"éı”ç·ıå½¢ 微勃挹稉弑

Size: px
Start display at page:

Download ""éı”ç·ıå½¢ 微勃挹稉弑"

Transcription

1 == 1 階線形微分方程式 == 次の形の常微分方程式を1 階線形常微分方程式といいます. '+P()=Q() (1) 方程式 (1) の右辺 : Q() を 0 とおいてできる同次方程式 ( この同次方程式は, 変数分離形になり比較的容易に解けます ) '+P()=0 () の1つの解を とすると, 方程式 (1) の一般解は =( Q() +C) (3) で求められます. 参考書には 上記の の代わりに, e P() =e ( Q()e +C) (3') のまま書いて と書かれているのが普通です. この方が覚えやすい人は, これで覚えるとよい. ただし, 赤と青で示した部分は, 定数項まで同じ 1 つの関数の符号だけ逆のものを使います. 筆者は, この複雑な式を見ると頭がクラクラ ( 目がチカチカ ) して, どこで息を継いだらよいか困ってしまうので, 上記の (3) のように同次方程式の解を として, 段階で表すようにしています. ( 解説 ) 同次方程式 () は, 次のように変形できるので, 変数分離形です. '+P()=0 d = P() d = P() 両辺を積分すると d = P() log = P() +A A =e =e e =Be とおく =±Be =Ce (4) 理論の上では上記のように解けますが, 実際の積分計算が難しいかどうかは =e や Q() がどんな計算 になるかによります. Q() すなわち, P() やの形によっては, 筆算では手に負えない問題になることがあります. 右に続く 続き (4) 式は, C を任意定数とするときに () を満たすが, そのままでは (1) を満たさない. このような場合に, 同次方程式 '+P()=0 の一般解の定数 C を関数に置き換えて, 非同次方程式 '+P()=Q() の解を求める方法を定数変化法という. なぜ, そんな方法を思いつくのか? 自分にはなぜ思いつかないのか? などと考えても前向きの考え方にはなりません. 思いついた人が偉いと考えるとよい. 定数変化法は, 数学史上に残るラグランジェの功績ですが, 後からついていく我々は, ラグランジェが発見した方法のおいしいところをいただいて, 節約できた時間を今の自分に必要なことに当てたらよいと割り切るとよい. ただし, この定数変化法は 階以上の微分方程式において, 同次方程式の解から非同次方程式の解を求める場合にも利用できるなど適用範囲の広いものなので, 今度出てきたら, 真似してみよう と覚えておく値打ちがあります. (4) 式において, 定数 C を関数 z() に置き換えて =e は () の1つの解 =z() (5) とおいて, 関数 z() を求めることにする. 積の微分法により : '=(z)'=z'+z' だから,(1) 式は次の形に書ける. z'+z'+p()=q() (1') ここで は () の1つの解だから '+P()=0 z'+p()z=0 z'+p()=0 そこで,(1') において赤で示した項が消えるから, 関数 z() は, またしても次の変数分離形の微分方程式で求められる. z'=q() dz =Q() Q() dz= z= Q() +C (5) に代入すれば, 目的の解が得られる. =( Q() +C) 例題 1 微分方程式 ' = の一般解を求めてください. この方程式は,(1) において, P()= 1, Q()= という場合になっています. == 定数変化法の練習も兼ねて, じっくりやる場合 == はじめに, 同次方程式 ' =0 の解を求める. d = 指数法則 よく使う 例題 微分方程式 '+=3e の一般解を求めてください. この方程式は,(1) において, P()=, Q()=3e う場合になっています. == 定数変化法の練習も兼ねて, じっくりやる場合 == はじめに, 同次方程式 '+=0 の解を求める. d = とい

2 d = d = e f= g'=e =e e log =+C1 +C =e 1 C =e 1 e =Ce ( e C 1=C =±Ce =C3e ( ±C =C3 次に, 定数変化法を用いて, C 3=z() とおいて =ze ( z は の関数 ) の形で元の非同次方程式の解を求める. =ze のとき '=z'e +ze となるから元の方程式は次の形に書ける. z'e +ze ze = z'e = dz e = dz= =e e dz= z= e e 右のように を微分する側に選んで, 部分積分によって求める. fg' =fg f 'g により +C 1 C 1 f '=1 g= e e = e + e = e e +C4 z=( e e +C 4) に戻すと =( e e +C 4)e = +C e = +Ce ( 答 ) 4 ==(3) または (3') は公式と割り切って直接代入する場合 == P()= 1 だから, =e =e Q()= だから, Q() = = e e =( e e )+C =e { ( e e )+C}= +Ce ( 答 ) d = d = log = +C1 +C =e 1 C =e 1 e =Ce ( e C 1=C =±Ce =C3e ( ±C =C3 次に, 定数変化法を用いて, C 3=z() とおいて =ze ( z は の関数 ) の形で元の非同次方程式の解を求める. =ze のとき '=z'e ze となるから元の方程式は次の形に書ける. z'e ze +ze =3e z'e =3e dz e =3e 6 dz=3e e =3e dz=3 z=3 e e = 1 6 e +C4 に戻すと =( 1 6 e +C 4 )e = 1 e +Ce ( 答 ) ==(3) または (3') は公式と割り切って直接代入する場合 == P()= だから, =e =e Q()=3e だから, =3 e = 1 6 e +C 6 6 3e e 6 =e { 1 6 e +C }= 1 e +Ce ( 答 ) 正しい番号をクリックしてください. それぞれの問題は暗算では解けませんので, 計算用紙が必要です. ブラウザによっては, 番号枠の少し上の方が反応することがあります. 問題 微分方程式 ' cos+sin =1 の一般解を求めてください. 1 = sin +Ccos = cos+csin 3 = sin +Ctan 4 =tan +Csin 問題 1 5 微分方程式 ' =e の一般解を求めてください. 1 = 1 3 e +Ce = 1 5 e +Ce 3 3 = 1 6 e +Ce 4 = 1 3 e +Ce 5 5

3 問題 3 微分方程式 ' = + の一般解を求めてください. 1 =(+ log +C) =(+ log +C) 3 =(+ log +C) 4 =( + log +C) 問題 4 微分方程式 '+= cos の一般解を求めてください. 1 =( sin +cos +C)e =( sin cos +C)e 3 = sin + cos +Ce 4 = sin cos +Ce

4 微分方程式の解は, =f() の形の について解かれた形 ( 陽関数 ) になるものばかりでなく, + =C のような陰関数で表されるものもあります. もちろん, =f() の形で が で表される場合もありえます. そうすると, 場合によっては を の関数として解くことも考えられます. 例題 3 微分方程式 ( )'=1 の一般解を求めてください. この方程式は, '= 1 と変形 できますが, 変数分離形でもなく線形微分方程式の形にもなっていません. しかし, d = 1 = '+= d と変形すると, についての線形微分方程式になっており, これを解けば が で表されます. d = 1 = '+= と変形すると が d の線形方程式で表されることになるので, これを解きます. 同次方程式 : = を解くと d = d = d log = +C1 +C =e 1 C =e 1 e C =±e 1 e =Ce 非同次方程式の解を =z()e の形で求める 積の微分法により &apos=z'e ze となるから, 元の微分方程式は z'e ze +ze = z'e = 両辺に e を掛けると z'=e I= e は, 次のよう z= e d =e e +C, 解は =(e e +C)e = 1+Ce に部分積分で求めることができます. f= f '=1 g'=e g=e I=e e d=e e +C 問題 5 微分方程式 ( +)'= の一般解を求めてください. 1 =+C = +C 3 =+ log +C 4 = log +C

5 問題 6 微分方程式 (e )'= の一般解を求めてください. 1 =(e +C) =e C e 3 = 4 = +C e +C 問題 7 微分方程式 (+ log )'= (>0) の一般解を求めてください. 1 = log +C = ( log ) +C 3 =( log +C) 4 =(( log ) +C)

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

微分方程式補足.moc

微分方程式補足.moc Bernoulli( ベルヌーイ ) の微分方程式 ' + P( ) = Q() n ( n 0,) 微分方程式の形の補足 ( 階 ) 注意 : n =0 のときは 階線形微分方程式 n = のときは変数分離形となる 解法 : z = -n とおいて関数 z の微分方程式を解く z' =( - n) -n ' よりこれを元の微分方程 式に代入する - n z' + P() = Q() n 両辺を n

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数   1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( ) 微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

項別超微分

項別超微分 13 項別超微分本章では 2 階以上の高階導関数を簡単な一般式で表すことが困難な関数について これら を級数に展開した上項別に超微分するものである 従って 12 超微分 で扱った e x, logx, sinx, cosx, sinhx, coshx の各関数は本章では扱わない 13 1 三角関数 双曲線関数の項別超微分 公式 13 1 1 ベルヌイ数とオイラー数をそれぞれ B 0 =1, B 2

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用 チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

< BD96CA E B816989A B A>

< BD96CA E B816989A B A> 数 Ⅱ 平面ベクトル ( 黄色チャート ) () () ~ () " 図 # () () () - - () - () - - () % から %- から - -,- 略 () 求めるベクトルを とする S であるから,k となる実数 k がある このとき k k, であるから k すなわち k$, 求めるベクトルは --,- - -7- - -, から また ',' 7 (),,-,, -, -,

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

学習指導要領

学習指導要領 () いろいろな式 学習指導要領ア式と証明 ( ア ) 整式の乗法 除法 分数式の計算三次の乗法公式及び因数分解の公式を理解し それらを用いて式の展開や因数分解をすること また 整式の除法や分数式の四則計算について理解し 簡単な場合について計算をすること 都立清瀬高校学力スタンダード 変数の 次式の展開や因数分解ができる ( 例 ) 次の式を展開せよ y ( 例 ) 次の式を因数分解せよ 8 7y

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63> 1/8 平成 3 年 3 月 4 日午後 6 時 11 分 10 複素微分 : コーシー リーマンの方程式 10 複素微分 : コーシー リーマンの方程式 9 複素微分 : 正則関数 で 正則性は複素数 z の関数 f ( z) の性質として導き出しまし た 複素数 z は つの実数, で表され z i 数 u, v で表され f ( z) u i 複素数 z と つの実数, : z + i + です

More information

2014年度 信州大・医系数学

2014年度 信州大・医系数学 4 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 3 個の玉が横に 列に並んでいる コインを 回投げて, それが表であれば, そのときに中央にある玉とその左にある玉とを入れ替える また, それが裏であれば, そのときに中央にある玉とその右にある玉とを入れ替える この操作を繰り返す () 最初に中央にあったものが 回後に中央にある確率を求めよ () 最初に右端にあったものが 回後に右端にある確率を求めよ

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si 公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係

More information

数学○ 学習指導案

数学○ 学習指導案 第 1 学年数学科数学 Ⅰ 学習指導案 1 単元名 二次方等式 二次不等式 2 単元の目標 二次方程式を因数分解や解の公式で導くことができるようにする 二次関数のグラフと 軸との共有点の個数を判別する方法を理解する 一次不等式や二次不等式の解法を 一次関数や二次関数のグラフを利用して理解する 二次不等式を含んだ連立不等式の解法を理解する 判別式をさまざまな事象の考察に応用することができるようにする

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

Microsoft Word - 付録A,Bとその図

Microsoft Word - 付録A,Bとその図 付録 A 1 自由度系 ( 自由振動 ) の解法 はじめに振動現象を解明するのに基本となる 1 自由度不減衰系 ( 自由振動 ) の運動方程式の作成方法とその微分 ( あるいは偏微分 ) 方程式の解法を説明する. 1 自由度系モデルには, 単振動のばね 質量モデルと数学振子を用いる. A.1 運動方程式 ( 微分方程式 ) を立てる A.1.1 ばね 質量の場合 ( 1) 単振動の運動から運動方程式を求める

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

高ゼミサポSelectⅢ数学Ⅰ_解答.indd

高ゼミサポSelectⅢ数学Ⅰ_解答.indd 数と式 ⑴ 氏点00 次の式を展開せよ ( 各 6 点 ) ⑴ (a-)(a -a+) ⑵ (x+y+)(x+y-5) 次の式を因数分解せよ (⑴⑵ 各 6 点, ⑶⑷ 各 8 点 ) ⑴ x y+x -x-6y ⑵ x -x - ⑶ a +5b ⑷ (x+y+z+)(x+)+yz 数と式 ⑵ 氏点00 次の問いに答えよ ( 各 6 点 ) ⑴ 次の循環小数を分数で表せ. a-5 = ⑵ 次の等式を満たす実数

More information

2016年度 京都大・文系数学

2016年度 京都大・文系数学 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,

More information

2011年度 東京大・文系数学

2011年度 東京大・文系数学 東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

2014年度 千葉大・医系数学

2014年度 千葉大・医系数学 04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と

More information

2016年度 九州大・理系数学

2016年度 九州大・理系数学 0 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ 座標平面上の曲線 C, C をそれぞれ C : y logx ( x > 0), C : y ( x-)( x- a) とする ただし, a は実数である を自然数とするとき, 曲線 C, C が 点 P, Q で交わり, P, Q の x 座標はそれぞれ, + となっている また, 曲線 C と直線 PQ で囲まれた領域の面積を S,

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information

2014年度 センター試験・数学ⅡB

2014年度 センター試験・数学ⅡB 第 問 解答解説のページへ [] O を原点とする座標平面において, 点 P(, q) を中心とする円 C が, 方程式 y 4 x で表される直線 l に接しているとする () 円 C の半径 r を求めよう 点 P を通り直線 l に垂直な直線の方程式は, y - ア ( x- ) + qなので, P イ から l に引いた垂線と l の交点 Q の座標は ( ( ウ + エ q ), 4 (

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

数学の世界

数学の世界 東京女子大学文理学部数学の世界 (2002 年度 ) 永島孝 17 6 行列式の基本法則と効率的な計算法 基本法則 三次以上の行列式についても, 二次の場合と同様な法則がなりたつ ここには三次の場合を例示するが, 四次以上でも同様である 1 単位行列の行列式の値は 1 である すなわち 1 0 0 0 1 0 1 0 0 1 2 二つの列を入れ替えると行列式の値は 1 倍になる 例えば a 13 a

More information

2010年度 筑波大・理系数学

2010年度 筑波大・理系数学 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0

More information

2013年度 信州大・医系数学

2013年度 信州大・医系数学 03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

2018年度 岡山大・理系数学

2018年度 岡山大・理系数学 08 岡山大学 ( 理系 ) 前期日程問題 解答解説のページへ 関数 f ( x) = ( + x) x について, 以下の問いに答えよ () f ( x ) = 0 を満たす x の値を求めよ () 曲線 y = f ( x ) について, 原点を通るすべての接線の方程式を求めよ (3) 曲線 y = f ( x ) について, 原点を通る接線のうち, 接点の x 座標が最大のものを L とする

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

2017年度 信州大・医系数学

2017年度 信州大・医系数学 7 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 座標平面上の点 O(, ), A ( a, a ), B( b, b ), C( b, b) を考える さらに,, に対し, D( acos asi, asi + acos ), E( bcos bsi, bsi + bcos ) とおく () OA = OD を示せ () OA OC = かつ OA OB = OD OE ¹ であるとする

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)

経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17) 経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書

More information

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63>

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63> いろいろな運動. 自由落下. 投げ上げ 3. 放物運動 4. 標的にボールを当てる 5. 斜面に向かって投げ上げる 6. ブレーキをかけた自動車 7. 摩擦のある斜面上を滑り落ちる物体 8. ばね振り子 ( 単振動 ) 9. 摩擦を受けるばね振り子. 補足 : 微分方程式の解き方 自由落下質量 の質点を高さ h の地点から初速 で落とした. 鉛直上向きを 軸正 の向き, 地表を原点とし, 重力加速度の大きさを

More information

Microsoft Word - 圧縮材

Microsoft Word - 圧縮材 応用力学 Ⅱ 講義資料 / 圧縮材 1 圧縮材 圧縮材 (compssion mm) または柱 (column): 軸方向の圧縮力を受ける部材 圧縮材の破壊形態による分類 ( 破壊形態 ) 短柱 (shot column): 比較的太く短い圧縮材 圧潰 (cushing failu) 長柱 (long column) : 比較的細長い圧縮材 座屈 (uckling) 細長比 (slndnss atio):

More information

数学2 第3回 3次方程式:16世紀イタリア 2005/10/19

数学2 第3回 3次方程式:16世紀イタリア 2005/10/19 数学 第 9 回方程式とシンメトリ - 010/1/01 数学 #9 010/1/01 1 前回紹介した 次方程式 の解法は どちらかというと ヒラメキ 的なもので 一般的と言えるものではありませんでした というのは 次方程式 の解法を知っても 5 次方程式 の問題に役立てることはできそうもないからです そこで より一般的な別解法はないものかと考えたのがラグランジュという人です ラグランジュの仕事によって

More information

2018年度 2次数学セレクション(微分と積分)

2018年度 2次数学セレクション(微分と積分) 08 次数学セレクション問題 [ 東京大 ] > 0 とし, f = x - x とおく () x で f ( x ) が単調に増加するための, についての条件を求めよ () 次の 条件を満たす点 (, b) の動きうる範囲を求め, 座標平面上に図示せよ 条件 : 方程式 f = bは相異なる 実数解をもつ 条件 : さらに, 方程式 f = bの解を < < とすると > である -- 08 次数学セレクション問題

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

2017年度 千葉大・理系数学

2017年度 千葉大・理系数学 017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする

More information

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł 最大公約数, 最小公倍数, ユークリッドの互除法 最大公約数, 最小公倍数とは つ以上の正の整数に共通な約数 ( 公約数 ) のうち最大のものを最大公約数といいます. 1 と 18 の公約数は, 1,,,6 で, 6 が最大公約数 つ以上の正の整数の共通な倍数 ( 公倍数 ) のうち最小のものを最小公倍数といいます. と の公倍数は, 6,1,18,,... で, 6 が最小公倍数 最大公約数, 最小公倍数の求め方

More information

- 16 M7.3 14 M6.5 - - - - - A-4 A-5 A-3 F-3 F-1 C-3 G-1,E-6 C-2 D-1 F-2 E-7 J-1 J-3 B-3 K-1 B-3 I-4 I-3 I-2 I-6 C-1 I-5 B-5 B-2 J-2 A-1 A-2 E-1 B-4 I-1 E-2 E-5 B-1,E-4 E-3 A-1 A-2 A-2 A-3 A-4 A-5 A-2

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

0. はじめに ここでは 金融工学の基礎であるブラックショールズの公式を導くまでの過程を説明する そのためには ランダムウォークから派生したブラウン運動と確率積分の概念の理解は必要不可欠である そしてそこから求まる伊藤の公式を用いて確率微分方程式を解き ブラックショールズ過程について紹介する 1.

0. はじめに ここでは 金融工学の基礎であるブラックショールズの公式を導くまでの過程を説明する そのためには ランダムウォークから派生したブラウン運動と確率積分の概念の理解は必要不可欠である そしてそこから求まる伊藤の公式を用いて確率微分方程式を解き ブラックショールズ過程について紹介する 1. . はじめに ここでは 金融工学の基礎であるブラックショールズの公式を導くまでの過程を説明する そのためには ランダムウォークから派生したブラウン運動と確率積分の概念の理解は必要不可欠である そしてそこから求まる伊藤の公式を用いて確率微分方程式を解き ブラックショールズ過程について紹介する. ブラウン運動 ランダムウォークは 確率変数 X 確率 p, X 確率 q=-p =,,, が存在しそれらが独立であるときに

More information

学習指導要領

学習指導要領 習熟度別クラス編成において 基礎クラスの学力スタンダード 表示は ( 基礎 ) と応用クラスの学力スタンダード 表示は ( 応用 ) を設定する () いろいろな式 ア式と証明 ( ア ) 整式の乗法 除法, 分数式の計算三次の乗法公式及び因数分解の公式を理解し それらを用いて式の展開や因数分解をすること また 整式の除法や分数式の四則計算について理解し 簡単な場合について計算をすること 文字の 次式の展開や因数分解ができる

More information

エンマの唇

エンマの唇 第 話トラクトリックス Trcri 追跡曲線 Ercis HoundKurv 問題猟犬曲線問題パリの医師であり解剖学者 フランス王立科学アカデミー会員のクロード ペロ-はズボンのポケットから鎖のついた銀の懐中時計を取り出し テーブルの向こうまで引き出し どんな曲線に対して 各点 での接線と 軸との間が一定の長さ になるだろうか? この問題を提出した (67~676) 当時 フェルマーもこの式を求めることが出来なかった

More information

数 IB( 植松 ) 2006 年夏学期解答 ( 兼ノート ) (2007 年のは課題プリでやってしまったので ) 1 (a) 補完公式を使う問題です 補完公式とは n+1 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x y y0 y1 y2 y3 このデータを補

数 IB( 植松 ) 2006 年夏学期解答 ( 兼ノート ) (2007 年のは課題プリでやってしまったので ) 1 (a) 補完公式を使う問題です 補完公式とは n+1 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x y y0 y1 y2 y3 このデータを補 数 IB( 植松 ) 26 年夏学期解答 ( 兼ノート ) (27 年のは課題プリでやってしまったので ) (a) 補完公式を使う問題です 補完公式とは n+ 個の点を通る n 次の多項式を求める公式のことです 例 n=3 x 2 3 y y y y2 y3 このデータを補完して得られる多項式を y=ax 3 +Bx 2 +Cx+D と置きます データより y = D y = A + B + C +

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

DVIOUT

DVIOUT 3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

学習指導要領 ( イ ) 集合集合と命題に関する基本的な概念を理解し それを事象の考察に活用すること 向丘高校学力スタンダード 三つの集合について 共通部分 和集合を求めることができる また 二つの集合について ド モルガンの法則 を理解する ( 例 ) U ={ n n は 1 桁の自然数 } を

学習指導要領 ( イ ) 集合集合と命題に関する基本的な概念を理解し それを事象の考察に活用すること 向丘高校学力スタンダード 三つの集合について 共通部分 和集合を求めることができる また 二つの集合について ド モルガンの法則 を理解する ( 例 ) U ={ n n は 1 桁の自然数 } を (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 向丘高校学力スタンダード 自然数 整数 有理数 無理数 実数のそれぞれの 集合について 四則演算の可能性について判断できる ( 例 ) 下の表において それぞれの数の範囲で四則計算を考えるとき 計算がその範囲で常にできる場合には を 常にできるとは限らない場合には をつけよ ただし

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł

æœ•å¤§å–¬ç´—æŁ°,æœ•å°‘å–¬å•“æŁ°,ã…¦ã…¼ã‡¯ã…ªã……ã…›ã†®äº™éŽ¤æ³Ł 最大公約数, 最小公倍数, ユークリッドの互除法 最大公約数, 最小公倍数とは つ以上の正の整数に共通な約数 ( 公約数 ) のうち最大のものを最大公約数といいます. と 8 の公約数は,,,,6 で, 6 が最大公約数 つ以上の正の整数の共通な倍数 ( 公倍数 ) のうち最小のものを最小公倍数といいます. と の公倍数は, 6,,8,,... で, 6 が最小公倍数 最大公約数, 最小公倍数の求め方

More information

2011年度 東京工大・数学

2011年度 東京工大・数学 東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6

More information

åłºæœ›å•¤ï¼„åłºæœ›ã…Žã‡¯ã…‹ã…«ã†®æ±‡ã‡†æŒ¹

åłºæœ›å•¤ï¼„åłºæœ›ã…Žã‡¯ã…‹ã…«ã†®æ±‡ã‡†æŒ¹ 固有値と wxmaxima を使うと簡単に求めることができます. この頁 その他 固有値 固有ベクトル練習用の問題 (1) 2 次の正方行列が異なる 2 つの実固有値を持つ場合 引用元 : ラング 線形代数学 ( 下 ) ( 芹沢正三訳 / ちくま学芸文庫 )p.078 (2) 2 次の正方行列が 1 つの実固有値 (2 重解 ) を持つ場合 引用元 : ラング 線形代数学 ( 下 ) ( 芹沢正三訳

More information

Microsoft Word - ComplexGeometry1.docx

Microsoft Word - ComplexGeometry1.docx Complex Geometry Speaer(s): Has-Joachim Hei (Imperial College, Loo) vieo のページ : https://www.msri.org/summer_schools/72/scheules/8495 Agea:. 正則関数 (Holomorphic Fuctio) とは 2. ワイエルストラスの予備定理 3. ハルトークスの定理 記号

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

< 三角関数 指数関数 対数関数の極限 > si lim は ラジアン角 6 逆関数の微分 : f æ ö lim ç 788 ± è ø 自然対数の底 3 指数関数 対数関数のグラフからも分かるように > ときは lim + lim + lim log + lim log + + < <

< 三角関数 指数関数 対数関数の極限 > si lim は ラジアン角 6 逆関数の微分 : f æ ö lim ç 788 ± è ø 自然対数の底 3 指数関数 対数関数のグラフからも分かるように > ときは lim + lim + lim log + lim log + + < < 数学 Ⅲ C 公式集 < 関数と極限 > 分数関数 c + のとき割り算の商と余りを利用して + r p + と変形できる このときグラフは 漸近線が, p の直角双曲線になる 無理関数 k f のグラフは k f のグラフで k > のとき 軸より上半分 k < のとき 軸より下半分 特に + や + は完璧にしておくこと 3 合成関数 f : が f g : が g f f g : ¾¾ ¾¾

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

複素数平面への誘い

複素数平面への誘い いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示

More information

モデリングとは

モデリングとは コンピュータグラフィックス基礎 第 5 回曲線 曲面の表現 ベジェ曲線 金森由博 学習の目標 滑らかな曲線を扱う方法を学習する パラメトリック曲線について理解する 広く一般的に使われているベジェ曲線を理解する 制御点を入力することで ベジェ曲線を描画するアプリケーションの開発を行えるようになる C++ 言語の便利な機能を使えるようになる 要素数が可変な配列としての std::vector の活用 計算機による曲線の表現

More information

丛觙形ㆮ隢穓ㆮ亄ç�›å‹ƒç·ı

丛觙形ㆮ隢穓ㆮ亄ç�›å‹ƒç·ı 三角形の面積は == 三角形の面積の二等分線 == ( 面積 )=( 底辺 ) ( 高さ ) 2 の公式で求められます. 次の図のように, ABC の頂点 A から対辺 BC の中点 ( 真ん中の点,1 対 1 に内分する点 ) D に線分 AD をひくと, ABD と DCA とは, 底辺が等しく, 高さが共通になるから, これら 2 つの三角形の面積は等しくなります.( 高さは底辺と垂直 ( 直角

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 行列と行列式の意味 -1/6 テーマ B15: 行列と行列式の意味 線形代数と呼ばれる分野では, 必ず, 行列と行列式が出てきます. これらがどのような 意味を持ち, またその違いは何なのかについて解説します. 1. 連立方程式と行列次の例題を考えてみましょう. 例題リンゴ 2 個とミカン 3 個買うと代金は 350 円になり. リンゴ 5 個とミカン

More information