untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 MOSFET 17

2 1 MOSFET.1 MOS.1.1 MOS.1. MOS.1.3 MOS MOSFET MOSFET Poon & Yau LDD MOSFET p MOSFET i

3 3.3 n LDD MOSFET LDD p MOSFET n LDD MOSFET ii

4 MOSFETMetal Oxide Semiconductor Field Effect TransistorMOSFET 1960 MOSFET MOSFET MOSFET MOSFET MOSFET MOSFET MOSFET T-Spice

5 MOSFET.1 MOS.1.1 MOS MetalInsulatorSemiconductor MIS Oxide MOS MOS.1 Si SiO MOS MOSFET MOS MOS MOSFET.1 MOS.1. MOS MOS. 0 p MOS.3 work function qφm qφs electron affinity q χ Eg EF Ei EF Ei φfb φfb

6 kt N q ln n A φfb =.1 i ni k T NA qχ qφs qφm SiO Si Ei qφfb EF EV. MOS.3 Eg EC MOS qφm qφs qφms qφ ms E χ =. g ( qφm qφs ) = qφm q + + qφfb 0 n qφfb qφfb MOS EF 3

7 .1.3 MOS MOS VG VG.4 MOS.4a MOS Ei EF Ei E p = ni exp kt F.3 Ei E accumulation.4 aqs Qm depletion.4b.4b Qs NA W F Qs = qnaw.4 4

8 EF EC Qs Ei EF EV x Qm a EC Qm Ei EF EV W x EF qnaw b EC Qm Ei EF EV Qn Wm qnaw x EF c.4 MOS abc 5

9 .4c Ei E EF Ei F EF Ei n = ni exp.5 kt n inversion.3.5 Ei EF EF Ei φfb φs φs = φfb.6 φfb EF Ei.5 n Qn Qs.4cQn Qsc Wm.4 Q qn sc = AWm s Q Qsc Q s = Qn + Qsc = Qn qnawm.7 6

10 φ Poisson d φ ρ = dx ( x) ε.8 ρ(x) x ε x x = 0 W ρ = qna 0.8 φ qna φ = ( x W ).9 ε Si ε [ ] 1 Si εsi = 11.8 ε 0 = F m ε 0 x = 0 φ = φs φs qna φ s = W Si ε.10.9 x φ = φs 1.11 W φs = φfb.10wm W m ( fb) εsi φ =.1 qna Qsc 7

11 Q ( φfb) sc = qnawm qnaφsi VG VG.5 VOX φs V G = VOX + φs.14 SiO MOS V OX TOX EOX V OX = EOX TOX.15 VOX VG φs TOX 0 W x.5 MOS Es Gauss Qs Q ε s = Es Si.16 E OX ε OX = Es εsi.17 8

12 εox ε OX = 3.9 ε 0[F m] C OX C OX ε OX =.18 TOX VOX V OX Qs =.19 COX VG V Q C s G = + φs.0 OX.6 φs = φfb φfb φs = φfb Qs = qnawm.0 threshold voltagevth V qn W C ε q N C ( φfb) A m Si A Th = + φfb + φfb.1 OX OX C OX ε = OX TOX.1 V T ε OX Th = qna Si φfb + OX ε φfb..1.5 MOS 0 MOS 9

13 .6b.3 Φms ( qφm qφs) V FB1 = Φm Φs.3 VFB flat band voltage qφm qχ qφs qχ qφs EF EC qφm EC qvfb1 Ei Ei EF EV EF EF EV ab.6 MOS av G = Φm Φs bvg = 0 Qo.7a Qo 0.7b Qo E OX Qo =.4 ε OX.18 10

14 V Q Q C x T o o o FB = EOX xo = xo =.5 OX OX OX ε Qo xo Q0 x o = T OX.5 V FB Qo =.6 COX Qo Qo xo x xo x ab.7 av=0 b Nss Q ss = qnss VFB3.6 V FB qnss 3 =.7 COX Φms Qo Qss VFB 11

15 V Q C qn C o ss FB = VFB1 + VFB + VFB3 = Φms.8 OX OX MOS 0. MOS V Th T = ε T = ε OX OX OX OX qn qn A A ε ε Si Si φ φ fb fb + φfb + Φ + φfb + V ms FB Q C o OX qn C ss OX.9. MOSFET..1 MOSFET.8 MOS sourcedrain p n VG n channel VTh MOSFET n MOSFET nmos MOSFET p MOSFETpMOS L channel lengthw channel width.9 linear region saturation region 1

16 VS VG VD ID[A] VG1 VG + n L + n W VG3 V > V > V G1 G G3.8 nmos.9 MOSFET VD I D VD[V] VG MOSFET VG = 0 FET depletion-typefet VG = 0 VTh FET enhancement-type FET MOSFET.1 MOSFET.1 MOSFET nmos pmos V V Th Th > 0 < 0 V V Th Th < 0 > 0.. MOSFET MOSFET

17 V G > VTh V G > VTh V D < VDsat V D = VDsat + n + n + n + n L L V G > VTh V D > VDsat + n + n Leff c.10 MOSFET abc.10a.10bv D = VDsat 0 pinch-off.10c VDsat VDsat gradual channel approximation 14

18 .8 n MOSFET ID y y = 0 y = L Va y MOS Qs.9 ε OX ( VG Va fb VFB) Qs = φ.30 TOX Qs QB.30 Q B ε OX ( VTh fb VFB) = φ.31 TOX.31 QI Q + s = QB QI QI 15

19 OX ( VG VTh Va) QI = ε.33 TOX Ey In( y) I n ( y) = eff W QI Ey µ.34 µ eff W In( y) ID D = µ eff W QI Ey.35 I Ey Va y dva Ey =.36 dy ID I D = µeff ε W T OX OX V G V Th V a dva.37 dy Va y = 0 0[V] y = L V D [V].37 dy ID I D = W L ε µ eff OX D VG VTh VD.38 OX T V QI QI 0 QI 0 16

20 V Dsat = V G V Th.39 V = IDsat D VDsat I Dsat ε 1 W OX = µ eff V sat L T D.40 OX IDsat IDsat VDsat.9 VDsat.10b VDsat.10c L Leff.11 VD VDsat I Dsat = ε W µ ( VG V ).41 L T 1 OX eff Th OX.11 17

21 ..3 MOSFET.9 T V + ε OX Th = qna Si fb φ + fb VFB φ.4 OX ε VSUB nmos VSUB = 0 φs φs φ s = φs VSUB.43 φfb φs = φfb VSUB.44 T ε V Th = OX qna Si φfb VSUB + φfb + VFB.45 OX ε V Th T = ε OX OX ε Si fb qna φfb VSUB φ.46 nmos pmos..4 subthreshold MOS 18

22 ONOFF y y = 0 Jn dn Jn = qnµ ney qdn.47 dy n µ n Ey Dn dn dy I D = AqD n dn = AqDn dy n ( 0) n( L) L.48 A n(0) n(l) ( φs φfb) q n( 0) = ni exp.49 kt q ( ) ( φs φfb VD) n L = ni exp.50 kt φs.48 I D = AqDnni L qφfb qφs qv exp exp 1 exp kt kt kt D.51 φs VG V Th subthreshold voltage swings S 19

23 dvg S =.5 d log ID MOS S..5 MOSFET MOSFET field effect mobilityeffective mobility gm g m ID.53 VG.38VG g W L ε OX m = µ VD.54 OX T µ fe gm.54 L W T 1 V OX µ fe = gm.55 OX D ε µ eff.38 0

24 L W T 1 OX µ eff = ID.56 OX ε ( VG VTh) VD.1 ID[A] µfe µeff.1 MOSFET VG I D VG[V] B µ fe A VTh B C µ eff A µ eff µfe MOSFET.13 L gate 1

25 Leff Leff Lgate Leff Lgate L.14 Lgate 1 β L β W β = µ L eff ε T OX OX = µ W εox ( Lgate L) TOX.58 1 β 1 µ W T = OX gate OX ε ( L L).59 1/ β Lgate L Leff L L 1 β L gate.3 MOSFET.3.1 MOSFET short-channel effect

26 .3. Poon & Yau nmos Poon & Yau MOSFET.45 T V + ε OX Th = qna Si fb VSUB φ + fb VFB φ.60 OX ε q ε.61 i = qna Si φfb VSUB.60 T OX V Th = qi + φfb + VFB.6 OX ε MOSFET MOSFET AB VG A + n B L L C D + n A xj L yd p-si xd yd r E B VSUB.15 MOSFET.16 3

27 Poon & Yau r.1 y d ε Si = φfb V qna SUB.63 r + = xj yd.64 xj r B A B Poon & Yau AB AB Poon & Yau.16 ABE.15 ABCD qi L + L xj yd qi = qi = qi L j L x.6 qi T x εsi 1 ( φfb + VSUB) 1 + fb VFB.66 L x qn OX j V Th = qi 1+ φ + OX j D ε Poon & Yau 4

28 .3.3 LDD MOSFET LDDLightly Doped Drain LDD MOSFET.17 LDD MOSFET.18 LDD.17 LDD VD + n n n + n VG.17 LDD MOSFET.18 5

29 Agilent Technologies HP4155B HP1644A 3.1 SMUVSU VMU Microsoft Excel ab 3. 6

30 Lgate W 4µm TOX 3.1a AB Z741BN p MOSFET A0.7µm 1.5µm.0µm B0.6µm 0.8µm 1.0µm 0 nm LOCOS g LDD 3.1b C Z771CN01419 n LDD MOSFET Lgate 0.1µm 0.µm 0.3µm 0.4µm 0.5µm W 10µm TOX 6 nm LOCOS g EB LDD SiN 3. 7

31 3. p MOSFET 3..1 p MOSFET VD W 4µm TOX 0 nm VG 05V 1V 3.3af V D [V] I D [A] A L gate = µm B L gate = µm p MOSFET 3.3a A L gate =0.7µm )VD ID 8

32 3.3b A L gate =1.5µm )VD ID 3.3c A L gate =.0µm )VD ID 9

33 3.3d B L gate =0.6µm )VD ID 3.3e B L gate =0.8µm )VD ID 30

34 3.3f B L gate =1.0µm )VD ID 3.3 VD I D p MOSFET 3.. p MOSFET 1. VS 0VVD 50mV VG ID ID. VG X ID Y Y VG ID 3. ID VG 4. ID 5. X VTh 31

35 VSUB 05V 1V VTh 3.abVTh 3.4ab L gate [µm ] V Th [V] L gate [µm ] 3.a A V Th [V] V SUB [V] L gate [µm ] 3.b B V Th [V] V SUB [V] a A 3

36 3.4b B 3.4 Poon & Yau Poon & Yau p MOSFET.66 V Th qi = = q i T ε qn OX OX D ε x j 1 L Si φfb + V 1+ xj SUB εsi ( φfb + VSUB) qn D 1 φfb + V FB 3.1 xj 0.4µm ND 3.1 A L gate =.0µm B L gate =1.0µm 15 3 A N D = [cm ] 16 3 B N D = [cm ] 33

37 ab L gate [µm ]V Th [V] 3.5a A 3.5b B 34

38 3.5 Poon & Yau Poon & Yau A.0µm 0V B 1.0µm 0V 3.6ab [ µm ] VTh [V] L gate 3.6a A 35

39 3.6b B 3.6 1µm Poon & Yau 1µm Poon & Yau 3..3 p MOSFET VD 50mV VG VSUB 05V 1V 3.7afV G [V] I D [A] 36

40 3.7a A L gate =0.7µm 3.7b A L gate =1.5µm 37

41 3.7c A L gate =.0µm 3.7d B L gate =0.6µm 38

42 3.7e B L gate =0.8µm 3.7f B L gate =1.0µm 39

43 Lgate 1 β p MOSFET Leff VG 5V 1V Lgate 1 β 3.8ab L gate [µm ]1 β [ V /A ] 3.8a A L gate 1 β 40

44 3.8b B L gate 1 β 3.8 L A L = 0.1µm B L = 0.16µm p MOSFET Lgate L Leff 3.3 A B 3.3 L gate [µm ] L eff [µm ]

45 3..5 p MOSFET VD 50mV µ fe µ eff L 3.3 Leff 3.9a fv G [V] µ [ cm /V s ] 3.9a A L gate =0.7µm 4

46 3.9b A L gate =1.5µm 3.9c A L gate =.0µm 43

47 3.9d B L gate =0.6µm 3.9e B L gate =0.8µm 44

48 3.9f B L gate =1.0µm 3.9 µ fe µ eff µ eff µ fe 1.5V.1 A VG 4V V D =0.5VV D =3V µ L 3.3 Leff 3.4ab 45

49 3.4a A L gate [µm ] V D [V] µ [cm /V s] b B L gate [µm ] V D [V] µ [cm /V s] p MOSFET VG VD 4V 1V 3.10afV G [V] ID [A] 0V 46

50 a A L gate =0.7µm b A L gate =1.5µm ) c A L gate =.0µm d B L gate =0.6µm )

51 e B L gate =0.8µm f B L gate =1.0µm ) S 3.11 L gate [µm ] S [ma] ID 3.1 L gate [µm ] ID [A] 48

52 3.11 S

53 3.11 S S 3.10 n 3.13 n p pn pn p+ VG VD n + p n LDD MOSFET n LDD MOSFET VD W 10µm TOX 6 nm VG 05V 1V 3.14ae V D [V] I D [A] 50

54 3.14a C L gate =0.1µm )VD ID 3.14b C L gate =0.µm )VD ID 51

55 3.14c C L gate =0.3µm )VD ID 3.14d C L gate =0.4µm )VD ID 5

56 3.14e C L gate =0.5µm )VD ID 3.14 V D I D n LDD MOSFET n LDD MOSFET VTh VD 50mV VSUB 05V 1V L gate [µm ] V Th [V] 53

57 L gate [µm ] 3.5 C V Th [V] V SUB [V] C V LDD 54

58 3.3.3 n LDD MOSFET VD 50mV VG VSUB 05V 1V 3.16aeV G [V] I D [A] 3.16a C L gate =0.1µm 55

59 3.16b C L gate =0.µm 3.16c C L gate =0.3µm 56

60 3.16d C L gate =0.4µm 3.16e C L gate =0.5µm

61 3.3.4 LDD n LDDMOSFET Lgate 1 β VG 5V 1V Lgate 1 β 3.17 L gate [µm ] 1 β [ V /A ] 3.17 C L gate 1 β 3.17 Lgate 1 β L 3.8 LDD 3.17 VG VS V 1 V I D 3.18 VD 58

62 LDD 3.18 MOSFET ID ID I D V 1 = 3. R VD V = 3.3 R V V 1 ID = β ( V V 1) VG VTh 3.4 V 1V 3.4 I ( V V )( VG VTh) β 3.5 D = V I D D 1 β ( VG VTh) = + R( VG VTh) 3.6 β = µ W εox ( Lgate L) TOX 3.6 V I D D 1 gate TOX = + R V µ W OX ( VG VTh) TOX ( µ W εox ) ( L L) ε ( G VTh) Lgate 3.17 VG 1 β R 1V 1 β 100[ V /A ] n LDD MOSFET 50 Ω n MOSFET 1 VD = β ID ( VG VTh) R( VG VTh) 3.8 L gate 1 β LDD MOSFET 59

63 L Lgate 1 β 3.19 L gate [µm ]1 β [ V /A ] 3.19 C LDD L gate 1 β 3.19 L n LDD MOSFET Lgate Leff n LDD MOSFET VD 50mV µ fe µ eff aeV G [V] µ [ cm /V s ] 60

64 3.0a C L gate =0.1µm 3.0b C L gate =0.µm 61

65 3.0c C L gate =0.3µm 3.0d C L gate =0.4µm 6

66 3.0e C L gate =0.5µm 3.0 µ fe µ eff µ eff µ fe 1V p MOSFET A VG 4V V D =0.5VV D =3V µ

67 3.6 C L gate [µm ] V D [V] µ [cm /V s] p MOSFET p MOSFET p MOSFET n LDD MOSFET LDD LDD 3.19 Lgate 1 β 3.1 V G [V] µ [ cm /V s ] 64

68 3.1 LDD 3.1 LDD µ 00[cm /V s] p MOSFET n LDD MOSFET LDD n LDD MOSFET VG VD 13V 1 3.aeV G [V] I D [A] 0V 65

69 a C L gate =0.1µm b C L gate =0.µm ) c C L gate =0.3µm d C L gate =0.4µm ) 3. 66

70 e C L gate =0.5µm S 3.3 L gate [µm ] S [ma] ID 3.4 L gate [µm ] I D [A] 67

71 3.3 S

72 3.3 1V S 3.4 p MOSFET LDD 3V p MOSFET S 3. p MOSFET p MOSFET LDD pn p MOSFET n LDD MOSFET n LDD MOSFET S p MOSFET LDD r NA r + r Q QM r1 V p r 1m Q 69

73 ( r r ) 1 Q = qnaπ 3.9 QM Q M ( r r ) 1 = qnaπ 3.10 r r1 r r () = QM qnaπ ( r r1 ) = qnaπ ( r ) r Q r 3.11 Q() r εsi qna r () E r = r 3.1 εsi r r1 r V V = r r 1 E qn = A εsi () r r dr ln r r r ln r 1 r ε SiV qna = r ln r r r ln r 1 r ε SiV C = 3.15 qna 70

74 C = r = r r ln r r 1 ln r1 r r1 + r ln r 1 r r1 r 3.16 A = r r1 C r 1 1 ln A + A = y = ln A A 3.6 A 1 A y = ln A + A 71

75 r1 r 3.18A r1 y y 3.17 r r1 r r1 r 34V r1 r Lgate = 0.5µm MOSFET 17 3 C N A = [cm ] 3.7 r1 r 3.7 r r1 7

76 4.1 Tanner T-Spice BSIM3Berkeley Short Channel IGFET Model 3 H-Spice Level a b 73

77 4.1a nmos 74

78 4.1b pmos 75

79 cm T = TNOM cm /V s AB 4.3 ab A N D = [cm ] 16 3 B N D = [cm ] µm A Lgate =.0µm B Lgate =1.0µm TNOM a A 76

80 4.3b B C C N A = [cm ] Lgate = 0.5µm MOSFET 4.4 C 77

81 4. p MOSFET p MOSFET W 4 µm L Leff 4.3ab 4..1 T-Spice p MOSFET Lgate 0.7µm 4.1 L Leff L = Leff = Lgate L = = 0.6µm ab V G [V] I D [A] 4.1 A L gate =0.7µm VG ID * Main circuit: Module0 M1 Drain Gate Gnd Gnd PMOS L=0.6u W=4u AD=66p PD=4u AS=66p PS=4u v Drain Gnd v3 Gate Gnd -5.0 * End of main circuit: Module0.dc lin source v print dc id(m1) 78

82 0 id(m1) id(m1) id(m1) -5 id(m1) (ua) v3 (V) 4.1a A VG ID L gate =0.7[µm ] L gate =1.5[µm ] L gate =.0[µm ] 0 id(m1) id(m1) id(m1) -5 id(m1) (ua) v3 (V) 4.1b B VG ID L gate =0.6[µm ] L gate =0.8[µm ] L gate =1.0[µm ] 79

83 p MOSFET T-Spice p MOSFET Lgate 0.7µm 4. 4.afV D [V] I D [A] 4. A L gate =0.7µm VD ID * Main circuit: Module0 M1 Drain Gate Gnd Gnd PMOS L=0.6u W=4u AD=66p PD=4u AS=66p PS=4u v Drain Gnd v3 Gate Gnd -5.0 * End of main circuit: Module0.dc lin source v sweep lin source v print dc id(m1) 80

84 0 V G =0[V] V G =1[V] id(m1) -100 V G =[V] V G =3[V] id(m1) (ua) V G =4[V] V G =5[V] v (V) 4.a A L gate =0.7µm VD ID 0 V G =0[V] V G =1[V] id(m1) V G =[V] V G =3[V] id(m1) (ua) V G =4[V] -50 V G =5[V] v (V) 4.b A L gate =1.5µm VD ID 81

85 -0 V G =0[V] V G =1[V] id(m1) V G =[V] -50 V G =3[V] id(m1) (ua) V G =4[V] -00 V G =5[V] v (V) 4.c A L gate =.0µm VD ID id(m1) (ma) V G =0[V] V G =1[V] V G =[V] V G =3[V] V G =4[V] V G =5[V] v (V) id(m1) 4.d B L gate =0.6µm VD ID 8

86 V G =0[V] V G =[V] V G =1[V] id(m1) -300 V G =3[V] id(m1) (ua) V G =4[V] V G =5[V] v (V) 4.e B L gate =0.8µm VD ID 0 V G =0[V] V G =1[V] id(m1) -50 V G =[V] V G =3[V] id(m1) (ua) V G =4[V] V G =5[V] v (V) 4.f B L gate =1.0µm VD ID 83

87 A B 4..3 T-Spice p MOSFET Lgate 0.7µm afV G [V] I D [A] 4.3 A L gate =0.7µm * Main circuit: Module0 M1 Drain Gate Gnd N PMOS L=0.6u W=4u AD=66p PD=4u AS=66p PS=4u v Drain Gnd v3 Gate Gnd -5.0 v4 N Gnd 5.0 * End of main circuit: Module0.dc lin source v sweep lin source v print dc id(m1) 84

88 0 id(m1) id(m1) (ua) -10 V SUB =5[V] v3 (V) 4.3a A L gate =0.7µm -0 id(m1) -1 - id(m1) (ua) V SUB =5[V] v3 (V) 4.3b A L gate =1.5µm 85

89 0.0 id(m1) id(m1) (ua) V SUB =5[V] v3 (V) 4.3c A L gate =.0µm 0 id(m1) -5 id(m1) (ua) V SUB =5[V] v3 (V) 4.3d B L gate =0.6µm 86

90 0 id(m1) id(m1) (ua) -10 V SUB =5[V] v3 (V) 4.3e B L gate =0.8µm id(m1) (ua) V SUB =5[V] id(m1) v3 (V) 4.3f B L gate =1.0µm 87

91 A B 4..4 T-Spice p MOSFET Lgate 0.7µm af V G [V] ID [A]T-Spice 1E A L gate =0.7µm * Main circuit: Module0 M1 Drain Gate Gnd Gnd PMOS L=0.6u W=4u AD=66p PD=4u AS=66p PS=4u v Drain Gnd -5.0 v3 Gate Gnd -5.0 * End of main circuit: Module0.dc lin source v sweep lin source v print dc -id='abs(id(m1))' 88

92 -id 10u 3 V D =[V] 4 -id (A) 100p 1f v3 (V) 4.4a A L gate =0.7µm 10u -id -id (A) 100p 3 4 V D =[V] 1f v3 (V) 4.4b A L gate =1.5µm 89

93 10u -id -id (A) 1u 100n 10n 1n 100p 10p 1p 100f 10f 3 4 V D =[V] 1f v3 (V) 4.4c A L gate =.0µm -id 10u 3 -id (A) 100p V D =[V] 4 1f v3 (V) 4.4d B L gate =0.6µm 90

94 -id 10u 3 -id (A) 100p V D =[V] 4 1f v3 (V) 4.4e B L gate =0.8µm 10u -id 3 -id (A) 100p V D =[V] 4 1f v3 (V) 4.4f B L gate =1.0µm 91

95 4.4 S 4.5 L gate [ µm ] S [ma] 4.5 S 4.5 S Lgate 1 µm S 100Lgate 1µm S 4.3 n LDD MOSFET n LDD MOSFET 4.4 LDD 50 Ω 9

96 4.3.1 T-Spice n LDD MOSFET Lgate 0.1µm V G [V] I D [A] 4.5 C L gate =0.1µm VG ID * Main circuit: Module0 M1 N9 Gate N3 Gnd NMOS L=0.1u W=10u AD=66p PD=4u AS=66p PS=4u R N3 Gnd 50 TC=0.0, 0.0 R3 Drain N9 50 TC=0.0, 0.0 v4 Drain Gnd 0.05 v5 Gate Gnd 5.0 * End of main circuit: Module0.dc lin source v print dc id(m1) 93

97 00 id(m1) id(m1) id(m1) id(m1) id(m1) 150 id(m1) (ua) v5 (V) 4.6 C VG ID L gate =0.1[µm ] L gate =0.[µm ] L gate =0.3[µm ] L gate =0.4[µm ] L gate =0.5[µm ] n LDD MOSFET T-Spice n LDD MOSFET LDD 50 Ω Lgate 0.1µm 4.6a 4.6b 4.7ajV D [V] I D [A] 94

98 4.6a C L gate =0.1µm VD ID * Main circuit: Module0 M1 N Gate N6 Gnd NMOS L=0.1u W=10u AD=66p PD=4u AS=66p PS=4u R N6 Gnd 50 TC=0.0, 0.0 R3 Drain N 50 TC=0.0, 0.0 v4 Drain Gnd 5.0 v5 Gate Gnd 5.0 * End of main circuit: Module0.dc lin source v sweep lin source v ".print dc id(m1) 4.6b A L gate =0.1µm VD ID * Main circuit: Module0 M1 Drain Gate Gnd Gnd NMOS L=0.1u W=10u AD=66p PD=4u AS=66p PS=4u v Drain Gnd 5.0 v3 Gate Gnd 5.0 * End of main circuit: Module0.dc lin source v sweep lin source v print dc id(m1) 95

99 id(m1) (ma) v4 (V) V G =5[V] id(m1) V G =4[V] V G =3[V] V G =[V] V G =1[V] V G =0[V] 4.7a C L gate =0.1µm VD ID V G =5[V] id(m1) V G =4[V] id(m1) (ma) 10 5 V G =3[V] V G =[V] V G =1[V] v (V) V G =0[V] 4.7b C L gate =0.1µm VD ID 96

100 id(m1) (ma) v4 (V) V G =5[V] id(m1) V G =4[V] V G =3[V] V G =[V] V G =1[V] V G =0[V] 4.7c C L gate =0.µm VD ID V G =5[V] id(m1) V G =4[V] id(m1) (ma) v (V) V G =3[V] V G =[V] V G =1[V] V G =0[V] 4.7d C L gate =0.µm VD ID 97

101 8 V G =5[V] id(m1) 7 6 V G =4[V] id(m1) (ma) V G =3[V] V G =[V] v4 (V) V G =1[V] V G =0[V] 4.7e C L gate =0.3µm VD ID id(m1) V G =5[V] V G =4[V] id(m1) (ma) v (V) V G =3[V] V G =[V] V G =1[V] V G =0[V] 4.7f C L gate =0.3µm VD ID 98

102 7 V G =5[V] id(m1) 6 V G =4[V] 5 id(m1) (ma) v4 (V) V G =3[V] V G =[V] V G =1[V] V G =0[V] 4.7g C L gate =0.4µm VD ID id(m1) V G =5[V] V G =4[V] id(m1) (ma) V G =3[V] V G =[V] v (V) V G =1[V] V G =0[V] 4.7h C L gate =0.4µm VD ID 99

103 7 V G =5[V] id(m1) 6 5 V G =4[V] id(m1) (ma) v4 (V) V G =3[V] V G =[V] V G =1[V] V G =0[V] 4.7i C L gate =0.5µm VD ID id(m1) V G =5[V] V G =4[V] id(m1) (ma) V G =3[V] V G =[V] V G =1[V] V G =0[V] v (V) 4.7j C L gate =0.5µm VD ID 100

104 Ω LDD T-Spice n LDD MOSFET Lgate 0.1µm ae V G [V] I D [A] 4.7a C L gate =0.1µm * Main circuit: Module0 M1 N9 Gate N3 N1 NMOS L=0.1u W=10u AD=66p PD=4u AS=66p PS=4u R N3 Gnd 50 TC=0.0, 0.0 R3 Drain N9 50 TC=0.0, 0.0 v4 Drain Gnd 0.05 v5 Gate Gnd 5.0 v6 N1 Gnd -5.0 * End of main circuit: Module0.dc lin source v sweep lin source v print dc id(m1) 101

105 id(m1) id(m1) (ua) 100 V SUB =0[V] v5 (V) 4.8a C L gate =0.1µm 00 id(m1) id(m1) (ua) V SUB =0[V] v5 (V) 4.8b C L gate =0.µm 10

106 id(m1) 150 id(m1) (ua) V SUB =0[V] v5 (V) 4.8c C L gate =0.3µm id(m1) 150 id(m1) (ua) V SUB =0[V] v5 (V) 4.8d C L gate =0.4µm 103

107 150 id(m1) id(m1) (ua) 50 V SUB =0[V] v5 (V) 4.8e C L gate =0.5µm 4.8 VG ID Lgate µm T-Spice n LDD MOSFET Lgate 0.1µm af V G [V] I D [A]T-Spice 1E15 104

108 4.8 C L gate =0.1µm * Main circuit: Module0 M1 N9 Gate N3 Gnd NMOS L=0.1u W=10u AD=66p PD=4u AS=66p PS=4u R N3 Gnd 50 TC=0.0, 0.0 R3 Drain N9 50 TC=0.0, 0.0 v4 Drain Gnd 5.0 v5 Gate Gnd 5.0 * End of main circuit: Module0.dc lin source v sweep lin source v print dc id(m1) id(m1) 10u V D =3[V] 1 id(m1) (A) 100p 1f v5 (V) 4.9a C L gate =0.1µm 105

109 id(m1) 10u V D =3[V] 1 id(m1) (A) 100p 1f v5 (V) 4.9b C L gate =0.µm id(m1) 10u V D =3[V] 1 id(m1) (A) 100p 1f v5 (V) 4.9c C L gate =0.3µm 106

110 id(m1) 10u id(m1) (A) 100p V D =3[V] 1 1f v5 (V) 4.9d C L gate =0.4µm id(m1) 10u id(m1) (A) 100p V D =3[V] 1 1f v5 (V) 4.9e C L gate =0.5µm 107

111 4.9 S 4.10 L gate [ µm ] S [ma] 4.10 S 4.10 S S S 108

112 p MOSFETn MOSFET Poon & Yau Poon & Yau LDD MOSFET MOSFET BSIM3Level 49 MOSFET S MOSFET MOSFET 109

113 A05A353 [1] MOS 1980 [] 1978 [3] 1986 [4] S.M [5] Yauan TaurTak H.Ning VLSI 00 [6] VLSI 1986 [7] MOSFET BSIM

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

Acrobat Distiller, Job 2

Acrobat Distiller, Job 2 2 3 4 5 Eg φm s M f 2 qv ( q qφ ) = qφ qχ + + qφ 0 0 = 6 p p ( Ei E f ) kt = n e i Q SC = qn W A n p ( E f Ei ) kt = n e i 7 8 2 d φ( x) qn = A 2 dx ε ε 0 s φ qn s 2ε ε A ( x) = ( x W ) 2 0 E s A 2 EOX

More information

devicemondai

devicemondai c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A ii c 2019 i 1 1 2 13 3 30 4 53 5 78 6 89 7 101 8 112 9 116 A 131 B 132 c 2019 1 1 300 K 1.1 1.5 V 1.1 qv = 1.60 10 19 C 1.5 V = 2.4 10 19 J (1.1)

More information

MOS FET c /(17)

MOS FET c /(17) 1 -- 7 1 2008 9 MOS FT 1-1 1-2 1-3 1-4 c 2011 1/(17) 1 -- 7 -- 1 1--1 2008 9 1 1 1 1(a) VVS: Voltage ontrolled Voltage Source v in µ µ µ 1 µ 1 vin 1 + - v in 2 2 1 1 (a) VVS( ) (b) S( ) i in i in 2 2 1

More information

13 2 9

13 2 9 13 9 1 1.1 MOS ASIC 1.1..3.4.5.6.7 3 p 3.1 p 3. 4 MOS 4.1 MOS 4. p MOS 4.3 5 CMOS NAND NOR 5.1 5. CMOS 5.3 CMOS NAND 5.4 CMOS NOR 5.5 .1.1 伝導帯 E C 禁制帯 E g E g E v 価電子帯 図.1 半導体のエネルギー帯. 5 4 伝導帯 E C 伝導電子

More information

untitled

untitled /Si FET /Si FET Improvement of tunnel FET performance using narrow bandgap semiconductor silicide Improvement /Si hetero-structure of tunnel FET performance source electrode using narrow bandgap semiconductor

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部 電気電子工学科 12/08/'10 半導体電子工学 Ⅱ 1 全体の内容 日付内容 ( 予定 ) 備考 1 10 月 6 日半導体電子工学 I の基礎 ( 復習 ) 11/24/'10 2 10 月 13 日 pn 接合ダイオード (1) 3 10 月 20 日 4 10 月 27 日 5 11 月 10 日 pn 接合ダイオード (2) pn 接合ダイオード (3)

More information

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD B1 er. 3.05 (2019.03.27), SPICE.,,,,. * 1 1. 1. 1 1.. 2. : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD https://www.orcad.com/jp/resources/orcad-downloads.. 1 2. SPICE 1. SPICE Windows

More information

jse2000.dvi

jse2000.dvi pn 1 2 1 1947 1 (800MHz) (12GHz) (CPUDSP ) 1: MOS (MOSFET) CCD MOSFET MES (MESFET) (HBT) (HEMT) GTO MOSFET (IGBT) (SIT) pn { 3 3 3 pn 2 pn pn 1 2 sirafuji@dj.kit.ac.jp yoshimot@dj.kit.ac.jp 1 3 3.1 III

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Microsoft PowerPoint - semi_ppt07.ppt [互換モード]

Microsoft PowerPoint - semi_ppt07.ppt [互換モード] 1 MOSFETの動作原理 しきい電圧 (V TH ) と制御 E 型とD 型 0 次近似によるドレイン電流解析 2 電子のエネルギーバンド図での考察 理想 MOS 構造の仮定 : シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない 金属 (M) 酸化膜 (O) シリコン (S) 電子エ金属 酸化膜 シリコン (M) (O) (S) フラットバンド ネルギー熱平衡で 伝導帯 E

More information

Microsoft PowerPoint - semi_ppt07.ppt

Microsoft PowerPoint - semi_ppt07.ppt 半導体工学第 9 回目 / OKM 1 MOSFET の動作原理 しきい電圧 (V( TH) と制御 E 型と D 型 0 次近似によるドレイン電流解析 半導体工学第 9 回目 / OKM 2 電子のエネルギーバンド図での考察 金属 (M) 酸化膜 (O) シリコン (S) 熱平衡でフラットバンド 伝導帯 E c 電子エネルギ シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Drain Voltage (mv) 4 2 0-2 -4 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V) Vds [V] 0.2 0.1 0.0-0.1-0.2-10 -8-6 -4-2 0 Vgs [V] 10 1000 1000 1000 1000 (LSI) Fe Catalyst Fe Catalyst Carbon nanotube 1~2 nm

More information

MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated

MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated 1 -- 7 6 2011 11 1 6-1 MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated Injection Logic 6-3 CMOS CMOS NAND NOR CMOS 6-4 6-5 6-1 6-2 CMOS 6-3 6-4 6-5 c 2011 1/(33)

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

note2.dvi

note2.dvi 8 216614 2.4 Joh Bardee, William Shockley, Walter Brattai. 1948 Bell William Shockley BrattaiBardee Shockley 1947 (12/16 23)Shockley BrattaiBardee (Trasistor, TrasferResistor ) Shockley 1/23 1 [2] 2.4.1

More information

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H 6 ( ) 218 1 28 4.2.6 4.1 u(t) w(t) K w(t) = Ku(t τ) (4.1) τ Ξ(iω) = exp[ α(ω) iβ(ω)] (4.11) (4.1) exp[ α(ω) iβ(ω)] = K exp( iωτ) (4.12) α(ω) = ln(k), β(ω) = ωτ (4.13) dϕ/dω f T 4.3 ( ) OP-amp Nyquist Hurwitz

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

Microsoft PowerPoint - 4.1I-V特性.pptx

Microsoft PowerPoint - 4.1I-V特性.pptx 4.1 I-V 特性 MOSFET 特性とモデル 1 物理レベルの設計 第 3 章までに システム~ トランジスタレベルまでの設計の概要を学んだが 製造するためには さらに物理的パラメータ ( 寸法など ) が必要 物理的パラメータの決定には トランジスタの特性を理解する必要がある ゲート内の配線の太さ = 最小加工寸法 物理的パラメータの例 電源配線の太さ = 電源ラインに接続されるゲート数 (

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2-1 情報デバイス工学特論 第 2 回 MOT の基本特性 最初に半導体の電子状態について復習 2-2 i 結晶 エネルギー 分子の形成 2-3 原子 エネルギー 反結合状態結合状態反結合状態 分子 結合状態 波動関数.4 電子のエネルギー.3.2.1 -.1 -.2 結合エネルギー 反結合状態 2 4 6 8 結合状態 原子間の距離 ボンド長 結晶における電子のエネルギー 2-4 原子間距離大

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

VLSI工学

VLSI工学 2008//5/ () 2008//5/ () 2 () http://ssc.pe.titech.ac.jp 2008//5/ () 3!! A (WCDMA/GSM) DD DoCoMo 905iP905i 2008//5/ () 4 minisd P900i SemiConsult SDRAM, MPEG4 UIMIrDA LCD/ AF ADC/DAC IC CCD C-CPUA-CPU DSPSRAM

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

Nobelman 絵文字一覧

Nobelman 絵文字一覧 Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

untitled

untitled Tokyo Institute of Technology high-k/ In.53 Ga.47 As MOS - Defect Analysis of high-k/in.53 G a.47 As MOS Capacitor using capacitance voltage method,,, Darius Zade,,, Parhat Ahmet,,,,,, ~InGaAs high-k ~

More information

untitled

untitled 20101221JST (SiC - Buried Gate Static Induction Transistor: SiC-BGSIT) SOURCE GATE N source layer p + n p + n p + n p+ n drift layer n + substrate DRAIN SiC-BGSIT (mωcm 2 ) 200 100 40 10 4 1 Si limit

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Outline 1. 2 / 26 Introduction : (d ) : 4f 1970 ZrZn 2, MnSi, Ni 3 Al, Sc 3 In Stoner-Wohlfarth Moriya-Kawabata (1973) 3 / 26 Properties of Weak

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

電子回路I_4.ppt

電子回路I_4.ppt 電子回路 Ⅰ 第 4 回 電子回路 Ⅰ 5 1 講義内容 1. 半導体素子 ( ダイオードとトランジスタ ) 2. 基本回路 3. 増幅回路 電界効果トランジスタ (FET) 基本構造 基本動作動作原理 静特性 電子回路 Ⅰ 5 2 半導体素子 ( ダイオードとトランジスタ ) ダイオード (2 端子素子 ) トランジスタ (3 端子素子 ) バイポーラトランジスタ (Biolar) 電界効果トランジスタ

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

スライド 1

スライド 1 情報デバイス特論演習設計ルール 実際に集積回路の設計を体験する 想定プロセス : μm CMOS 電源電圧 : 5V 本設計ルールは P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Second Edition, 2002, Oxford University Press 及び VDEC( 東京大学大規模集積回路教育センタ ) を参考に教育用として作成したものであり

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

U.C. Berkeley SPICE Simulation Program with Integrated Circuit Emphasis 1) SPICE SPICE netli

U.C. Berkeley SPICE Simulation Program with Integrated Circuit Emphasis 1) SPICE SPICE netli 1 -- 7 7 2008 12 7-1 7-2 c 2011 1/(12) 1 -- 7 -- 7 7--1 2008 12 1960 1970 1972 U.C. Berkeley SPICE Simulation Program with Integrated Circuit Emphasis 1) SPICE SPICE 7--1--1 7 1 7 1 1 netlist SPICE 2)

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 入門モーター工学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/074351 このサンプルページの内容は, 初版 1 刷発行当時のものです. 10 kw 21 20 50 2 20 IGBT IGBT IGBT 21 (1) 1 2 (2) (3) ii 20 2013 2 iii iv...

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

K 1 mk(

K 1 mk( R&D ATN K 1 mk(0.01 0.05 = ( ) (ITS-90)-59.3467 961.78 (T.J.Seebeck) A(+ T 1 I T 0 B - T 1 T 0 E (Thermoelectromotive force) AB =d E(AB) /dt=a+bt----------------- E(AB) T1 = = + + E( AB) α AB a b ( T0

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義 email: takahash@sci.u-hyogo.ac.jp August 3, 2009 Title of Lecture: SCR Spin Fluctuation Theory 2 / 179 Part I Introduction Introduction Stoner-Wohlfarth Theory Stoner-Wohlfarth Theory Hatree Fock Approximation

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information