September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

Size: px
Start display at page:

Download "September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1"

Transcription

1 September 25, p = nr = t : : K : : e.g : 1

2 intensive variable e.g. extensive variable e.g Equation of State e.g. p = nr X = A Quantity of Heat Q > 3 > 2 Q Q = C = C C 1 : 1 heat of capacity C 2 : 2 C Q = C 2

3 2.1.2 : Calorie 1cal=1g =1cal/gK Lateut heat e.g. e.g. L=80cal/g e.g. L=540cal/g calorimeter thermometer calorique: work: W = W = ps h N m = 1J 1N = 1kg m/s 2 1J = 1kg m 2 /s 2 MKS 3

4 ln = log e natural logarithm e 3 = ln 20 = W = 2 = nr pd = nr ln d 2 e = lim n = n n { y = ln x x = e y d ln x dx = 1 x cal=4.186J ˆ Rumford ˆ Mayor ˆ Jouls : 2000kcal 1 = = Q = 2000kcal = cal = J 4

5 Q W 1 : P 1, 1, +Q,+W 2 : P 2, 2, 2 Q + W = U = Q + W = U 2 U 1 U U Q W p- 1 2 A B = Q A Q B A B W A = pd A W B = pd B pd A B pd = W A + W B Q A + W A = Q B + W B W A + W B = Q A Q B A: + 5

6 B: 1 1mol 15 2 = 2 Q = P 1 2 pd 2 = 2, p = nr B 2 1 Q = p 1 R 1 d 2 = p 1 R 1 ln = R 1 1 ln 2 = J = J = 2.3 ˆ dt, dp, d, du ˆ d W, d Q d W = pd du = d Q + d W = d Q pd d Q = du + pd 6

7 2.3.1 du d d, d du U, du = U U d + d U U U U f x, y f x = lim f x + x, y fx, y x 0 x f y = lim f x, y + y fx, y y 0 y f x, y x, y a, b, c f x, y = ax 3 + bxy 2 + cy 3 f x = 3ax2 + by 2 7

8 f y f x = 2 x 2 f y 2 = y 2 f x y = x = 2bxy + 3cy2 f = 6ax x f = 2bx + 6cy y f = 2by y 2 f y x = y f = 2by x f x, y x, y 2 f x y = 2 f y x f x y = f x x, y df dx = f x 2 z=fx,y f x x 0, y 0, f x y 0, y 0 x 0, y 0, z 0 = f x 0, y 0 x y U U : : 8

9 adiabetic: quasi-static: : : dq = du + pd = du = C v d p = nr p = nr d d C v d + nr d = C v d = nr d C v d = nr 1 d 9

10 C v ln 2 1 = nr ln 2 ln 2 1 = nr ln C v = ln 2 2 nr Cv 2 1 = = 2 2 nr Cv nr 1 Cv nr C v 1 1 = 2 2 nr C v nr C v = C r C v C v = C r C v 1 = γ γ = Cr C v 1 γ 1 1 = 2 γ 1 2 γ 1 = cond p = nr p p γ 1 = const 10

11 p γ = const p = nr = const isotherm p γ = const adiabat ˆ ˆ U = C v 2 1 < n 1 2 W W = pd = c d p γ = c = p γ 1 γ 1 = p 2 γ 2 p = c γ x α dx = 1 α + 1 xα+1 x, α γ 11

12 1 [ W = c ] 1 γ 2 1 γ c [ ] = 1 γ 2 γ 1 1 γ 1 [ ] = p2 γ 2 γ 2 p 1 γ 1 γ 1 1 γ 1 = 1 γ [p 2 2 p 1 ] 1 = 1 γ [nr 2 nr 1 ] = nr 1 γ 2 1 C p C v = nr γ = C p C v nr 1 γ = C p C v 1 C p C v = C p C v C v C p C v = C v W = C v 2 1 = U 2 U 1 = U = h 10km p h p = p h + h p h = gρ h 12

13 ρ : g : h p h + h = p h + dp h dh dp h = gρ h dh dp dh = gρ d Q = du + pd = dh dp d Q = 0 H = U + p dh dp = 0 dh = C p d dh = dp U = C v + U 0 H = U + p = U + nr = C v + nr + U 0 = C p + U 0 13

14 dh = C p d = dp = dp dh dh = gρ dh d = gρ C p dh = gm C p dh M = ρ : c p = C p M : d = g C p dh c p = C p M C p C v = cr γ = C p C v = 1.41 C p = C p 1 γ = nr C p = nr 1 1 γ = γ γ 1 nr c p = C p M = γ nr γ 1 M M n = m: m = 28.8J/K mol 14

15 d = γ 1 gm γ R dh = m/s kg/mol dh kg m 2 /s 2 /k mol = dh K/m 100m 1K 0.6K : γ 2: : 1-2,3,9, Kinetic theory = = x v = v x, v y, v z v = v x, v y, v z p x = 2mv x p = v 2 x = v 2 y = v 2 z = 1 3 v2 p y = p z = 0 N 2 v x p x = N m vx 2 N = m1 v 2 : 3 15

16 p = 1 3 Nm v 2 = 2 3 N 1 2 m v 2 = 2 3 U : p = nr nr = 2 3 U U = 3 2 nr U = C v + U 0 C v = 3 2 nr C p = C v + nr = 5 2 nr γ = C p C v = = 5 3 = U = N 1 2 m v 2 = N 1 2 m vx 2 + v 2 y + v 2 3 z = 2 nr 1 2 m v 2 = 3 nr 2 N = 3 2 k B nr N = R N A = k B = J/K : N A = N n : k B O 2, N U = 1 2 k B = 5 2 k B 16

17 U = N 5 2 k B = N 5 nr 2 N = 5 2 nr C v = 5 2 nr C p = 5 2 nr + nr = 7 2 nr γ = = : : 3.1 a P. Clausius b = 1. a b b a b a Q 17

18 a 2. b a heat engine : heat resewair R 2 Q 2 R 1 Q 1 < Q 2 Q 2 Q 1 W Sadi Carnot A B 2 1 C D 1 2 Q 2 Q 1 W = Q 2 Q 1 efficiency η = W Q 2 = Q 2 Q 1 Q 2 = 1 Q 1 Q 2 < 1 Heat Pump

19 3.2.2 c,c c Q 2 Q 1 = W Q 2 Q 1 = W η = W Q 2 W = ηq 2 η = W Q 2 W = ηq 2 Q 2 = Q 2 W = η Q 2 = η Q 2 W W = η Q 2 ηq 2 = η η Q 2 W W = Q 2 Q 1 Q 2 Q 1 = Q 1 Q 1 η > η Q 1 Q 1 W W b η η c η η η = η = η = W Q 2 = Q 2 Q 1 Q 2 = 1 Q 1 Q 2 19

20 1 η c = Q 1 Q 2 = n p = nr Q 1 Q Q 2 = 2 pd = nr 2 2 = nr 2 ln 1 2 d Q 1 = pd = nr 1 2 = nr 1 ln = nr 1 ln d γ 1 2 = 1 γ

21 1 γ 1 4 = 2 γ γ 1 = 3 4 γ 1 2 = 3 4 Q 1 Q 2 = nr 1 ln nr 2 ln = η = 1 Q 1 Q 2 η c = Q 1 Q Q 1 1 Q S = Q 2 2 = Q entropy Q 2 2 < Q

22 S 2 = Q 2 2 R 1 S 1 = Q 1 1 R 2 S 1 S 2 = Q 1 1 Q 2 2 > Q S = Q Q=0 S = p S 13 = Q 13 S 32 = 0 S 12 = S 13 + S 32 = S 13 22

23 S 12 = S 15 + S 54 + S 46 + S 62 S 54 = S 62 = S 53 + S 64 = 0 S 46 = S 64 = S 53 S 23 = S 15 + S 46 = S 15 + S 53 = S 13 = S 12 S 12 = S 13 S = Q 2 p 1 p n 2 23

24 Q = 2 pd 2 1 = nr = nr ln 2 d S = Q = nr ln 2 nr ln 2 J/K n S 12 = S 13 + S 32 1 = nr ln γ 1 1 γ 1 1 = 2 γ γ 1 =

25 γ 1 ln 1 3 = ln 2 1 S 12 = nr γ 1 ln 2 1 nr = C p C v γ = C r C v nr γ 1 = C p C v C p 1 = C v C v S 12 = C v ln ds = dq c.f. d W = pd d Q = ds du = d Q + d W = ds pd

26 ds = du + pd U S, = : S U, U U, p = S 1 S =, U U p S = U ds = du+pd du = C v d p = nr 1 nr ds = C v d + d S 2 S 1 = C v d + nr 1 2 = C v ln + nr ln d

27 2 S, = C v ln + nr ln + S isotherms 2 isocores 2 adiabats S, ds = S d + S d S ds = du + pd du = U d + U d ds = 1 [ U 1 d + U + P ] d S = 1 U = C v

28 U = C v S = 1 U + P = 2 S = 1 2 U = 1 U + 2 U 2 p U p U = p p p = 0 p S = = p p p + p S = p Maxwell 28

29 3.4.4 p = nr p = nr p = nr S = ds = C v nr d + d S, = C v ln + nr ln + S U = nr p = p p = van der Wals p = nr b a 2 S, U, F = a: b: S p = = nr b 29

30 C v ds = C v d + nr b d b S, = C v ln + nr ln + S b U nr nr = b b a 2 = a 2 U U du = d + d = C v d + a d 2 U, = C v a + U g g 0 S 1 S 1 = Q cal/g 100g 4.2J/cal = 273K = 123J/K

31 ds = = du + pd dh dp = dh = C pd C p = H p C p = 1cal/g K 4.2J/cal = 420J/K 1 C p 2 1 S 2 = d = C p ln = 420J/K ln 273 = 22.5J/K S = S 1 + S 2 = = 145J/K > S = Q Q = Q >

32 S = nr ln 2 > p 1 > p 2 = p 1 = nr = p 2 2 S = nr ln 2 > 0 p 1 p 2 = 2 > mixing entropy 2 = A + B S = S A + S B S A = Cv A ln + n A R ln 0 A 0 + S 0 S B = C B v ln + n B R ln 0 B 0 + S 0 32

33 S = S A + S B S A = Cv A ln + n A R ln + S S B = C B v ln + n B R ln + S S = S S = n A + n B R ln n A R ln 0 = n A R ln + n B R ln > 0 A B A 0 n B R ln B : p S du = ds pd du = 0 ds pd = 0 ds = pd ds = 2 1 S 2 S 1 = 2 S 2 S 1 1 S 2 S 1 = Q 2 Q 1 33

34 W = Q 2 Q 1 pd = ds p S : p S p, S, 2 pd = S p S = t p = S = p d S 3.6 : : W U,, N N U S U,, N = k B l n W N W R = N 0 N 34

35 N 0 : U N p 2 = p 2 2m N = U U N 2m W p W p U 2m N p 0 8N W = W R W p N = N 0 U 2m N p 0 3N p 0 ; S = k B ln W N = k B ln N 0 U 2m N p 0 3N = Nk B ln 3N U N 0 2 k N B ln 2m p 2 0 d S = d + pd 1 S = U = 3 2 Nk 1 B U U = 3 2 Nk B = 3 2 nr p S = U U 35 = Nk B 1

36 p = Nk B = nr 4 : : 4.1 Q S W U = Q W W = Q U S U = S 2 S 1 U 2 U 1 W U 1 S 1 U 2 S 2 F = U S4.1.1 W F 1 F W = 2 pd = nr ln 36 2

37 U = 0 F 2 F 1 = F = U S = nr ln = W 2 W = F 1 F 2 W = 0 F 1 F 2 F 2 F 1 F F n 1, n 2 = + 2 = F,, = F 1, + F 2, = F F, = 0 F, = = F1 F1 F2 + 2 F2 2 2 = 0 37

38 2 = F, = U S df = du ds Sd = pd Sd F = p p 1 = p 2 p 1 = p F = U S S df = Sd pd du = ds pd F S = F p = 38

39 4.2 Gibbs W = p 2 F 1 F 2 F 2 + p 2 F 1 + p G = F + p = U S + p 42.1 G 2 G 1 G G, P G 4.3 U S, du = ds pd = p = U 4.3.1a S U 4.3.1b S = 2 U S = 2 U S p = S 39

40 S, U p = 4.3.1c S S : F = U S df = du ds Sd = Sd pd, F df = Sd pd F S = 4.3.2a F p = 4.3.2b S = 2 F = 2 F p = S = p 4.3.2c : G = F + p dg = df + pd + dp = Sd 40

41 dg = Sd + dp4.3.3, p G S = = S p G 4.3.3a p G 4.3.3b p = 4.3.3c p : H = U + p dh = du + pd + dp = ds dh = ds + dp4.3.4 S, p H = = H 4.3.4a S p H 4.3.4b p S = 4.3.4c p S S p du = ds pd df = Sd pd dg = Sd + dp 41

42 dh = ds + dp F = U S G = F + p = U S + p H = U + p = G + S S p : 1 f x f x x = x 0 f x 0 = v 0 y = v 0 x x 0 + f x 0 y ψ 0 ψ 0 = v 0 x 0 + f x 0 f x v = f x = df dx ψ v = f x vx f x ψ v f x envelope f x ψ v 42

43 4.3.2 f x = 1 2 x2 x + 1 v = df dx = x 1 x = v + 1 ψ v = f x vx ψ v = 1 2 x2 x + 1 vx = 1 2 v + 12 v v v + 1 = 1 2 v2 + v v v2 v = 1 2 v2 v ψ v f x x = dψ dv = v + 1 f x = ψ v + vx = 1 2 v2 v vx = 1 2 x 12 x x 1 x , S, p, 4 U, F, G, H 2 43

44 5 closed system open system 5.1,, 2 N,, 2 N = N 1 + N 2 N 1, N 2 F = F 1 1,, N 1 + F 2, 2, N 2 F N 1,,N F1 = N 1 = 0, + F2 N2 N 2, 2 N 1 N F1 N 1, = F2 N 2, 2 F,, N η = F N, µ = η 1 = η G = g, p = G N,p N 44

45 µ 1 G = µn F = G p = µn p U = F + S = S p + µn d = ds pd + µdn dp = sd + vdp5.1.14, p, µ µ, p µ, p S = v = µ a p µ b p dµ = S N d N dp = sd vdp s = S N : 1 v = N : phase: 45

46 5.2.1 A = B p A = p B µ A = µ B, p µ A, p = µ B, p 5.2.1, p 2, p, p +, p + p µ A +, p + p = µ B +, p + p, p, p µa µa µ A +, p + p = µ A, p + + p + p p µa µa dµ A = d + dp p p µ A +, p + p = µ A, p + s A + v A p + µ B +, p + p = µ B, p + s B + v B p + 2 µ A, p = µ B, p s A + v A p = s B + v B p 46

47 v A v B p = s A s B p = s A s B v A v B dp d = s A s B v A v B = s A s B v A v B l AB = v A v B l AB : A B 1 v A v B : 1 N dp d = l AB N v A v B N L AB = A B dp d = L AB A B L AB, A B p g N N = 1 N 18 A 47

48 L AB = l AB N = 540cal/g = J/g A = v A N = 1 ρ A ρ A = 0.60kg/m 2 = g/m 2 B = v B N = 1 ρ B ρ B = g/m 2 ρ B ρ A A B p = L AB A B L AB A L ABρ A p = L AB ρ A = J/g J/m K = J/m 2 K = Pa/K p = Pa = = 5.6K 48

49 A B L AB A A B A = nr p dp d = L AB A B L AB A = L AB nr p 2 dp p = L AB 1 nr d 2 p ln = L AB 1 p 0 nr + 10 p = p 0 e L AB 1 nr p = p 0e L AB nr = 373K p = 10 5 Pa p van der Waals p = nr b a 2 49

50 { v = N nr = k B N p = k B v b 0 a 0 v { a = a 0 N 2 b = b 0 N = p v ˆ ˆ v A, C, B ˆ A, B v ˆ C v A B A B p A = p B F = G p = µn pvn = µ pv N 50

51 f = F N = µ pv5.3.2 dµ = sd + vdp df = sd pdv5.3.3 p = f v p = k B v b 0 a 0 v 2 f = f, v v f = = v 0 pdv v v 0 kb a 0 pdv v b 0 v 2 v b0 1 f, v = k B ln a 0 + h v 0 b 0 v f v, double tangent v A, B ˆ A, B ˆ A, B p = f v : ˆ A, B y y f µ f = f v + ψ v = pv + ψ 51

52 ψ = f + pv = µ µ A = µ B µ A = f v A + p 0 v A µ B = f v B + p 0 v B µ A µ B = 0 f v B f v A + p 0 v B v A = 0 vb vb p v dv + p 0 dv = 0 v A v A vb v A p 0 p v dv = 0 p = p 0 2 f v A, B 5.4 phase rule k, mixture F,, N 1, N 2,, N k N i : i df = Sd pd + µ 1 dn 1 + µ 2 dn µ k dn k dg = Sd dp + µ 1 dn 1 + µ 2 dn µ k dn k G, p, N 1, N 2,, N k = µ 1 N 1 + µ 2 N µ k N k N = N 1 + N N k 52

53 c i = N i : concentration N G = Ng, p, c 1, c 2,, c k k i=1 c i = 1 c 1,, c k g = µ 1 c 1 + µ 2 c 2 + µ k c k f N j i : j i c j i = N j i : j i N j N j = N j 1 + N j N j k, p i = 1, 2,, k k f 1, p 2 µ 1 i = µ 2 i = µ 3 i = = µ f i f k c 1 1,, c f 1 c 1 k.,, cf k c i 1 + c i c i k = 1 k ν = 2 + f k f k f 1 = 2 f + k

54 f: k: k = f = 1 ν = = 2, p k = 1, f = 2 ν = = 1, p k = 1, f = 3 ν = = 0, p k = 2, f = 1 ν = = 3, p, G k = 2, f = 2 ν = = 2, p < 100 C 54

55 6. 0?k = 0, f = 1 ν = = 1 p = c 4 : 3 5,8,13,15 7/31 BOX 55

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

2009 June 8 toki/thermodynamics.pdf ) 1

2009 June 8   toki/thermodynamics.pdf ) 1 2009 June 8 http://www.rcnp.osaka-u.ac.jp/ toki/thermodynamics.pdf 1 6 10 23 ) 1 H download 2 http://www.rcnp.osaka-u.ac.jp/ toki/thermodynamics.pdf 2 2.1 [1] [2] [3] Q = mc (1) C gr Q C = 1cal/gr deg

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1 5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1) 70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain)

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du 2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann

More information

0201

0201 2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

flMŠÍ−w−î‚b

flMŠÍ−w−î‚b 23 6 30 i 2 1980 2001 1979 K. 1971 ii 1992 iii 1 1 2 5 2.1 : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.3 : : : : : : : : :

More information

1.5.1 SI kg, m, s ,,

1.5.1 SI kg, m, s ,, 0 9 0.1............................ 9 0.2.............. 10 0.3.................................. 13 0.4 (A2).................... 14 1, 0, 16 1.0.1..... 16 1.1............................. 16 1.1.1 (system)...........................

More information

(A2) , 0,

(A2) , 0, 0 10 0.1............................ 10 0.2.............. 11 0.3.................................. 14 0.4 (A2).................... 15 1, 0, 17 1.0.1..... 17 1.1............................. 17 1.1.1 (system)...........................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

スライド 1

スライド 1 (version 2011/9/27) 2 1 H i 1 1 2 5 21 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 22 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 23 : : : : : : : : :

More information

Microsoft Word - ●ipho-text3目次

Microsoft Word - ●ipho-text3目次 国際物理オリンピック 研修用テキスト Ⅲ 熱物理 相対論 量子力学 特定非営利活動法人物理オリンピック日本委員会 1 1.1 1 1. 1.3 3 1.4 4 1.5 6 1.6 7 1.7 9 11.1 11. 0.3 1 6 3.1 6 3. -9 3.3 - -- 31 3.4 --33 39 4.1 39 4. 40 4.3 4 4.4 44 4.5 47 5 5.1 5 5. 5 5.3

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg =

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg = I. 2006.6.10 () 1 (Fortan mercury barometer) 1.1 (Evangelista orricelli) 1643 760mm 760mm ( 1) (P=0) P 760mm 1: 1.2 P, h, ρ g P 0 = P S P S h M M = ρhs Mg = ρghs P S = ρghs, P = ρgh (1) 1 ρ(= 13.5951 10

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

i

i mailto: tomita@physhkyoto-uacjp 2000 3 2000 8 2001 7 2002 9 2003 9 2000 2002 9 i 1 1 11 { : : : : : : : : : : : : : : : : : : : : : : : : 1 12 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()] 8. 2 1 2 1 2 ma,y u(, y) s.t. p + p y y = m u y y p p y y m u(, y) = y p + p y y = m y ( ) 1 y = (m p ) p y = m p y p p y 2 0 m/p U U() = m p y p p y 2 2 du() d = m p y 2p p y 1 0 = m 2p 1 p = 1/2 p y

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

C A B A = B (conservation of heat) (thermal equilibrium) Advanced m A [g], c A [J/(g K)] T A [K] A m B [g], c B [J/(g K)] T B [K] B T E [K] T

C A B A = B (conservation of heat) (thermal equilibrium) Advanced m A [g], c A [J/(g K)] T A [K] A m B [g], c B [J/(g K)] T B [K] B T E [K] T 27 (2015 ) 5 5.1 1 1 0 C 100 C 100 C 0.01 0.006 3 (phase diagram) (triple point) 1: Topic 0.64 88 C 1.5 57 1.5 115 C A B A = B (conservation of heat) (thermal equilibrium) Advanced m A [g], c A [J/(g K)]

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

1

1 4. 4.. (6.)lausius lapeyon ln p A (6.) A 6- (6.) Antoine ln p A (6.) ( + ) A 8 760 34 78 57 64 8 p o p o lausius lapeyonp o lnp o / 6. 6-4.0 atm4.00.0350 kpa A6.664043667.705 46.966p o [kpa][k] [] (6.)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

1

1 I II II 1 dw = pd = 0 1 U = Q (4.10) 1K (heat capacity) (mole heat capacity) ( dq / d ) = ( du d C = / ) (4.11) du = C d U = C d (4.1) 1 1 du = dq + dw dw = pd dq = du + pd (4.13) p dq = d( U + p ) p (4.14)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

H21環境地球化学6_雲と雨_ ppt

H21環境地球化学6_雲と雨_ ppt 1 2 3 40 13 (0.001%) 71 24,000 (1.7%) 385 425 111 1,350,000 (97%) 125 (0.009%) 40 10,000 (0.7%) 25 (0.002%) 10 3 km 3 10 3 km 3 /y 4 +1.3 +5.8 (21) () ( ) 5 HNO 3, SO 2 etc 6 7 2009年度 環境地球化学 大河内 10種雲形と発生高度

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D わかりやすい熱力学第 3 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/060013 このサンプルページの内容は, 第 3 版発行時のものです. i ii 49 7 iii 3 38 40 90 3 2012 9 iv 1 1 2 4 2.1 4 2.2 5 2.3 6 2.4 7 2.5

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

4 19

4 19 I / 19 8 1 4 19 : : f(e, J), f(e) Phase mixing Landau Damping, violent relaxation : 2 2 : ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

Maxwell

Maxwell I 2016 10 6 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 11 2 13 2.1...................

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1 卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 4 年 月 5 日 .....4.....4......6.. 6.. 6....4. 8.5. 9.6....7... 3..... 3.... 3.... 3.3...4 3.4...5 3.5...5 3.5....6 3.5.... 3.5...... 3.5...... 3 3.5.3..4 3.5.4..5

More information

P P P P P P P P P P P P P

P P P P P P P P P P P P P P P P P P P P P P P P P P 1 (1) (2) (3) (1) (2) (3) 1 ( ( ) ( ) ( ) 2 ( 0563-00-0000 ( 090-0000-0000 ) 052-00-0000 ( ) ( ) () 1 3 0563-00-0000 3 [] g g cc [] [] 4 5 1 DV 6 7 1 DV 8 9 10 11 12 SD 13 .....

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

3章 問題・略解

3章 問題・略解 S S W R S O( l) O( ) c Jg g J Jg S R J 7. K.9 JK S W S R S JK S S R J 7. K.9JK 4 (a) -Tice 7.K T ice T N 77 K S R.9 JK 4. JK T T ice N.6JK S W S R S JK S S.6JK R (b) S R JK S.6 JK T T ice N 6 O( c) O(

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

0 (Preliminary) T S pv

0 (Preliminary) T S pv 0 (Preliminary) 4 0.1.................. 4 0.1.1 S p................... 4 0.1.2......................... 5 0.2............................. 8 0.2.1 p S................ 11 0.3..............................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information