PowerPoint プレゼンテーション

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PowerPoint プレゼンテーション"

Transcription

1 パーティクルフィルタ 理論と特性

2 11.1 パーティクルフィルタの理論的導出 状態遷移とマルコフ性 p x k x 1:k 1, y 1:k 1 = f x k x k 1 p y k x 1:k, y 1:k 1 k = 0,1, = h y k x k x 1:k x 1, x 2,, x k y 1:k y 1, y 2,, y k 確率分布で表現される現時刻の状態が, 前時刻までの状態と観測の条件付き確率によって定まる. 特に, 前時刻のみの状態と観測によって現時刻が表現される場合この過程がマルコフ性を持つという. system model x k ~f x k x k 1 measurement model y k ~h y k x k

3 11.1 パーティクルフィルタの理論的導出 状態推定とは? 観測時系列 y 1:k が与えられた下で, 状態の事後分布 p x 1:k y 1:k を求めること. パーティクルフィルタ 粒子の遷移を決める分布 システムモデル, 観測モデル, プロポーザル分布に基づき多数の粒子 ( 状態の仮説 ) を時間遷移させながら状態の事後分布 p x 1:k y 1:k を求めるフィルタ. 粒子とは? ひとつの粒子は状態空間内のベクトルであり, スカラの重みを持つ. 多数の粒子を用いて, 状態の仮説の分布 ( 確率分布 ) を表現する. x k (i), wk (i) M i=1 ~p x1:k y 1:k

4 11.1 パーティクルフィルタの理論的導出 求めたい事後分布 p x 1:k y 1:k = p x 1:k, y k y 1:k 1 p y k y 1:k 1 p a b, c = p a, b c p b c = p x 1:k 1 y 1:k 1 p x k, y k x 1:k 1, y 1:k 1 p y k y 1:k 1 p a, b c = p b a, c p a c = p x 1:k 1 y 1:k 1 p x k x 1:k 1, y 1:k 1 p y k x 1:k 1, y 1:k 1 p y k y 1:k 1 システムモデル 観測モデル = p x 1:k 1 y 1:k 1 f x k x k 1 h y k x k p y k y 1:k 1

5 11.1 パーティクルフィルタの理論的導出 p x 1:k y 1:k q x 1:k y 1:k = p x 1:k 1 y 1:k 1 f x k x k 1 h y k x k p y k y 1:k 1 q x 1:k y 1:k プロポーザル分布 q x 1:k y 1:k = q x 1:k 1 y 1:k 1 q x k x k 1, y 1:k = p x 1:k 1 y 1:k 1 q x 1:k 1 y 1:k 1 f x k x k 1 h y k x k p y k y 1:k 1 q x k x k 1, y 1:k 重み w k w k x 1:k p x 1:k y 1:k q x 1:k y 1:k p y k y 1:k 1 : 全ての観測は同確率で出現すると仮定 w k w k 1 f x k x k 1 h y k x k q x k x k 1, y k

6 11.2 パーティクルフィルタの手順 1 予測 (i) (i) x k ~q xk x k 1, yk 推定したい分布 p(x) 2 重み更新 (i) (i) w k wk 1 3 w k (i) (i) (i) f x k xk 1 リサンプリング h y k x k (i) q x (i) k x (i) k 1, y k w k (i) M (i) i=1 w k 多数の粒子を用いて離散近似 x x k (i) ~ (1) x k with prob. (1) w k with prob. x k (M) w k (M) x

7 11.2 パーティクルフィルタの手順 k 0 1. 初期化 ( ) パーティクルフィルタの中で最も簡単なモンテカルロフィルタ 初期分布 p(x 0 ) に従って M 個の粒子 x 0 (i) i = 1,2,, M を無作為に発生させ k 1 とする. 2. 一期先予測 ( k 1 ) (i) (i) 粒子 x k 1 をf x k x k 1 に従って状態推移させ, 粒子集合 x k (i) i = 1,2,, M を発生させる. 3. ろ波 3.1 尤度計算 粒子 x k (i) の尤度 w k (i) = h yk x k (i) を計算する. f x k x k 1 = q x k x k 1, y k 3.2 重みの正規化 w k (i) 3.3 リサンプリング i=1 M w k (i) w k (i) (i) (i) 粒子 x k を wk に従った確率でリサンプリングし (i) 粒子集合 x k i = 1,2,, M を発生させる. 3.4 時刻更新 k k + 1 として 2. に戻る.

8 11.3 パーティクルフィルタの特長と利用の注意点 計算量 計算量削減の工夫の一つとして, 現時刻で過去の粒子を再利用する. 過去に㴑って計算しない為, 計算量を粒子数のオーダに抑えることができる. 計算量のオーダは O M であり, 時間推移に対して一定である. ESS (effective sample size) ESS = 1 l=1 M (l) w 2 k ESS = M : すべての粒子の重みが等しい場合 ( つまりすべての粒子が均等に利用されている場合 ) ESS = 1 : ひとつの粒子のみが非零の値を持つ場合 ( つまり一つの粒子のみが利用されている場合 ) ESS にしきい値を設定し, リサンプリングを行うタイミングを決定する

9 11.3 パーティクルフィルタの特長と利用の注意点 対数計算による高速化とアンダーフローの回避 実際に PF の重みの計算で必要なのは尤度そのものではなく尤度の比であることを考慮すれば, 以下のようにしてアンダーフローの影響を回避できる. ガウス分布などの場合に限られる. 1 2 全粒子のうち最大の対数尤度 l (K) を選定 ζ (i) = exp(l i l (K) ) 3 w (i) = ζ (i) ζ (i)

10 11.3 パーティクルフィルタの特長と利用の注意点 対数尤度の例 ( 尤度関数がガウス分布の場合 ) l = p(x 1 ) p x 2 p x n = i=1 n p(x i ) l = 1 2πσ exp (x 1 μ) 2 2 2σ 2 1 2πσ exp (x n μ) 2 2 2σ 2 = 1 2πσ 2 n exp i=1 n (x i μ) 2 2σ 2 log l = log p(x 1 ) + log p(x 2 ) + + log p(x n ) = log l = log 1 2πσ 2 n exp i=1 n (x i μ) 2 2σ 2 = n log 2π n log 2 2 σ2 1 log 2σ 2 i=1 n (x i μ) 2 n i=1 p(x i )

11 11.4 パーティクルフィルタの特性値外乱 目標値発生器 + 操作量 制御対象 状態量 観測 出力 + オブザーバ + 観測が困難な状態量を推定する機構 推定状態量が真の状態量に漸近する レギュレータ 推定状態量 観測ノイズ 11

12 11.4 パーティクルフィルタの特性値 外乱 w() t 目標値発生器 r() t + 操作量 制御対象 状態量 u () t x() t x( t) Ax( t) Bu( t) y( t) Cx( t) 出力 y() t 同一次元オブザーバ xˆ ( t) Axˆ ( t) Bu( t) k( yˆ y) yˆ( t) Cxˆ( t) + + 線形システムに対しては構成が容易 最適オブザーバはカルマンフィルタと一致する 推定状態量 xˆ( t) v() t 観測ノイズ F レギュレータ 12

13 11.4 パーティクルフィルタの特性値 外乱 w() t 目標値発生器 r() t + 操作量 制御対象 状態量 u () t x() t x( t) f ( x( t), u( t)) y( t) h( x( t)) 出力 y() t + 拡張カルマンフィルタ,UKF + 非線形システムに対しては構成が可能 ノイズは正規性を仮定する 多峰性確率分布は正確に表現できない F 推定状態量 xˆ( t) レギュレータ v() t 観測ノイズ 13

14 11.4 パーティクルフィルタの特性値 外乱 w() t 目標値発生器 r() t + 操作量 制御対象 状態量 u () t x() t x( t) f ( x( t), u( t)) y( t) h( x( t)) 出力 y() t 非線形システムであっても構成が容易 不確定要素の多いロボットの状態推定に向いている パーティクルフィルタ x k (i), wk (i) M i=1 特性値抽出器 ~p x1:k y 1:k 推定状態量 xˆ( t) + + v() t 観測ノイズ F レギュレータ 14

15 11.4 パーティクルフィルタの特性値 問題 パーティクルフィルタの推定結果から決定論的な特性値を抽出するには? PF の柔軟な近似能力が新たな問題を引き起こす 従来の解決方法 最大事後確率 (MAP) を利用する 粒子の重みつき平均値 (MMSE) を利用する

16 11.4 パーティクルフィルタの特性値 唯一の値 ( 特性値 ) の導出方法 ( 尤度評価の後 リサンプリングの前に計算する ) MMSE (minimum mean square error) estimation 最小平均自乗誤差推定 x k MMSE = M i=1 w k (i) xk (i) MAP (maximum a posteriori) estimation 最大事後確率推定 x MAP 1:k = argmax p x 1:k y 1:t x 1:k

17 11.4 パーティクルフィルタの特性値 唯一の値 ( 特性値 ) の導出方法 ( 尤度評価の後 リサンプリングの前に計算する ) MAP (maximum a posteriori) estimation ML (maximum likelihood) estimation x k MAP = max x k (i) EP-VGM (end point Viterbi-Godsill MAP) estimation x MAP 1:k = argmax (i) 1 k x k (i) ;i=1,2,,m j=1 x 1:k k log h y k x k + log f x k x k 1 pf-map (maximum a posteriori) estimation x k MAP = argmax x k (i) h y k x k (i) M j (i) (j) f x k xk 1 (j) w k 1

18 11.4 パーティクルフィルタの特性値 x MMSE(Minimum Mean Squared Error) x k MMSE = M i=1 w k (i) xk (i) MAP(Maximum A Posteriori) x MAP k n = argmax p x k y 1:n x k

19 11.5 研究内容の紹介 テスト関数 T T 1 yk exp 12 μ1, k μ1, k exp μ2, k μ2, k μi, k x Ai sin( k /180) diag( ) A1 diag( ) A2 diag( ) 二つのガウス分布が時間とともに移動する

20 11.5 研究内容の紹介 システムモデル x x d v d k k 1 k k k k ( k 1) sin sin k ( k 1) sin sin v N k (0, ) diag( ) f ( x x ) k k 1 観測モデル h y k x k = exp x k target xk 2 2σo 2 点は粒子を表す 粒子数は 2000.

21 11.5 研究内容の紹介 1. 最大事後確率を利用 2. 粒子の重みつき平均値を利用

22 11.5 研究内容の紹介 1. 最大事後確率 (MAP) を利用する 一様分布の場合, 観測信号に加わる外乱によって最大尤度を持つ粒子の位置が振動する 粒子の分布 MAP 推定値 分解能の低いセンサ信号 領域検出問題 多峰性分布の場合, 推定結果が複数の粒子クラスタ間を頻繁にジャンプする 複数センサ情報の統合において矛盾する情報が生じる場合 反射波の混入 (GPS, ソナー ) 複数の可能性を保持する必要がある場合 (SLAM, 環境変化への適応 )

23 11.5 研究内容の紹介 2. 粒子の重みつき平均値 (MMSE) を利用する 粒子が複雑な分布を形成する場合には望まない出力が得られる 粒子の分布 全粒子の重みつき平均値 オクルージョン ( 遮蔽 ) の存在 非線形システム 複数センサ情報の統合において矛盾する情報が生じる場合 反射波の混入 (GPS, ソナー ) 複数の可能性を保持する必要がある場合 (SLAM, 環境変化への適応 ) 特性値の導出過程で 粒子が持つ情報の多くが棄却される

24 11.5 研究内容の紹介 PF の柔軟な近似能力が新たな問題を引き起こす 問題 パーティクルフィルタの推定結果から決定論的な特性値を抽出するには? 解決方法 対象の確率分布の形状に関する情報を抽出し制御系を適応的に調整する

25 11.5 研究内容の紹介 ~ 確率分布の形状推定 ~ 対象の確率密度分布を多数の粒子を用いて離散近似 適応ベクトル量子化 (CRL) による粒子の情報の圧縮 粒子分布の形状や分布密度情報の抽出

26 11.5 研究内容の紹介 ~ ベクトル量子化 ~ 入力ベクトル集合を有限数の荷重ベクトル集合へ写像する 荷重ベクトルを用いて入力ベクトルを再構築した時の歪を測る 入力ベクトル空間 ( m) x k ( n) w k ( n) V k 入力ベクトル ( m) l x xk R ( m 1,, M) 時刻 k における確率密度 pk ( x) に従って発生するベクトル ( 提案手法では粒子 ) 荷重ベクトル ( n) l wk R ( n 1,2,, N) ベクトル量子化器が持つ有限個の記憶装置 ボロノイ領域 ボロノイ図 ( n) ( n) ( o) k xk xk wk xk wk, V o n 各荷重ベクトル ( n) w k の担当領域

27 11.5 研究内容の紹介 ~ ベクトル量子化 ~ 歪と部分歪 N 2 N 1 ( n) ( n) k ( n) k k k ( )d V k N k n 1 n 1 ボロノイ領域 D x w p x x D の部分歪 ( n) V k D D k ( n) k 最小化 均一化 これらを同時に満たすものが最適ベクトル量子化器となる ( 等歪み原理 ) ベクトル量子化手法 K-means 法 LGB 法 LVQ 法など多数の手法が存在 従来の VQ アルゴリズムの多くは勾配法に基づくため収束が遅く, 初期状態に依存して局所解に陥る 適応ベクトル量子化手法 : CRL(competitive re-initialization learning) CRL は再初期化処理によって荷重ベクトルを適応的に再配置するため収束が高速であり 初期状態に依存せず局所解を回避することが可能

28 11.5 研究内容の紹介 ~ 時変多峰性確率分布の形状推定 ~ テスト関数 T T 1 yk exp 12 μ1, k μ1, k exp μ2, k μ2, k μi, k x Ai sin( k /180) diag( ) A1 diag( ) A2 diag( ) 二つのガウス分布が時間とともに移動する

29 11.5 研究内容の紹介 ~ 時変多峰性確率分布の形状推定 ~ ボロノイ図 荷重ベクトル ボロノイ領域 面積が小さなボロノイ領域 CRL の荷重ベクトル数は任意に設定可能 CRL は PF の粒子の大幅な再配置に対して効率よく対応する ボロノイ領域の体積の逆数によって粒子の密度を知ることができる

30 11.5 研究内容の紹介 ~ 時変多峰性確率分布の形状推定 ~ ボロノイ図 荷重ベクトル ボロノイ領域 面積が小さなボロノイ領域 CRL の荷重ベクトル数は任意に設定可能 CRL は PF の粒子の大幅な再配置に対して効率よく対応する ボロノイ領域の体積の逆数によって粒子の密度を知ることができる

31 11.5 研究内容の紹介 ~ 時変多峰性確率分布の形状推定 ~ ドロネー図 荷重ベクトル ドロネー線. 一定以下の長さの線分のみを表示. ドロネー線はボロノイ境界の垂直 2 等分線であり ドロネー図とボロノイ図は双対の関係にある. ドロネー図より粒子の分布の形状を知ることができる

32 11.5 研究内容の紹介 ~ 時変多峰性確率分布の形状推定 ~ ドロネー図 荷重ベクトル ドロネー線. 一定以下の長さの線分のみを表示. ドロネー線はボロノイ境界の垂直 2 等分線であり ドロネー図とボロノイ図は双対の関係にある. ドロネー図より粒子の分布の形状を知ることができる

33 11.5 研究内容の紹介 ~ 時変多峰性確率分布の形状推定 ~ 前処理 1HSV 変換 2 色相値が 100~120 の画素を抽出し 2 値化 3 膨張収縮処理によりノイズを除去 入力画像 前処理画像 パーティクルフィルタ適用画像ボロノイ図ドロネー図

34 11.5 研究内容の紹介 ~ 時変多峰性確率分布の形状推定 ~ preprocessing 1. HSV transform 2. extract pixels with hue value from 100 to banalization 4. Erosion and dilation for noise reduction. Input image Preprocessing image Particle filtering image Voronoi image Delaunay image

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ロボットの計画と制御 マルコフ決定過程 確率ロボティクス 14 章 http://www.probabilistic-robotics.org/ 1 14.1 動機付けロボットの行動選択のための確率的なアルゴリズム 目的 予想される不確かさを最小化したい. ロボットの動作につての不確かさ (MDP で考える ) 決定論的な要素 ロボット工学の理論の多くは, 動作の影響は決定論的であるという仮定のもとに成り立っている.

More information

SAP11_03

SAP11_03 第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - H17-5時限(パターン認識).ppt パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を

More information

Microsoft PowerPoint - 時系列解析(11)_講義用.pptx

Microsoft PowerPoint - 時系列解析(11)_講義用.pptx 時系列解析 () ボラティリティ 時変係数 AR モデル 東京 学数理 情報教育研究センター 北川源四郎 概要. 分散 定常モデル : 線形化 正規近似. 共分散 定常モデル : 時変係数モデル 3. 線形 ガウス型状態空間モデル 分散 共分散 定常 3 地震波 経 5 定常時系列のモデル 4. 平均 定常 トレンド, 季節調整. 分散 定常 線形 ガウスモデル ( カルマンフィルタ ) で推定するためには

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

航空機の運動方程式

航空機の運動方程式 オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 担当教員名 単位数西田健 2 単位 教室 時間 4-1A 教室火曜 4 限 目的不確定性を有する対象の制御に有効な確率システム制御理論について解説する また 確率的要因を考慮した状態推定のために 宇宙ロケットや自律ロボットなどの幅広い分野で利用されているカルマンフィルタやパーティクルフィルタについて解説し それらを用いる制御系の構成手法を教授する 授業計画 (1) ガイダンスと導入 (2) 線形動的システムの時系列モデリング

More information

生命情報学

生命情報学 生命情報学 5 隠れマルコフモデル 阿久津達也 京都大学化学研究所 バイオインフォマティクスセンター 内容 配列モチーフ 最尤推定 ベイズ推定 M 推定 隠れマルコフモデル HMM Verアルゴリズム EMアルゴリズム Baum-Welchアルゴリズム 前向きアルゴリズム 後向きアルゴリズム プロファイル HMM 配列モチーフ モチーフ発見 配列モチーフ : 同じ機能を持つ遺伝子配列などに見られる共通の文字列パターン

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

スライド 1

スライド 1 第 13 章系列データ 2015/9/20 夏合宿 PRML 輪読ゼミ B4 三木真理子 目次 2 1. 系列データと状態空間モデル 2. 隠れマルコフモデル 2.1 定式化とその性質 2.2 最尤推定法 2.3 潜在変数の系列を知るには 3. 線形動的システム この章の目標 : 系列データを扱う際に有効な状態空間モデルのうち 代表的な 2 例である隠れマルコフモデルと線形動的システムの性質を知り

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 20150528 信号処理システム特論 本日の内容 適応フィルタ ( 時間領域 ) 適応アルゴリズム (LMS,NLMS,RLS) 適応フィルタの応用例 適応処理 非適応処理 : 状況によらずいつでも同じ処理 適応処理 : 状況に応じた適切な処理 高度な適応処理の例 雑音抑圧, 音響エコーキャンセラ, 騒音制御など 時間領域の適応フィルタ 誤差信号 与えられた手順に従ってフィルタ係数を更新し 自動的に所望の信号を得るフィルタ

More information

Microsoft Word - Time Series Basic - Modeling.doc

Microsoft Word - Time Series Basic - Modeling.doc 時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (

More information

画像工学入門

画像工学入門 セグメンテーション 講義内容 閾値法,k-mean 法 領域拡張法 SNAK 法 P タイル法 モード法 P タイル法 画像内で対象物の占める面積 (P パーセント ) があらかじめわかっているとき, 濃度ヒストグラムを作成し, 濃度値の累積分布が全体の P パーセントとなる濃度値を見つけ, この値を閾値とする. モード法 画像の輝度ヒストグラムを調べ その分布のモード ( 頻値輝度 ) 間の谷をしきい値とする

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション データ解析 第 7 回 : 時系列分析 渡辺澄夫 過去から未来を予測する 観測データ 回帰 判別分析 解析方法 主成分 因子 クラスタ分析 時系列予測 時系列を予測する 無限個の確率変数 ( 確率変数が作る無限数列 ){X(t) ; t は整数 } を生成する情報源を考える {X(t)} を確率過程という 確率過程に ついて過去の値から未来を予測するにはどうしたらよいだろうか X(t-K),X(t-K+1),,X(t-1)

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

PowerPoint Presentation

PowerPoint Presentation パターン認識入門 パターン認識 音や画像に中に隠れたパターンを認識する 音素 音節 単語 文 基本図形 文字 指紋 物体 人物 顔 パターン は唯一のデータではなく 似通ったデータの集まりを表している 多様性 ノイズ 等しい から 似ている へ ~ だ から ~ らしい へ 等しい から 似ている へ 完全に等しいかどうかではなく 似ているか どうかを判定する パターンを代表する模範的データとどのくらい似ているか

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

Microsoft PowerPoint - 14MDL.pptx

Microsoft PowerPoint - 14MDL.pptx オッカムの剃刀 (Occam s razor) MDL 原理 データマイニング 機械学習の仕事は データを表現するモデルを探すことだと言える 例 : ガウス混合モデル, ( 等方正規分布の ) 混合 (k means 法 ). Model vs Hypotesis では 正しいモデルとは何か? どうやって選ぶか? オッカムの剃刀 : それ以外の条件が全て同じなら, 最も単純なモデルが最良である. 人生訓としてもよかろう

More information

景気指標の新しい動向

景気指標の新しい動向 内閣府経済社会総合研究所 経済分析 22 年第 166 号 4 時系列因子分析モデル 4.1 時系列因子分析モデル (Stock-Watson モデル の理論的解説 4.1.1 景気循環の状態空間表現 Stock and Watson (1989,1991 は観測される景気指標を状態空間表現と呼ば れるモデルで表し, 景気の状態を示す指標を開発した. 状態空間表現とは, わ れわれの目に見える実際に観測される変数は,

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

Microsoft PowerPoint - 03ModelBased.ppt

Microsoft PowerPoint - 03ModelBased.ppt 本日の目的 知的情報処理 3. 原因があって結果がある ( か?) 櫻井彰人慶應義塾大学理工学部 データを生成する法則が存在すると仮定し それを推定することを考える その場合 推定できるのか? 推定する方法はあるのか? 推定しなくてもよいということはないのか? という問いを背景に モデル という概念 モデル を推定するということ モデル を推定しないということを知る なお 事例ベース学習は 丸暗記

More information

Microsoft PowerPoint - pr_12_template-bs.pptx

Microsoft PowerPoint - pr_12_template-bs.pptx 12 回パターン検出と画像特徴 テンプレートマッチング 領域分割 画像特徴 テンプレート マッチング 1 テンプレートマッチング ( 図形 画像などの ) 型照合 Template Matching テンプレートと呼ばれる小さな一部の画像領域と同じパターンが画像全体の中に存在するかどうかを調べる方法 画像内にある対象物体の位置検出 物体数のカウント 物体移動の検出などに使われる テンプレートマッチングの計算

More information

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二 OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 勉強会 @ 富山富山県立大学中川慎二 * OpenFOAM のソースコードでは, 基礎式を偏微分方程式の形で記述する.OpenFOAM 内部では, 有限体積法を使ってこの微分方程式を解いている. どのようにして, 有限体積法に基づく離散化が実現されているのか,

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

Microsoft PowerPoint - SPECTPETの原理2012.ppt [互換モード]

Microsoft PowerPoint - SPECTPETの原理2012.ppt [互換モード] 22 年国家試験解答 1,5 フーリエ変換は線形変換 FFT はデータ数に 2 の累乗数を要求するが DFT は任意のデータ数に対応 123I-IMP Brain SPECT FBP with Ramp filter 123I-IMP Brain SPECT FBP with Shepp&Logan filter 99mTc-MIBI Myocardial SPECT における ストリークアーチファクト

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

untitled

untitled KLT はエネルギを集約する カルーネンレーベ変換 (KLT) で 情報を集約する 要点 分散 7. 9. 8.3 3.7 4.5 4.0 KLT 前 集約 分散 0.3 0.4 4.5 7.4 3.4 00.7 KLT 後 分散 = エネルギ密度 エネルギ と表現 最大を 55, 最小を 0 に正規化して表示した 情報圧縮に応用できないか? エネルギ集約 データ圧縮 分散 ( 平均 ) KLT 前

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 空間フィルタリング (spatal lterng) 入力画像の対応する画素値だけではなく その周囲 ( 近傍領域 ) の画素も含めた領域内の画素値を用いて 出力画像の対応する画素値を計算する処理 入力画像出力画像入力画像出力画像 画素ごとの濃淡変換 ( 階調処理 ) 領域に基づく濃淡変換 ( 空間フィルタリング ) 空間フィルタ (spatal lter) 線形フィルタ (lnear lter) w

More information

大成建設技術センター報第 39 号 (26) 3. 画像解析技術本技術では 画像の二値化処理において ウェーブレット変換を利用している ウェーブレット変換とは 式 (1) で表されるウェーブレット関数を拡大 縮小することにより 時間情報と周波数情報を同時に解析する手法である この手法は 198 年代

大成建設技術センター報第 39 号 (26) 3. 画像解析技術本技術では 画像の二値化処理において ウェーブレット変換を利用している ウェーブレット変換とは 式 (1) で表されるウェーブレット関数を拡大 縮小することにより 時間情報と周波数情報を同時に解析する手法である この手法は 198 年代 大成建設技術センター報第 39 号 (26) ウェーブレット変換を用いたひび割れ画像解析 コンクリート構造物の点検 調査に迅速に対応 武田均 *1 小山哲 *2 堀口賢一 *1 *1 丸屋剛 Keywords : crack, image analysis, digital still camera, wavelet transform, maintenance ひび割れ, 画像解析, デジタルカメラ,

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

Microsoft PowerPoint - 14回パラメータ推定配布用.pptx

Microsoft PowerPoint - 14回パラメータ推定配布用.pptx パラメータ推定の理論と実践 BEhavior Study for Transportation Graduate school, Univ. of Yamanashi 山梨大学佐々木邦明 最尤推定法 点推定量を求める最もポピュラーな方法 L n x n i1 f x i 右上の式を θ の関数とみなしたものが尤度関数 データ (a,b) が得られたとき, 全体の平均がいくつとするのがよいか 平均がいくつだったら

More information

<4D F736F F F696E74202D2091E6824F82568FCD8CEB82E892F990B382CC8CF889CA82BB82CC82515F B834E838A B9797A3959C8D F A282E982C682AB82CC8CEB82E897A62E >

<4D F736F F F696E74202D2091E6824F82568FCD8CEB82E892F990B382CC8CF889CA82BB82CC82515F B834E838A B9797A3959C8D F A282E982C682AB82CC8CEB82E897A62E > 第 7 章 誤り訂正の効果その : ユークリッド距離復号法を用いるときの誤り率 ユークリッド距離に基づく最尤復号ブロック符号のユークリッド距離に基づく最尤復号畳み込み符号のユークリッド距離に基づく最尤復号 安達 : コミュニケーション符号理論 ユークリッド距離に基づく最尤復号 送信情報系列 Xx x x x x x 5.. を符号化して得られた符号系列 5.. を送信する. 伝送路途中の雑音のため誤りが発生するので,

More information

線形システム応答 Linear System response

線形システム応答 Linear System response 画質が異なる画像例 コントラスト劣 コントラスト優 コントラスト普 鮮鋭性 普 鮮鋭性 優 鮮鋭性 劣 粒状性 普 粒状性 劣 粒状性 優 医用画像の画質 コントラスト, 鮮鋭性, 粒状性の要因が互いに密接に関わり合って形成されている. 比 鮮鋭性 コントラスト 反 反 粒状性 増感紙 - フィルム系での 3 要因の関係 ディジタル画像処理系でもおよそ成り立つ WS u MTFu 画質に影響する因子

More information

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint slide2forWeb.ppt [互換モード] 講義内容 9..4 正規分布 ormal dstrbuto ガウス分布 Gaussa dstrbuto 中心極限定理 サンプルからの母集団統計量の推定 不偏推定量について 確率変数, 確率密度関数 確率密度関数 確率密度関数は積分したら. 平均 : 確率変数 分散 : 例 ある場所, ある日時での気温の確率. : 気温, : 気温 が起こる確率 標本平均とのアナロジー 類推 例 人の身長の分布と平均

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推 7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率

More information

スライド 1

スライド 1 Keal H. Sahn A R. Crc: A dual teperature sulated annealng approach for solvng blevel prograng probles Coputers and Checal Engneerng Vol. 23 pp. 11-251998. 第 12 回論文ゼミ 2013/07/12( 金 ) #4 M1 今泉孝章 2 段階計画問題とは

More information

目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定

目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定 公開講座 : ガウス過程の基礎と応用 05/3/3 ガウス過程の基礎 統計数理研究所 松井知子 目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定 GP 序論 ノンパラメトリック予測 カーネル法の利用 参照文献 : C. E. Rasmussen and C. K. I. Williams

More information

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu 集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part

More information

Microsoft PowerPoint - 三次元座標測定 ppt

Microsoft PowerPoint - 三次元座標測定 ppt 冗長座標測定機 ()( 三次元座標計測 ( 第 9 回 ) 5 年度大学院講義 6 年 月 7 日 冗長性を持つ 次元座標測定機 次元 辺測量 : 冗長性を出すために つのレーザトラッカを配置し, キャッツアイまでの距離から座標を測定する つのカメラ ( 次元的なカメラ ) とレーザスキャナ : つの角度測定システムによる座標測定 つの回転関節による 次元 自由度多関節機構 高増潔東京大学工学系研究科精密機械工学専攻

More information

Missing Data NMF

Missing Data NMF 月 4 2013 冬学期 [4830-1032] 第 4 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介 情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

ボルツマンマシンの高速化

ボルツマンマシンの高速化 1. はじめに ボルツマン学習と平均場近似 山梨大学工学部宗久研究室 G04MK016 鳥居圭太 ボルツマンマシンは学習可能な相互結合型ネットワー クの代表的なものである. ボルツマンマシンには, 学習のための統計平均を取る必要があり, 結果を求めるまでに長い時間がかかってしまうという欠点がある. そこで, 学習の高速化のために, 統計を取る2つのステップについて, 以下のことを行う. まず1つ目のステップでは,

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

Variational Auto Encoder

Variational Auto Encoder Variational Auto Encoder nzw 216 年 12 月 1 日 1 はじめに 深層学習における生成モデルとして Generative Adversarial Nets (GAN) と Variational Auto Encoder (VAE) [1] が主な手法として知られている. 本資料では,VAE を紹介する. 本資料は, 提案論文 [1] とチュートリアル資料 [2]

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

スライド 1

スライド 1 5.5.2 画像の間引き 5.1 線形変換 5.2 アフィン変換 5.3 同次座標 5.4 平面射影変換 5.5 再標本化 1. 画素数の減少による表現能力の低下 画像の縮小 変形を行う際 結果画像の 画素数 < 入力画像の 画素数 ( 画素の密度 ) ( 画素の密度 ) になることがある この場合 結果画像の表現力 < 入力画像の表現力 ( 情報量 ) ( 情報量 ) 結果的に 情報の損失が生じる!

More information

<4D F736F F F696E74202D2091E6824F82518FCD E838B C68CEB82E894AD90B B2E >

<4D F736F F F696E74202D2091E6824F82518FCD E838B C68CEB82E894AD90B B2E > 目次 参考文献安達著 : 通信システム工学, 朝倉書店,7 年. ディジタル変調. ディジタル伝送系モデル 3. 符号判定誤り確率 4. 元対称通信路 安達 : コミュニケーション符号理論 安達 : コミュニケーション符号理論 変調とは?. ディジタル変調 基底帯域 ( ベースバンド ) 伝送の信号波形は零周波数付近のスペクトルを持っている. しかし, 現実の大部分の通信路は零周波数付近を殆ど伝送することができない帯域通信路とみなされる.

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

スライド 1

スライド 1 移動体観測を活用した交通 NW の リアルタイムマネジメントに向けて : プローブカーデータを用いた動的 OD 交通量のリアルタイム推定 名古屋大学山本俊行 背景 : マルチモード経路案内システム PRONAVI 2 プローブカーデータの概要 プローブカー : タクシー 157 台 蓄積用データ収集期間 : 22 年 1 月 ~3 月,1 月 ~23 年 3 月 データ送信はイベントベース : 車両発進

More information

 

  早稲田大学大学院理工学研究科 博士論文概要 論文題目 Various statistical methods in time series analysis 時系列解析における種々の統計手法 申請者 天野友之 Tomoyuki AMANO 数理科学専攻数理統計学研究 007 年 月 時とともに変動する偶然量の観測値の系列である時系列の解析は近年 様々な統計手法が導入され自然工学 医学 経済学 など多方面で急速に発展している

More information

スライド 1

スライド 1 本資料について 本資料は下記論文を基にして作成されたものです. 文書の内容の正確さは保障できないため, 正確な知識を求める方は原文を参照してください. 著者 : 伊藤誠吾吉田廣志河口信夫 論文名 : 無線 LANを用いた広域位置情報システム構築に関する検討 出展 : 情報処理学会論文誌 Vol.47 No.42 発表日 :2005 年 12 月 著者 : 伊藤誠悟河口信夫 論文名 : アクセスポイントの選択を考慮したベイズ推定による無線

More information

Microsoft Word - Matlab_R_MLE.docx

Microsoft Word - Matlab_R_MLE.docx R と Matlab による最尤最尤推定推定のコードコードの作成. 最尤法とは? 簡単に言うと尤度関数を最大にするように未知パラメーターの値を決める事 以下では観測されたデータを {y,, y, y } とし そのベクトルを Y = [y,,y ] 未知パラメーターのベクトルを θ = [θ,,θ q ] とする また尤度関数を L(θ と表すとする ( 尤度関数は未知パラメーターの関数 ( データ

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

基底関数ネットワーク

基底関数ネットワーク 6. 基底関数ネットワーク (Bass Functon Network) 6-1 基底関数ネットワーク研究の背景 (1)( 階層型 ) ニューラルネットワークの問題点の回避 設計性の悪さ ローカルミニマム問題 (2) 級数展開の利用 基底関数が周期関数 フーリエ級数 フーリエ級数 フーリエ級数 F1 フーリエ係数 F2 信号 + F3 F4 フーリエ展開で関数を近似した例 フーリエ係数の意味 F1

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

Microsoft PowerPoint - ce07-09b.ppt

Microsoft PowerPoint - ce07-09b.ppt 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? フィードバック系の内部安定性 u 内部安定性 T G だけでは不十分

More information

untitled

untitled 主成分分析 (Prncpal Component Analy) で情報を集約する マルチスペクトル画像 なし が情報を集約する 69.68 77.97 85.73 96.7 98.8 画像 : NASA 除去できる一部に集約 あり.24.35 4.63 7.65 3.9 分散の比率 最大を 255, 最小を に正規化して表示 3 つの成分から画像を再生した 信号処理の手順 行列 A 共分散行列に対する

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ディジタル画像処理 濃度変換 ; 階調処理 2 値化処理 ; しきい値処理 フィルタ処理 画像間演算 データ圧縮 三次元表示 頻度 画像全体で同じ濃度値を持つ画素数を求め, グラフ化したものを濃度ヒストグラムあるいは単にヒストグラム (histogram) という. 横軸は濃淡値 ( 画素値 ), 縦軸にその出現頻度 ( 画素数 ) をとる. Histogram 出現頻度 30 20 0 ヒストグラムの利用法

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

位相最適化?

位相最適化? 均質化設計法 藤井大地 ( 東京大学 ) 位相最適化? 従来の考え方 境界形状を変化させて最適な形状 位相を求める Γ t Ω b Γ D 境界形状を変化させる問題点 解析が進むにつれて, 有限要素メッシュが異形になり, 再メッシュが必要になる 位相が変化する問題への適応が難しい Γ Γ t t Ω b Ω b Γ D Γ D 領域の拡張と特性関数の導入 χ Ω ( x) = f 0 f x Ω x

More information

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード]

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード] 圧密問題への逆問題の適用 一次元圧密と神戸空港の沈下予測 1. 一次元圧密の解析 2. 二次元圧密問題への適用 3. 神戸空港の沈下予測 1. 一次元圧密の解析 一次元圧密の実験 試験システムの概要 分割型圧密試験 逆解析の条件 未知量 ( 同定パラメータ ) 圧縮指数 :, 透水係数 :k 初期体積ひずみ速度 : 二次圧密係数 : 観測量沈下量 ( 計 4 点 ) 逆解析手法 粒子フィルタ (SIS)

More information

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5 第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる

More information

Microsoft PowerPoint SIGAL.ppt

Microsoft PowerPoint SIGAL.ppt アメリカン アジアンオプションの 価格の近似に対する 計算幾何的アプローチ 渋谷彰信, 塩浦昭義, 徳山豪 ( 東北大学大学院情報科学研究科 ) 発表の概要 アメリカン アジアンオプション金融派生商品の一つ価格付け ( 価格の計算 ) は重要な問題 二項モデルにおける価格付けは計算困難な問題 目的 : 近似精度保証をもつ近似アルゴリズムの提案 アイディア : 区分線形関数を計算幾何手法により近似 問題の説明

More information

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Excelによる統計分析検定_知識編_小塚明_5_9章.indd 第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,

More information

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378> 高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,

More information

C5 統計的時系列モデリング

C5 統計的時系列モデリング < 第 5 回 > 統計的時系列モデリング 統計数理研究所 川崎能典 kawasaki@ism.ac.jp 統計的時系列モデリング 概要 データサイエンティスト育成クラッシュコース データサイエンティストとして時系列解析を学ぶ際に知っておくべき体系について 定常 非定常 データの変換 平滑化事前分布 状態空間モデルをキーワードに学ぶ 1. 定常時系列 2. 定常から非定常へ : 変換の利用 3. 定常から非定常へ

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

Microsoft PowerPoint - suta.ppt [互換モード]

Microsoft PowerPoint - suta.ppt [互換モード] 弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加

More information

スライド 1

スライド 1 知能制御システム学 画像処理の基礎 (2) OpenCV による基本的な例 東北大学大学院情報科学研究科鏡慎吾 swk(at)ic.is.tohoku.ac.jp 2009.06.30 局所処理の例 空間フィルタリング 注目点の近傍 ( 典型的には 3x3 画素,5x5 画素,... など ) の画素値から, 出力 G x,y を定める { F i,j }, (i, j) Neighbor(x,y)

More information

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい

More information

コンピュータグラフィックス第6回

コンピュータグラフィックス第6回 コンピュータグラフィックス 第 6 回 モデリング技法 1 ~3 次元形状表現 ~ 理工学部 兼任講師藤堂英樹 本日の講義内容 モデリング技法 1 様々な形状モデル 曲線 曲面 2014/11/10 コンピュータグラフィックス 2 CG 制作の主なワークフロー 3DCG ソフトウェアの場合 モデリング カメラ シーン アニメーション テクスチャ 質感 ライティング 画像生成 2014/11/10 コンピュータグラフィックス

More information

Takeuchi, J., and Yamanishi, K.: A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE Trans. on Knowledge and Data Eng

Takeuchi, J., and Yamanishi, K.: A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE Trans. on Knowledge and Data Eng Takeuchi, J., and Yamanishi, K.: A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE Trans. on Knowledge and Data Engineering, 18(4), pp.482-492, 2006. 2013 年度論文ゼミ #9 20130621

More information