i X j, [Z 2 ] { } δu } {δf} = =[Z 2 ] {δu (n) X { F { } } =[Z 2 ] u (n), δf ki S ij F kj = { } T { } δu (n) [Z2 ] T [Σ][Z 2 ] u (n) 34

35 T [Z 2 ] T [Σ][Z 2 ] [A ij ]= { N (i) X 1 N (i) X 2 N (i) } S 11 S 12 S 13 S X 21 S 22 S 23 3 S 31 S 22 S 33 [A 11 ] [A 12 ]... [A 1n ] [A] = [A 21 ] [A n1 ] [A nn ] N (j) X 1 N (j) X 2 N (j) X , [Z 2 ] T [Σ][Z 2 ]=[A] 35

36 7, 2 δf ki S ij F kj dω = Ω e. [ { δu (n) } T Ω e [A]dΩ { } ] u (n) δe ij Ṡ ij dω + δf ki S ij F kj dω Ω Ω = [ { } T ( δu (n) [B] T [D][B]+[A] ) dω e Ω e { } ] u (n). ( [B] T [D][B]+[A] ) dω Ω e e 36

37 v Updated Lagrange T : δa (L) dv = δv t w ds + v ρg w dv δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j 2 x j x i Updated Lagrane v δa ij T ij dv = δr, δr, A ij, Almange. δa ij = 1 ( δui + δu ) j 2 x j x i T ij 37

38 1 δa ij T ij., δa ij T ij. δa ij T ij = δa 11 T 11 + δa 12 T 12 + δa 13 T 13 + δa 21 T 21 + δa 22 T 22 + δa 23 T 23 + δa 31 T 31 + δa 32 T 32 + δa 33 T 33 = δa 11 T 11 + δa 22 T 22 + δa 33 T 33 +2δA 12 T 12 +2δA 23 T 23 +2δA 31 T 31, δa ij,t ij i, j., {δa} T = {δa 11 δa 22 δa 33 2δA 12 2δA 23 2δA 31 } T {T } = {T 11 T 22 T 33 T 12 T 23 T 31 },. v δa ij T ij dv = v {δa} T {T } dv 38

39 2, δa ij. δa ij., δa 11 = δu 1 x 1 δa 22 = δu 2 x 2 δa 33 = δu 3 x 3 2δA 12 = δu 1 x 2 + δu 2 x 1 2δA 23 = δu 2 x 3 + δu 3 x 2 2δA 31 = δu 3 x 1 + δu 1 x 3 u i = N (k) u (k) i u i = N(k) x j x j, δu i u (k) i δu i = N (k) δu (k) i δu i x j = N(k) δu (k) i x j 39

40 ., {δu} =,. { } T δu (1) 1 δu (1) 2 δu (1) 3 δu (2) 1 δu (2) 2 δu (2) 3 δu (n) 1 δu (n) 2 δu (n) 3 {δa} =[B][δu], [B] [B (k) ],. [ ] B = ] [B (k) = [[B (1) ][B (2) ] N (k) x 1 N (k) x 2 N (k) x 3 N (k) x 2 N (k) x 1 N (k) x 3 [B (n) ]] N (k) x 3 N (k) x 2 N (k) x 1,. δa ij T ij dv = {δu} T [B] T {T } dv Q,. v Q = v v 40 [B] T [T ]dv

41 , V, δa ij δa ij = 1 ( δui + δu ) n 2 X j X i 41

42 . 1, Newton-Raphson, Q u K. K = Q u, u, Q = Q t = Q u u t = Q u u,,.,. T : δa (L) dv = t w ds + ρg w dv v δv v 42

43 2 F, J. F = x i X j e i e j J =detf, 2 Piola-Kirchhoff S. T = 1 J F S F T S Green-Lagrange E δe. E = 1 ( ui + u j + u ) k u k e i e j 2 X j X i X i X j δe = 1 ( δui + δu j + δu k u k + u ) k δu k 2 X j X i X i X j X i X j δa δe. δe = F T δa F,. δe : S dv = (F T δa F ):(JF 1 T F T ) 1 v v J dv = δa : T dv v 43

44 3 v δe : S dv. Total-Lagrange. δe : Ṡ + 1 ( ) δf T 2 Ḟ + Ḟ T δf : S dv. V 2 Piola-Kirchhoff S t (t). Ṡ = JF 1 S t (t) F T 1, δe : Ṡ =(F T δa F ):(JF 1 S t (t) F T ) = JδA : Ṡ t (t) S t (t) Ṡ, V δe : ṠdV = v δa : Ṡ t (t)dv 44

45 4 Ḟ δf,., L, 2, Ḟ = L F δf = δf t (t) F L = u i e i e j x j 1 ( δf T 2 Ḟ + F ) T δf : S = 1 ( ) F T δf t (t) T L F + F T L T δf t (t) F : ( JF 1 T F T ) 2 = J 1 ( ) δf t (t) T L + L T δf t (t) : T 2 V 1 ( δf T 2 Ḟ + F ) T 1 ( ) δf : S dv = δf t (t) T L + L T δf t (t) : T dv v 2 updated Lagrange. δa : Ṡ t (t)+ 1 ( ) δf t (t) T L + L T δf t (t) : T dv = δṙ v 2 45

46 5. { } 1 δa ij Ṡ t (t) ij dv + 2 (δf t(t) ki L kj + L ki δf t (t) kj ) T ij v v dv = δṙ, 1., Ṡt(t) ṠF t(t) F. δa ij T ij. δa ij Ṡ ij = {δa} T { Ṡ } Ṡ = { Ṡ 11 Ṡ 22 Ṡ 33 Ṡ 12 Ṡ 23 Ṡ 31 }, Ṡ ij D ij. Ṡ ij = C ijkl D kl D ij = 1 ( ui + u ) j 2 x j x i Ṡt(t) Truesdell Kirchoff Oldroyd 46

47 5 Ṡij = C ijkl D kl.,, { Ṡ } = [ C] { } D Ṡ ij = C ij11 D 11 + C ij12 D 12 + C ij13 D 13 + C ij21 D 21 + C ij22 D 22 + C ij23 D 23 + C ij31 D 31 + C ij32 D 32 + C ij33 D 33 = C ij11 D 11 + C ij22 D 22 + C ij33 D (C ij12 + C ij21 )(2D 12 ) (C ij23 + C ij32 )(2D 23 ) (C ij31 + C ij13 )(2D 31 ). C ijkl = 1 2 (C ijkl + C ijlk ) 47

48 Ṡ 11 Ṡ 22 Ṡ 33 Ṡ 12 Ṡ 23 Ṡ 31 = C 1111 C1122 C1133 C1112 C1123 C1131 C 2211 C2222 C2233 C2212 C2223 C2231 C 2311 C3322 C3333 C2312 C3323 C3331 C 1211 C1222 C1233 C1212 C1223 C1231 C 2311 C2322 C2333 C2312 C2323 C2331 C 3111 C3122 C3133 C3112 C3123 C3131 D 11 D 22 D 33 2D 12 2D 23 2D 31 48

49 6 δa ij, {D} =[B] { u} { { u} = u (1) 1 u (1) 2 u (1) 3 u (2) 1 u (2) 2 u (2) 3 u (n) 1 u (n) 2 u (n) 3, 1. δa ij Ṡ t (t) ij dv = {δu} T [B] T [ D] [B] { u} dv v v } T 49

50 7 2. T ij = T ji,. 1 2 (δf kil kj + L ki δf kj ) T ij = 1 2 T ijl ki δf kj T ijδf ki L kj = δf ki T ij L kj., δf ki T ij L kj = {δf} T [Σ] {L} {δf} = {δf 11 δf 12 δf 13 δf 21 δf 22 δf 23 δf 31 δf 32 δf 33 } {L} = {L 11 L 12 L 13 L 21 L 22 L 23 L 31 L 32 L 33 } T 11 T 12 T 13 [T ]= T 21 T 22 T 23 [Σ] = T 31 T 32 T 33 [T ] [0] [0] [0] [T ] [0] [0] [0] [T ] 50

51 δf ij,l ij. 8 δf ij = δu i x j L ij = u i x j. { } δu {δf} = =[Z] {δu} x, {L} = { } u x =[Z] { u} { } { } δu δu1 δu 1 δu 1 δu 2 δu 2 δu 2 δu 3 δu 3 δu 3 = x x 1 x 2 x 3 x 1 x 2 x 3 x 1 x 2 x { } { } 3 u u1 u 1 u 1 u 2 u 2 u 2 u 3 u 3 u 3 = x x 1 x 2 x 3 x 1 x 2 x 3 x 1 x 2 x 3 51

52 [ ] Z = N (1) N (2) x 1 x 1 N (1) N (2) x 2 x 2 N (1) N (2) x 3 x 3 N (1) N (2) x 1 x 1 N (1) N (2) x 2 N (1) N (2) x 3 x 3 N (1) N (2) x 1 x 1 N (1) N (2) x 2 x 2 N (1) N (2) x 3 x 3 N (n) x 1 N (n) x 2 N (n) x 3 N (n) x 1 x 2 N (n) x 2 N (n) x 3 N (n) x 1 N (n) x 2 N (n) x 3 52

53 9, δf ki T ij L kj. δf ki T ij L kj = {δf} T [Σ] {L} [Z] T [Σ] [Z]. ] { N (i) [G ij = x 1 N (i) x 2 [Z] T [Σ] [Z] = = {δu} T [Z] T [Σ] [Z] { u} N (i) x 3 } T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 N (i) x 1 N (i) x 2 N (i) x 3 [G 11 ] [G 1n ].. =[G] [G n1 ] [G nn ] v δf ki T ij L kj dv = v {δu} [G] { u} dv 53

54 10. (δa ij S t (t) ij + δf ki T ij L kj )dv v = {δu} ([B] T T [ ) D] [B]+[G] v dv { u} V, δa ij, Ṡ t (t) ij Caushy

55 11,,. 1 dv =, [J]. v [ ] J = x i = N(k) r j r j x (k) i, [B], N(k) x j. N (k) x 1 N (k) x 2 N (k) x 3 = [ ] 1 J = 1 (det J) dr 1 dr 2 dr 3 x 1 r 1 x 1 r 2 x 1 r 3 x 2 r 1 x 2 r 2 x 2 r 3 x 3 r 1 x 3 r 2 x 3 r 3 ( = N(k) X (k) i r j ) + u (k) i [J] r 1 x 1 r 2 x 1 r 3 x 1 r 1 x 2 r 2 x 2 r 3 x 2 r 1 x 3 r 2 x 3 r 3 x 3 r 1 x 1 r 2 x 1 r 3 x 1 r 1 x 2 r 2 x 2 r 3 x 2 r 1 x 3 r 2 x 3 r 3 x 3 N (k) r 1 N (k) r 2 N (k) r 3 (3) 55

56 , [J] X 1 X 1 [ ] r 1 X J = 2 X 1 r 2 r 3 r 1 r 2 r 3 X 2 X 2 X 3 r 1 X 3 r 2 X 3 r 3 56

57 total Lagrange updated Lagrange 1 v V T : δa (L) dv = S : δe dv = V v t w ds + t w ds + V v ρg w dv ρg w dv δa : Ṡ t (t)+ 1 ( ) δf t (t) T L + L T δf t (t) : T dv = δṙ v 2 ( ) S ij δe ij dv = Ṡ ij δe ij + S ij δėijdω updated Ω Ω Ṡ t (t) ij = C ijkl D kl Ṡt(t) Truesdell Kirchoff Oldroyd Total S ij = C ijkl E kl C ijkl (Ṡij, Ėkl ) Ṡ ij = C ijkl Ė kl 57

58 total Lagrange updated Lagrange 2 Ṡ t (t) ij = C ijkl D kl S ij = C ijkl E kl Ṡ ij = C ijkl Ė kl Ṡ 0 (t) =J 0 (t)f 0 (t) 1 Ṡ t (t)f 0 (t) T Ė 0 (t) =F 0 (t) T DF 0 (t) C pqrs = 1 J F pif qj F rk F sl C ijkl 58

59 . F dx u X x dx 2: X, x : u : (= x X) F : C : Cauchy Green B : Cauchy Green E : Green-Lagrange T : Cauchy Π : 1 Piola Kirchhoff S : 2 Piola Kirchhoff 59

60 F x i X j e i e j C F T F B F F T E 1 (C I) 2 Π JF 1 T S JF 1 T F T, e i,, J =detf. 60

61 1, W. S ij = W E ij E = 1 (C I) 2 S ij =2 W C ij W C., W C. I C trc II C 1 { (trc) 2 tr(c 2 ) } 2 III C det C S ij =2 ( W I C + W II C + W ) III C I C C ij II C C ij III C C ij 61

62 2 S ij =2 I C = δ ij C ij II C = I C δ ij C ij C ij III C = III C (C 1 ) ij C ij {( W + W ) I C δ ij W C ij + W } III C (C 1 ) ij I C II C II C III C S C. Cauchy T kl = 2 {( W II B + W ) III B J II B III B T B. δ kl + W B kl W } III B (B 1 ) kl I B II B 62

63 3,,.,,.,,., ( )., III C = III B =1,J =1 {( W T kl = pδ ij +2 II B + W ) δ kl + W B kl W } (B 1 ) kl II B III B I B II B, p. 2 Piola-Kirchhoff. S ij = p(c 1 ) ij +2 {( W + W ) I C δ ij W C ij + W } (C 1 ) ij I C II C II C III C 63

64 Mooney-Rivlin 1 W Mooney-Rivlin. W M c 1 (I C 3) + c 2 (II C 3), c 1, c 2. Mooney-Rivlin, 2 Piola-Kirchhoff. } S ij = p(c 1 ) ij +2 {(c 1 + c 2 I C )δ ij c 2 C ij, C ij = δ ij T ij = S ij =0 S ij = pδ ij +(2c 1 +4c 2 )δ ij, p 2c 1 +4c 2., W M. W M R c 1(ĨC 3) + c 2 (ĨI C 3) Ĩ C I C III C 1 3 ĨI C II C III C

65 Mooney-Rivlin 2 ĨC, ĨI C (reduced invariants). W M R 2 Piola-Kirchhoff W M R I C W M R II C = WM R ĨC = WM R ĨI C W M R III C = WM R ĨC ĨC = c 1 III C I C 1 3 ĨI C = c 2 III C II C ĨC III C + WM R ĨI C 2 3 ĨI C = 1 III C 3 c 1I C III 4 3 C 2 3 c 2II C III 5 3 C { S ij = p(c 1 ) ij +2 (c 1 + c 2 I C )δ ij c 2 C ij + ( 13 c 1I C 23 ) } c 2II C (C 1 ) ij T ij = S ij =0 S ij = pδ ij, p. 65

66 Mooney-Rivlin 3,.,. F. F = J 1 3 F, F Flory, det F =1. Cauchy-Green C. C = F T F C 1, 2, ĨC =3, ĨI C =3. 66

67 Mooney-Rivlin, - S. Mooney-Rivlin c 1, c 2., I C, II C 2, Stress[MPa] Strain 3: - W H = c 1 (I C 3) + c 2 (II C 3) + c 3 (I C 3) 2 + c 4 (I C 3)(II C 3) + c 5 (II C 3) 2 + c 6 (I C 3) 3 + c 7 (I C 3) 2 (II C 3) + c 8 (I C 3)(II C 3) 2 + c 9 (II C 3) 3. 67

68 Mooney-Rivlin 2, W H W M, p. WR H = c 1(ĨC 3) + c 2 (ĨI C 3) + c 3 (ĨC 3) 2 + c 4 (ĨC 3)(ĨI C 3) + c 5 (ĨI C 3) 2 + c 6 (ĨC 3) 3 + c 7 (ĨC 3) 2 (ĨI C 3) + c 8 (ĨC 3)(ĨI C 3) 2 + c 9 (ĨI C 3) 3 68

69 1, c 1,c / l x 2 l 1/ l x 3 x 1 4: 69

70 , F, B, II B l 0 0 F = 0 1/ l / l l B = FF T = 0 1/l /l 1/l B 1 = 0 l l II B =2l + 1 l 2 70

71 2 W W H R W H R I B W H R II B = WH R ĨB = III 1 3 B = WH R ĨI B = III 2 3 B ĨB I B { ) c 1 +2c 3 (ĨB 3 ) + c 4 (ĨI B 3 2 ) +3c 6 (ĨB 3) +2c7 (ĨB 3)(ĨI B 3 ĨI B II B { c 2 + c 4 (ĨB 3 ) ) +2c 5 (ĨI B 3 2 ) +c 7 (ĨB 3) +2c8 (ĨB 3)(ĨI B 3 ) } 2 + c 8 (ĨI B 3 ) } 2 +3c 9 (ĨI B 3 W H R III B = WH R ĨB = 1 3 I BIII 4 3 B ĨB + WH R III B ĨI B 2 3 II BIII 5 3 B ĨI B III B { c 1 +2c 3 (ĨB 3 ) ) + c 4 (ĨI B 3 2 ) +3c 6 (ĨB 3) +2c7 (ĨB 3)(ĨI B 3 { ) ) c 2 + c 4 (ĨB 3 +2c 5 (ĨI B 3 2 ) +c 7 (ĨB 3) +2c8 (ĨB 3)(ĨI B 3 ) } 2 + c 8 (ĨI B 3 ) } 2 +3c 9 (ĨI B 3 71

72 2 Cauchy { W H T kl = pδ kl +2 R (2l + 1 } II B l )+ WH R III B δ kl + WH R I B l /l 0 WH R II B 0 0 1/l 1/l l l x 1, T 22 = T 33 =0 { 1 WR H p =2 l I B T 11 =2 { (l 2 1 l ) WH R I B +(l + 1 R + WH R l 2) WH II B III } B +(l 1 l 2) WH R II B l =1+ε ε 2 6(c 1 + c 2 ) E. T 11 =6(c 1 + c 2 )ε } 72

73 3,. u x x 1 x 3 1 5: F, B,I B,II B 73

74 1 u 0 F = u 2 u 0 B = u u 0 B 1 = u 1+u I B =trb =3+u 2 II B = 1 { (trb) 2 tr(b 2 ) } =3+u

75 4 Cauchy { } W H T kl = pδ kl +2 R (3 + u 2 )+ WH R II B III B δ kl + WH R I B 1+u 2 u 0 u 1 0 WH R II B u 0 u 1+u T 33 =0 { W H p =2 R I B +(2+u 2 ) WH R II B } + WH R III B ( W H T 12 = T 21 =2u R I B u 2,, u. + WH R II B T 12 = T 21 =2(c 1 + c 2 )u, 2(c 1 + c 2 ) G. ) 75

76 . A Ω, Ω Ω, Ω D Ω. t, ρ 0 g, u V p Q. V, Q,.. find (u,p) (V, Q) such that X (S F T) + ρ 0 g =0 (4) ( ) S F T T N = t (5) C = F T F (6) S ij = p(c 1 ) ij +2 W C ij (7) III C =1 (8) (4), (5), (6), (7) ( ) (8)., W, (4) (8). 76

77 W Φ. Φ = W dω t u ds ρ 0 g u dω (9) Ω Ω λ Lagrange, Φ. Φ = Φ + λg(iii C )dω (10) g, g(iii C ),III C =1 g =0, =1. III C, Lagrange Q. Ω, u V, λ Q δu V, δλ Q. δ Φ = = Ω Ω W δc ij dω + C ij ( W + λ g C ij C ij Ω ( λ g ) δc ij dω ) δc ij + δλg dω C ij t δu ds Ω Ω Ω Ω t δu ds ρ 0 g δu dω Ω ρ 0 g δu dω + δλg dω = 0 (11) Ω (11),. (11),. 77

78 Lagrange 1 (10) Lagrange λ, (7) p., (11). δc ij = δf ki F kj + F ki δf kj C, W/ C ij, g/ C ij i, j. (11) 1 ( W + λ g ) δc ij dω Ω C ij C ( ij W = + λ g ) (δf ki F kj + F ki δf kj )dω Ω C ij C ( ij W = 2 + λ g ) δf ki F kj dω ( ) (12) C ij C ij Ω, u = x X δu = δx δf ki = δx k X i = δu k X i (13) ( ) = Ω { ( δu k W F kj 2 + λ g )} dω (14) X i C ij C ij 78

79 Lagrange 2 X i { ( W 2 = X i + λ g C ij { 2 C ij ) F kj δu k } ( W C ij + λ g C ij ) } { ( W F kj δu k λ g ) } δuk F kj (15) C ij C ij X i ( ) = Ω X i { ( W 2 + λ g ) } F kj δu k dω C ij C ij Ω X i { ( W 2 + λ g ) } F kj δu k dω (16) C ij C ij (16) 1 V divb dv = n b ds (17) S ( ) = Ω (11) ( W n i {2 + λ g ) } F kj δu k ds C ij C ij Ω [ { ( W 2 + λ g ) } ] F kj + ρ 0 g k δu k dω Ω X i C ij C ij + Ω X i { ( W 2 + λ g ) } F kj δu k dω (18) C ij C ij { ( W [n i 2 + λ g ) } ] F kj t k δu k ds + δλg(iii C )dω = 0 (19) C ij C ij Ω 79

80 Lagrange 3 (19) δu V, δλ Q, (20), (21), (22). { ( W 2 + λ g ) } F kj + ρ 0 g k = 0 (20) X i C ij C ( ij W n i {2 + λ g ) } F kj t k = 0 (21) C ij C ij g(iii C ) = 0 (22), (20) (4), (21) (5), (22) (8). ( W S ij =2 + λ g ) (23) C ij C ij g III C, (??) g = g III C C ij III C C ij = g ( III ) C C 1 (24) III ij C (23). (7) S ij =2 W C ij +2λ g III C III C ( C 1 ) ij (25) p = 2λ (26), λ. 80

81 , (4) (8),. find (u,λ) (V, Q) such that ( W + λ g ) δc ij dω = t k δu k ds + ρ 0 g k δu k dω Ω C ij C ij Ω Ω (27) δλg dω = 0 (28) Ω for (δu,δλ) (V, Q), λ = 1 2 p 81

82 Newton-Raphson,. Ω.. Ω = e Ω e (29),,. dω = dω (30) Ω e Ω e ds = ds (31) Ω e Ω e u N (i), u i., u (i) i u i = N (n) u (n) i (32), (n). Lagrange λ M (m), λ., λ (m). λ = M (m) λ (m) (33) 82

83 Ω ( W C ij + λ g C ij ) δc ij dω = δλg dω =0 Ω Ω t k δu k ds + Ω ρ 0 g k δu k dω Ω δe ij S ij dω = δr (34) δe ij, S ij i, j, δe ij S ij = δe 11 S 11 + δe 22 S 33 + δe 33 S 33 +2δE 12 S 12 +2δE 23 S 23 +2δE 31 S 31 =(δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 )(S 11 S 22 S 33 S 12 S 23 S 31 ) T (35),. {δe} = {δe 11 δe 22 δe 33 2δE 12 2δE 23 2δE 31 } T (36) {S} = {S 11 S 22 S 33 S 12 S 23 S 31 } T (37) 83

84 2 (34), δe ij S ij dω = {δe} T {S} dω Ω Ω = {δe} T {S} dω = δr e Ω e δe ij = 1 ( δui + δu j + δu k u k + u ) k δu k 2 X j X i X i X j X i X j, (38),. [Z 1 ] 1+ u 1 u X u X X u 0 1 X u 2 u X X 2 0 u u X X u 3 X 3 u 1 X 2 1+ u 1 X u 2 u 2 u X 2 X u 3 X 2 X 1 0 u 0 1 u 1 u X 3 X X 3 1+ u 2 X u 3 u 3 X 3 X 2 u 1 X u 1 u 2 u X 1 X X 1 1+ u 3 u X X 1 } { δu X { δu1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 {δe} =[Z 1 ] { } δu X (39) } T (40) (41) 84

85 3 { } δu X δu 1 X 1 δu 1 X 2 δu 1 X 3 δu 2 X 1 δu 2 X 2 δu 2 X 3 δu 3 X 1 δu 3 X 2 δu 3 X 3 = N (1) X 1 N (1) X 2 N (1) X 3 N (1) X 1 N (1) u i X j = N(n) X j u (n) i (42) N (n) X 1 N (n) X 2 N (n) X 3 N (n) X 1 X 2 N (n) N (1) X 3 N (1) X 1 N (1) X 2 N (1) X 3 X 2 N (n) X 3 N (n) X 1 N (n) X 2 N (n) X 3 δu (1) 1 δu (1) 2 δu (1) 3. δu (n) 1 δu (n) 2 δu (n) 3 (43). 9 3n [Z 2 ], { } δu =[Z 2 ]{δu (n) } (44) X 85

86 , [B] [B] [Z 1 ][Z 2 ] (45) {δe} =[B]{δu (n) } (46) 86

87 4 [B] [B (n) ] u 1 N (n) X 2 X 2 + ( 1+ u 1 X 1 ) N (n) X 1 u 2 X 1 N (n) X 1 u 3 X 1 N (n) X 1 ( ) u 1 N (n) X 2 X 2 1+ u 1 N (n) u 3 N (n) X 2 X 2 ( X 2 X ) 2 u 1 N (n) u 2 N (n) X 3 X 3 X 3 X 3 1+ u 3 N (n) ( ) ( ) X 3 X 3 1+ u 1 N (n) X 1 X 2 1+ u 2 N (n) X 2 X 1 + u 2 N (n) u 3 N (n) X 1 X 2 X 2 X 1 + u 3 N (n) ( ) ( ) X 1 X 2 1+ u 2 N (n) X 2 X 3 1+ u 3 N (n) X 3 X 2 + u 3 N (n) X 2 X 3 u 1 N (n) X 3 X 2 + u 1 N (n) u 2 N (n) X 2 X 3 X 3 X 2 + ( 1+ u 1 X 1 ) N (n) X 3 + u 1 X 3 N (n) X 1 u 2 X 1 N (n) X 3 + u 2 X 3 N (n) X 1 u 3 X 1 N (n) X 3 + ( 1+ u 3 X 3 ) N (n) X 1 (47) 6 3 [B (n) ], [ ] [B] = [B (1) ] [B (n) ]., e Ω e {δe}{s} dω = e ] [{δu (n) } T [B] T {S} dω Ω e. (), (49), (27) ] [{δu (n) } T [B] T {S} dω = e Ω e e [ ]] [{δu (n) } T [N] T {t} ds + ρ 0 [N] T {g} dω Ω e Ω e (48) (49) (50). 87

88 , (28). {M} = {M (1) M (2) M (m) } T (51) {δλ (m) } = {δλ (1) δλ (2) δλ (m) } T (52), (28). δλgdω = δλg dω (53) Ω e Ω e = ] [{δλ (m) } T {M}g dω = 0 (54) e Ω e 88

89 , {δu (n) δλ (m) } = { δu (1) 1 δu (1) 2 δu (1) 3 δu (n) 1 δu (n) 2 δu (n) 3 δλ (1) δλ (m) } T (55), (50), (54). [ ] ] [{δu (n) δλ (m) } T [B] T {S} dω e Ω e {M}g = [ [ ] [{δu (n) δλ (m) } T [N] e Ωe T {t} ds + 0 Ω e [ ] ]] ρ 0 [N] T {g} dω 0,, (56) Q = F = u = [ ] [B] T {S} dω (56) Ω e {M}g [ ] [N] T [ ] {t} ρ 0 [N] T {g} ds + dω (57) Ω e 0 Ω e 0 } {u (n) λ (m) (58) [ T δuh (Q(u h ) F ) ] = 0 (59)., e 89

90 find u h V h such that [ T δuh (Q(u h ) F ) ] = 0 (60) e for δu h V h, Newton-Raphson. 90

91 Newton-Raphson, K = Q u, dq dt = Q du u dt = K u (61), (27), (28),.,. (27) Ω ( W C ij + λ g {( W + λ g ) ) δc ij + C ij C ij C ij [ {( 2 W 2 ) g = + λ Ċ kl + Ω C ij C kl C ij C kl ( W + + λ g ) ( δf ki C ij C ij { ( 2 W 2 ) g = + λ Ċ kl δc ij Ω C ij C kl C ij C kl ( + 2 W +2λ g C ij C ij δċij } dω } g λ δc ij C ij F kj + F ki δf kj ) ] dω ) δf ki F kj + } g λ δc ij dω (62) C ij 91

92 , (28) δλ ġ dω = Ω Ω δλ g C kl Ċ kl dω (63) 92

93 (62). 2 Ċ kl =2Ėkl (64). ( 2 W 2 ) g D ij kl =4 + λ (65) C ij C kl C ij C kl, (23), (??), (65) (62) ( δe ij D ij kl Ė kl + δf ki S ij F kj + δe ij 2 g ) λ dω (66) C ij. Ω S ij D ij kl Ė kl (67). Sij, δe ij i, j, δe ij D ij kl Ė kl = δe ij Sij = {δe 11 δe 22 δe 33 δ2e 12 δ2e 23 δ2e 31 } { } T S11 S22 S33 S12 S23 S31 (68) S ij, Ė kl k, l S ij = D ij 11 Ė 11 + D ij 22 Ė 22 + D ij 33 Ė (D ij 12 + D ij 21 )2Ė (D ij 23 + D ij 32 )2Ė (D ij 31 + D ij 13 )2Ė31 (69) 93

94 3 C ij kl 1 2 (D ij kl + D ij lk ) (70), S. S 11 C C C C C C S 22 C C C C C C S 33 = C C C C C C S 12 C C C C C C S 23 C C C C C C S 31 C C C C C C Ė 11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31 (71) C ijkl 6 6 [D 1 ].C ijkl, ij, kl, [D 1 ].,, { S} = { } T S11 S22 S33 S12 S23 S31 (72) {Ė} = { T Ė 11 Ė 22 Ė 33 2Ė12 2Ė23 2Ė31} (73) 94

95 , Ω δe ij D ijkl Ė kl dω = δe ij Sij dω Ω = {δe} T [D 1 ]{Ė} dω Ω = {δe} T [D 1 ]{Ė} dω (74) e Ω e 95

96 4 { } u (n), (46), (75). { } T u (1) 1 u (1) 2 u (1) 3 u (n) 1 u (n) 2 u (n) 3 (75) {Ė} { } =[B] u (n) (76), (66) 1 δe ij D ijkl Ė kl dω = Ω e. [ { δu (n) } T Ω e [B] T [D 1 ][B]dΩ { } ] u (n) (77) 96

97 1 δf ki S ij F kj = {δf 11 δf 12 δf 13 } +{δf 21 δf 22 δf 23 } +{δf 31 δf 32 δf 33 } S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 (78) 97

98 , [σ] = S 11 S 12 S 13 S 21 S 22 S 23 (79) S 31 S 32 S 33 [σ] [Σ] = [σ] (80) [σ] {δf} = {F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 } T (81) { F } = { F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 } T (82), δf ki S ij F kj = {δf} T [Σ]{ F} (83) 98

99 2, δf ij = δx i = δu i X j X j (84) F ij = ẋ i = u i X j X j (85), (44) { } δu } {δf} = =[Z 2 ] {δu (n) X { F { } } =[Z 2 ] u (n) (86) (87), δf ki S ij F kj = { } T { } δu (n) [Z2 ] T [Σ][Z 2 ] u (n) (88) 99

100 , [A ij ]= [A] = { N (i) X 1 N (i) X 2 N (i) } S 11 S 12 S 13 S 21 S 22 S 23 X 3 S 31 S 22 S 33 [A 11 ] [A 12 ]... [A 1n ] [A 21 ] [A n1 ] [A nn ] N (j) X 1 N (j) X 2 N (j) X (89) (90) 100

101 3. [Z 2 ] T [Σ][Z 2 ]=[A] (91), (66) 2 δf ki S ij F kj dω = Ω e. [ { δu (n) } T Ω e [A]dΩ { } ] u (n) (92) 101

102 1 { λ } { (m) λ(1) λ(2) λ } T (m) (93) { {D 2 } 2 g 2 g 2 g 2 g 2 g 2 g } T C 11 C 22 C 33 C 12 C 23 C 31 (94), (66) 3 δe ij 2 g λ dω = C ij. Ω e = e {δe} T {D 2 }[M] Ω e [ { } T δu (n) { λ(m)} dω Ω e [B] T {D 2 }[M]dΩ { } ] λ(m) (95) 102

103 ( δe ij D ij kl Ė kl + δf ki S ij F kj + δe ij 2 g ) λ dω Ω C ij [ { } T ( δu (n) [B] T [D 1 ][B]+[A] ) { } dω u (n) e Ω e } T { } + {δu ] (n) [B] T {D 2 }[M]dΩ λ(m) (96) Ω e. 103

104 Ω δλ ġ dω = Ω δλ g C kl Ċ kl dω δλ g Ċ kl = δλ 2 g Ė kl C kl C { } kl T = δλ (m) [M] T {D 2 } T {Ė} { } T = δλ (m) [M] T {D 2 } T [B]{ u} (97) δλ g Ċ kl dω = [ { } T δλ (m) [M] T {D 2 } T [B]dΩ Ω C kl e Ω e. { } ] u (n) (98) 104

105 , { } (n) u λ(m) { u (1) 1 u (1) 2 u (1) 3 u (n) 1 u (n) 2 u (n) 3 λ (1) λ } T (m) (99) [K 1 ] [B] T [D 1 ][B]+[A] (100) [H] [B] T {D 2 }[M] (101) (96), (98) [ { } [ ] δu (n) δλ (m) [K 1 ] [H] dω [H] T 0 e Ω e, [K] =. Ω e { ] u (n) λ(m)} (102) [ ] [K 1 ] [H] dω (103) [H] T 0 105

106 Mooney-Rivlin 1 α Mooney-Rivlin W S = W H + α 2 W V (III C ) 2 W V (III C ) III C III C =1 W V W V =2(J 1), III C 1 =0 WV III C =1 α 106

107 Mooney-Rivlin δ x 2 1+ε 1+δ x 3 x 1, F, B, II B ε, δ l + ε 0 0 F = 0 1+δ δ l +2ε 0 0 B = FF T = 0 1+2δ δ l 2ε 0 0 B 1 = 0 1 2δ δ 107

108 Mooney-Rivlin 3 Cauchy T kl = 2 {( W II B + W ) III B δ kl + W B kl W } III B (B 1 ) kl J II B III B I B II B W S I C = WS ĨC ĨC I { C = c 1 +2c 3 (ĨC 3) + c 4 (ĨI C 3) +3c 6 (ĨC 3) 2 +2c 7 (ĨC 3)(ĨI C 3) + c 8 (ĨI C 3) 2} III 1/3 C W S II C = WS ĨI C = ĨI C II C { c 2 + c 4 (ĨC 3) + 2c 5 (ĨI C 3) +c 7 (ĨC 3) 2 +2c 8 (Ĩ 3)(ĨI 3) + 3c 9(ĨI 3)2} III 2/3 C 108

109 W S = WH III C ĨC = 1 3 ĨC + WH ĨI C I C ĨI + αw V WV C II C III C } {c 1 + c 3 (ĨC 3) + c 4 (ĨI C 3) + 3c 6 (Ĩ 3)2 I C III 4/3 { c 2 + c 4 (ĨC 3) + 2c 5 (ĨI C 3+c 7 (ĨC 3) } +2c 8 (ĨC 3)(ĨI C 3) + 3c 9 (ĨI C 3) 2 II C III 5/3 + αw V WV III 109

110 Mooney-Rivlin 4 Ĩ C = I C III 1/3 C =3 =(3+2ε +4δ) (1 23 ε 43 ) δ ĨI C = II C III 2/3 C =(3+4ε +8δ) (1 43 ε 83 ) δ =3 W V W V = III C 1 αw V WV III = α(iii 1) = α(2ε +4δ) W V =2(J 1) αw V WV III = α2(j 1) 1 J = α2(ε +2δ)(1 ε 2δ) = α(2ε +4δ) 110

111 αw V WV III = α(2ε +4δ) W S I C = c 1 (1 2 3 ε 4 3 δ) W S II C = c 2 (1 4 3 ε 8 3 δ) W S III C = (c 1 +2c 2 )(1 2ε 4δ)+2α(ε +2δ) T kl T 22 = T 33 =0 δ = 3α (c 1 + c 2 ) 6α +(c 1 + c 2 ) ε ν E ν = 3α (c 1 + c 2 ) 6α +(c 1 + c 2 ) T 11 = 36(c 1 + c 2 )α 6α +(c 1 + c 2 ) ε E = 36(c 1 + c 2 )α 6α +(c 1 + c 2 ) 111

112 α E =6(c 1 + c 2 ) κ = E 3(1 2ν) =4α 112

113 1 (R ) Φ= WdΩ+ α Ω 2 Ω (W V ) 2 R α selective/reduced integration V Q αw V Q λ Ω ( W V λ ) δλdω =0 α δλ Q αw V λ P P (αw V )=λ 113

114 Q 114

115 2 P Φ = WdΩ+ α (PW V ) 2 R Ω 2 Ω U V δ Φ W = δc ij dω+α (PW V )P (δw V )dω δr =0 Ω C ij Ω u λ Q Ω ( W V λ ) δλdω =0 α δλ Q 115

116 3 u V,λ Q α Ω (PW V )P (δw V )dω = Ω λδw V dω δu V δ Φ = Ω W δc ij dω+ λδw V dω δr =0 C ij Ω ( W V λ ) δλdω =0 α W V III ( ) W + λ WV δc ij dω=δr Ω C ij C ij ( W V λ ) δλdω =0 α Ω Ω 116

117 Lagrange 4 Ω ( W C ij + λ g C ij ) δc ij dω = δλg dω =0 W V λ α g(= W V ) Ω Ω t k δu k ds + Ω ρ 0 g k δu k dω Lagrange Q = Q = Ω e [ Ω e [ ] [B] T {S} dω {M}g [B] T {S} {M} ( W V λ/α ) ] dω Lagrange [ ] [K 1 ] [H] [K] = dω [H] T 0 [K] = Ω e Ω e [ ] [K 1 ] [H] dω [H] T [G] 117

118 α [G] = 1 α [M]T [M] 118

119 ,,,, 119

120 (Hooke, ) t t t,,,,. 120

121 B A e e e p e (A), (B),,.,,,. 121

122 A B e e e p e e e e e p. e = e e + e p σ E. σ = E(e e p ), Hooke. σ ij = C e ijkl(e kl e p kl), σ ij,e ij,e p ij 2 Cauchy,,, C e ijkl 4 Hooke. 122

123 , Hooke. σ ij = C e ijkl(e kl e p kl),. σ ij = C e ijkl(ė kl e p kl),. σ ij = C ep ijklė kl, (flow rule) 123

124 :. :. :. A B e e e p e 124

125 3 2, 9, vonmises Tresca B A e e e p e 125

126 ,, 3 A,, B. von Mises. A B e e e p e 126

127 Mises Mises σ σ ij σ ij σ = ( ) σ ij σ ij σ ijσ ij =σ σ +σ σ σ σ σ 2 + σ σ 33, σ ij. σ ij =σ ij 1 3 σ kkδ ij =σ ij 1 3 (σ 11 + σ 22 + σ 33 ) δ ij 127

128 F = σ σ y σ y F =0 ( ) σ y σ ij σ ij 128

129 (associated flow rule),, λ Ψ ė p ij = λ Ψ σ ij (associated flow rule), ė p F ij = λ σ ij F = σ σ y 129

130 (normality rule) σ ij / t ( ) F =0, F =0, ė p ij ė p σ ij ij t F = λ σ ij F σ ij = λ σ ij t ė p ij σ ij = λ F 0, ė p ij σ ij = λ F =0, σ ij ė p ij 130

131 von Mises σ = ( ) σ ij σ ij F = σ σ y F = λ σ ij ė p ij A B e p e e e 131

132 , Hooke. σ ij = C e ijkl(e kl e p kl),. σ ij = C e ijkl(ė kl e p kl),. σ ij = C ep ijklė kl 132

133 1 F =0 F =0 F = F σ ij =0 σ ij F/ σ ij σ ij = C e ijkl(ė kl ė p ( kl ) ) = C e F ijkl ė kl λ σ kl F σ ij = F C e ijklė kl F C e F ijkl λ σ ij σ ij σ ij σ kl =0, λ λ = F σ ij C e ijklė kl F σ ij C e ijkl F σ kl 133

134 2 λ σ ij = C e ijkl = σ ij = C e ijkl(ė kl ė p ( kl ) ) = C e F ijkl ė kl λ σ kl ( λ = ( F σ ij C e ijklė kl F σ ij C e ijkl F σ kl ė kl F C e σ ab abcdė cd F F σ ab C e abcd F σ σ kl cd C e ijkl Ce ijcd F σ cd F σ ab C e abkl F σ ab C e abcd F σ cd ) ) ė kl 134

135 F/ σ ij 3 F = 3 σ ij 2 σ σ ij, σ ij = σ ij Ce ijklė kl σ ij Ce ijklσ kl λ = 2 σ 3 ( ) C e ijkl Ce ijcdσ cd σ ab C e abkl σ ab C e abcdσ cd ė kl 135

136 4 Hooke C e ijkl λ, µ Lamé C e ijkl = λδ ij δ kl +2µδ ik δ jl µ G, σ ij = ( λ = σ klėkl σ C e ijkl 3Gσ ij σ kl σ 2 ) ė kl 136

137 von Mises σ = ( ) σ ij σ ij F = σ σ y F = λ σ ij ė p ij σ ij = ( ) C e ijkl 3Gσ ij σ kl σ 2 ė kl 137

138 1, Hooke. Hooke. F Cauchy T (elastic material). T (t) =f(f (t)) (104) f. f(f )=f(q F )=Q f(f ) Q T (105) F, F O,O, O O Q., P f(f )=f(f P ) (106). V. T = f(v ) (107). f(v )=f(q V Q T )=Q f(v ) Q T (108) 138

139 V, V O,O, O O Q. f(v ) (isotropic tensor function). (108) T, V, T = f(v )=φ 0 I + φ 1 V + φ 2 V 2 (109)., φ i (i =0, 1, 2) V. (representation theorem). (107) V = B 1/2. T = g(b) (110) g(b )=g(q B Q T )=Q g(b) Q T (111), g(b),. T = ψ 0 I + ψ 1 B + ψ 2 B 2 (112) = ξ 0 I + ξ 1 B + ξ 1 B 1 (113), B. 139

140 Hooke., E (L), (109) E (L) V I + 1 {u x + x u} (114) 2 E (L) = 1 {u x + x u} (115) 2 T =(φ 0 + φ 1 + φ 2 )I +(φ 1 +2φ 2 )E (L) (116) = η 0 I + η 1 E (L) (117), η 0, η 1 E (L). T E (L), Hooke., λ, µ Lamé. T =(λtre (L) )I +2µE (L) (118) 140

141 , Hooke. 2 T = f(v ), T = g(b), B Almansi A A = 1 (I B) (119) 2, T = h(a) (120). h(a )=h(q A Q T )=Q h(a) Q T (121) A, A O,O, O O Q. h(a),. T = h(a) =ζ 0 I + ζ 1 A + ζ 2 A 2 (122) Hooke T =(λtra)i +2µA (123). A E (L) (124), λ, µ Lamé. 141

142 3 T =(λtra)i +2µA. Ṫ, Ȧ T = QT Q T Ṫ = QT Q T + QṪQT + QT Q T W, T, A T, Å. T = Ṫ W T + T W (125) Å = Ȧ W A + A W (126) Jaumann T (J) = Ṫ W T + T W Oldroyd T (O) = Ṫ L T T LT Cotter Rivlin T (C) = Ṫ + LT T + T L Green Naghdi T (G) = Ṫ Ω T + T Ω (Ω = Ṙ RT ). T =(λtrå)i +2µÅ (127) 142

143 ,, (, ), F t (τ) R t (τ), U t (τ) I (128),. T (J) T (O) T (C) T (G) (129) Å (J) Å(O) Å(C) Å(G) (130), T (J) = Ṫ W T + T W (131) T (J) = T (O) + D T + T D (132) T (J) = T (C) D T T D (133) T (G) = Ṫ Ω T + T Ω (134) W Ω (135), Å(C) = D, T =(λtrd)i +2µD (136). T Kirchhoff ˆT t (τ) =J t (τ)t (τ) ˆT t (t) =(λtrd)i +2µD (137) 143

144 ., ˆT t (t) (J) = T (J) + T trd (138) ˆT t (t) (O) = T (O) + T trd (139) ˆT t (t) (C) = T (C) + T trd (140) 144

145 . v v e v p v = v e + v p (141), L D. D = D e + D p (142) σ ij T ij, e p ij D p ij., C ep ijkl. T ij = C ep ijkld kl (143),,, (143), Cauchy Kirchhoff ˆT ij = C ep ijkld kl (144). Kirchhoff, Jaumann. 145

146 . C ep ijkl = ( C ijkl 3G T T ) ij kl σ 2 (145) T ij, T ij = T ij 1 3 T kk δ ij. pe = T kl D kl σ (146) λ = T kl D kl σ (147) 146

147 1,,., t t e p ij = t σ ij = = t 0 t 0 0 τė p ij dτ (148) τ σ ij dτ (149) τ C ep ijkl τ ė kl dτ (150) t t σ ij t σ ij = τ C ep ijkl τ ė kl dτ (151) t. t C ep ijkl, (150), (151),. 147

148 2,. Kirchhoff.,, (157) t C ep ijkl, t Cijkl e. t T ij = t T ij + = t T ij + = t T ij + = t T ij + = t T ij + t t t t t t t t t t τ T ij dτ (152) {τ ˆTτ ij (tr τ D) τ T ij } dτ (153) {τ ˆTτ ij + τ W ik τ ˆTτ kj τ ˆTτ ik τ W kj (tr τ D) τ T ij } {τ ˆTτ ij + τ W ik τ T kj τ T ik τ W kj (tr τ D) τ T ij } dτ (154) dτ (155) { τ C ep ijkl τ D kl + τ W ik τ T kj τ T ik τ W kj (tr τ D) τ T ij } dτ (156) = t T ij + {t C ep ijkl t D kl + t W ik t T kj t T ik t W kj (tr t D) t T ij } t (157) 148

149 . V,v, S, s. s t, u, v g.. T Cauchy. x T + ρg = 0 (158) T T n = t (159) u = u (160) D ij = 1 ( ui + u ) j (161) 2 x j x i ˆT ij = C ep ijkl D kl, T ij = t 0 T ij dt (162) 149

150 T : δa (L) dv = v δv t w ds + δa (L), w W Almange. δa (L)ij = 1 ( wi + w ) j 2 x j x i updated Lagrange v v ρg w dv (163) (164) δa ij T ij dv = {δu} T [B] T {T } dv (165) v Q = [B] T [T ]dv (166) v (δa ij S t (t) ij + δf ki T ij L kj )dv ([B] T [ ) D] [B]+[G] v = {δu} T v dv { u} (167) 150

151 1,. Ṡ ij = C ijkl D kl (168) D kl = D lk, C ijkl = 1 2 (C ijkl + C ijlk ) (169). D, D ij [ C]. Ṡ 11 Ṡ 22 Ṡ 33 Ṡ 12 Ṡ 23 Ṡ 31 = C 1111 C1122 C1133 C1112 C1123 C1131 C 2211 C2222 C2233 C2212 C2223 C2231 C 3311 C3322 C3333 C3312 C3323 C3331 C 1211 C1222 C1233 C1212 C1223 C1231 C 2311 C2322 C2333 C2312 C2323 C2331 C 3111 C3122 C3133 C3112 C3123 C3131 [ C], Cijkl = C klij,. D 11 D 22 D 33 2D 12 2D 23 2D 31 (170) 151

152 Hooke 1 Cijkl e = λδ ijδ kl +2µδ ik δ jl (171) C ijkl e = λδ ijδ kl + µ (δ ik δ jl + δ il δ jk ) (172) C e klij = λδ kl δ ij + µ (δ ki δ lj + δ kj δ li ) (173) = λδ ij δ kl + µ (δ ki δ lj + δ il δ jk ) (δ mn = δ nm ) (174) = C e ijkl (175) [ C e ]= λ +2µ λ λ λ λ+2µ λ λ λ λ+2µ µ µ µ Lamé λ, µ E, ν. νe λ = (1 + ν)(1 2ν) E µ = 2(1+ν) (176) (177) (178) 152

153 1. C p ijkl = 3G σ ij σ kl σ 2 (179),. A = 3G σ 2 C p ijkl = A σ ij σ kl (180), C p ijkl = 1 2 ( ) C p ijkl + Cp ijlk = C p ijkl (181), C p ijkl C p ijkl = C p klij (182) 6 6. A σ 11 σ 11 A σ 11 σ 22 A σ 11 σ 33 A σ 11 σ 12 A σ 11 σ 23 A σ 11 σ 31 A σ [ C 22 σ 11 A σ 22 σ 22 A σ 22 σ 33 A σ 22 σ 12 A σ 22 σ 23 A σ 22 σ 31 p A σ ]= 33 σ 11 A σ 33 σ 22 A σ 33 σ 33 A σ 33 σ 12 A σ 33 σ 23 A σ 33 σ 31 A σ 12 σ 11 A σ 12 σ 22 A σ 12 σ 33 A σ 12 σ 12 A σ 12 σ 23 A σ 12 σ 31 A σ 23 σ 11 A σ 23 σ 22 A σ 23 σ 33 A σ 23 σ 12 A σ 23 σ 23 A σ 23 σ 31 A σ 31 σ 11 A σ 31 σ 22 A σ 31 σ 33 A σ 31 σ 12 A σ 31 σ 23 A σ 31 σ 31 (183) 153

154 2, Kirchhoff Jaumann, D. t t ˆT (J) = C ep : D (C 4 ) (184) t tṡ = C : D. t tṡ = t t ˆT (J) D T T D (185) = C ep : D D T T D (186) t tṡij = C ep ijkl D kl D ik T kj T ik D kj (187) = C ep ijkl D kl δ il T kj D kl T ik δ jl D kl (188) { = C ep ijkl 1 2 (δ ijt kj + δ ik T lj ) 1 } 2 (T ikδ ij + T il δ jk ) D kl (189). C ep ijkl = Cep ijkl 1 2 (δ ilt kj + δ ik T lj ) 1 2 (T ikδ jl + T lj δ jk ) (190) 154

155 3 t tṡij t tṡ = C : D. 2T T 21 0 T 31 0 T 22 0 T 21 T T 22 T 21 T 23 T 31 T 12 T (T T 22 ) 2 T T 23 0 T 23 T T (T 22 + T 33 ) 1 2 T 12 T 31 0 T T T (T 11 + T 33 ) (191) 155

156 4 Kirchhoff Jaumann Truesdell t tṡ t tṡ = t t t tṡ = t t ˆT (J) D T T D (192) = C ep : D D T T D (193) ˆT (O) = t t T (O) + (trd)t = t t T (J) D T T D + (trd)t = t t ˆT (J) D T T D t t T (J) (trd)t S 11 = T 11 (D 11 + D 22 + D 33 ) S 22 = T 22 (D 11 + D 22 + D 33 ) S 33 = T 33 (D 11 + D 22 + D 33 ) S 12 = T 12 (D 11 + D 22 + D 33 ) S 23 = T 23 (D 11 + D 22 + D 33 ) S 31 = T 31 (D 11 + D 22 + D 33 )

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

Report98.dvi

Report98.dvi 1 4 1.1.......................... 4 1.1.1.......................... 7 1.1..................... 14 1.1.................. 1 1.1.4........................... 8 1.1.5........................... 6 1.1.6 n...........................

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

2003 12 11 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2003 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 9 2. 10/16 3. 10/23 ( ) 4. 10/30 5. 11/ 6

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information