30 (11/04 )

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "30 (11/04 )"

Transcription

1 30 (11/04 )

2

3 i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,,

4 ii,,,,,,,, Richard P. Feynman, The best teaching can be done only when there is a direct individual relationship between a student and a good teacher a situation in which the student discusses the ideas, think about the things, and talk about the things. It s impossible to learn very much by simply sitting in a lecture, or even by simply doing problems that are assigned. The Feynmann Lectures on Physics, 1 1,,,,,...?,,,...,,,,,, I,?...,,,,, p, s, π?... II,,,, II,?...,,,, (?), xxx, xxx,?...,, :, 003, 1,, TA, : ( 15 ), , ( ),,,

5 iii ( ) : :

6 iv : : : : : ()

7 v ( ) : n ( ) (rotation) (rotation)

8 vi : ( )

9 ,,,,,,,,,,,,, f(x) f (x) = F (f(x), x) (16.1) F (f(x), x), f(x) x,, x 0, f(x + x) f(x) + f (x) x (16.), x f(x), (16.1) f (x) x 0, (16.) f(x + x) f(x), f(x + x) 1 :, (16.1), x x + x, f (x + x) = F (f(x + x), x + x) (16.3), f(x + x), f (x + x), (16.) x x + x f(x + x) f(x + x) + f (x + x) x (16.4), (16.3) f (x+ x) f(x + x) f(x + x), f(x + x), f(x + x) f(x + 3 x), f(x + 3 x), f(x + 4 x),, f, f(x), 14 C C(t), dc dt = αc (16.5) α, t,, x t, f(x) C(t), F (f(x), x) αc ky ; α = 0.1 /ky, A B C 1 t C (t) C(t) 0.0 =-0.1*C =C+B*(A3-A) A t ( t),, 0. ky, 00 0 ky,, C, C(0) 1.0

10 16,,, *1, B, C (t), C C, α, 0.1, B =-0.1*C, C3, C(t + t) (16.) (16.), f(x) C, f (x) B, x A3-A, C3 =C+B*(A3-A) C (t), B B3 B, C3 C4 C C,, t,, C 50 t, ( t, ),,,,,, A C, C(t), D, C(t) = C(0) exp( αt), A D C(t) C D? :, : 1,,,, C(0), C (0),, t = 0 t = t C( t), C ( t),, t = t C( t),, 503 N(t) N(t) (α, β ): dn dt = αn βn (16.6) (1) α = 1.0, β = 0.005, N(0) = 10,,, () (16.6),, : N(t) = N 0 e αt 1 + N 0 β(e αt 1)/α (16.7) α = 1.0, β = 0.005, N 0 = 10, (16.7) (3) α = 1.0, β = 0.0 ( ), N(0) = 10,, (1)() *1, 504 (16.7),

11 N = α β { ( αt tanh + 1 ln N 0 β ) } + 1 α N 0 β (16.8),, 16.3 (16.6), dn dt = αn βn (16.9), (α, β) ( t),, α = 1.0, β = 0.005, t, t,,, N(0) = 10.0 N(0) = 10.1, ( N(t), M(t) ) A B C D E 1 t α β t N (t) N(t) M (t) M(t) A t 0.1 A5 =A4+A$,, A6 A, A, t, A5, B4,, =$B$*C4 - $C$*C4*C4, B5 B C5 =C4+B4*($A5- $A4), C6 C ( t A ) N(t) M(t) D4 D B4, E5 E C5 C5 A,,,,, 505, (1) t 50 N(t) M(t) N(t) M(t) () t, 0.5, 1.0, 1., 1.3,...,,, t?n(t) M(t), (3) t.6, N(t) M(t) (4) t 3.0,,, N(t) M(t), t = 50 (5) t 3.0 M(t), E4, 10 (10.001, M(t) :,,

12 4 16,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 16.4,,,, S(t), W (t) t,, t, α 1 S t α 1, W S, W S, t,, β 1 SW t β 1, t S, S α 1 S t β 1 SW t (16.10),,,, α W t α,,,, β SW t β, t W, W α W t + β SW t (16.11) 506 SW, SW 507 ds dt = α 1S β 1 SW (16.1) dw dt 1 = α W + β SW (16.13)?...,,, α 1 (16.1) (16.13),, t S(t), W (t)

13 * α 1, α, β 1, β,, S(0) =.0, W (0) = 1.0, α 1 = 1., α = 1.1, β 1 = 0.6, β = 0.7 A B C D E, S W,, 1 t α 1 α β 1 β t S (t) W (t) S(t) W (t) ,,,,...,, t t α 1,,, 1,,, 4 (t = 0.0, S, W, A5 =A4+A$, A6 A, A, t, A5, B4, =B$*D4 D$*D4*E4, B5 B C4, C5 C,, D5 D B, E5 E C, D5 =D4+B4*(A5 A4) D, E 508, t = 0 t = 5, S(t), W (t), t 511,, ( t ) γs t ds/dt dw/dt, γ = 0.1, γ?,,,, (), (),,,,,,, *,,,, t

14 6 16,,, (,,,,,, ),,,,,,,,,,,,,,,,,,,,,,,,,,,, (, ),,?...,, βn,,,,,, 51, 3, 16.5,, ( ) A, B, A B (16.14) ) dt A B, dt, [A], [A]? A A,,, A,, dt A B, [A] dt ( ), [A], dt [A] d[a], k ( ), d[a] = k[a] dt (16.15), [A], d[a] dt = k[a] (16.16) (16.16),, 3 A, B, C, A + B C (16.17) (A, B (16.14) A, B ),, A B

15 16.6 7,, [A][B]dt, A B,, [A], d[a] dt = k[a][b] (16.18) ( k, (16.16) k ) (16.18), ), E [E], d[e]/dt = 0, (16.1), : k +1 [E][S] + k 1 [ES] + k [ES] = 0 (16.3) 514 (1) (16.0) (16.3) : k +1 [E 0 ][S] + [ES](k +1 [S] + k 1 + k ) = 0 (16.4) () (16.4) :, ( ) ( ) S (substrate ), ( ) P (product ) E (enzyme ): E + S ES E + P (16.19) [ES] = (3) : d[p] dt = k +1 [E 0 ][S] k 1 + k + k +1 [S] k +1 k [E 0 ][S] k 1 + k + k +1 [S] (16.5) (16.6), E S, ES ; k +1, ES E S ; k 1, ES E P ( k ),,, E E, E [E 0 ],, : [E] + [ES] = [E 0 ] (16.0) 513 : d[e] dt d[p] dt (16.19), = k +1 [E][S] + k 1 [ES] + k [ES] (16.1) = k [ES] (16.), ( P, S (4) k [E 0 ]=V max, (k 1 + k )/k +1 = K m : v = V max[s] K m + [S] (16.7) (16.7) 515 (16.7) (1) [S] = 0 v = 0 () [S], v V max (3) [S] = K m, v = V max / (4), (16.7) [S], v 0, 0 [S] 16.6,, : m d r dt = F (16.8)

16 8 16 *3, t, F, r F,,,, ,, m, x, (x = 0), x,,, r = (x, y, z) (16.30),,, x,, y = z = 0, x, x OK, x 0 ( x ), x (16.9), kx, (16.8) x, m d x = kx (16.31) dt,! () 516 (16.31), (1) (16.31),, x(t), v(t) 16.1,,,,,, x, F = kx (16.9) k, *4, (Hooke),, (16.8) dx dt = v dv dt = k m x (16.3) () m=1.0 kg, k=1.0 N/m, x(0) = 1.0 m, v(0) = 0 m/s,, t 0.0, t 0 15,, *3 d r/dt a,, F = ma *4 (16.9), x x,, ( ), x,, ( ),, (16.31), v(t)), 1 (16.3),, n, n, n

17 , 1,,, (16.31),, ( ), γv 517, (1) (16.31) m d x dt dx = kx γ dt (16.33) () (16.33), dx dt = v dv dt = k m x γ m v (16.34) (3) m=1.0 kg, k=1.0 N/m, γ=0.5 N s/m, x(0) = 1.0 m, v(0) = 0 m/s,,, t 0.0, t 0 15,,, (16.8) (16.7) : ( ), analytic N O 16.3 α=1.0, β=0.005, N 0 =10 α=1.0, β=0.0, N 0 = ( αt exp + 1 ln N 0 β ) N 0 β = α N 0 β α N 0 β eαt/ t (16.35), (16.8), : N = α β = α β { N0β α N 0β eαt/ α N0β N 0β e αt/ N0β α N 0β eαt/ + { N0 β N0 β α N 0 β eαt/ + α N0β N 0β e αt/ + 1 α N 0 β eαt/ α N0 β N 0 β e αt/ } } (16.36)

18 10 16 S, W O S(t) W(t) (α N0 β)(n 0 β)e αt/ (16.37) t S, W O S(t) W(t) β 1 = β = 0.4 t, N = α β = N 0 βe αt (N 0 β)e αt + α N 0 β N 0 e αt 1 + N 0 β(e αt 1)/α (16.38) (16.39) 506, (β 1, β!) 507 S = S(t+ t) S(t), S = S(t + t) S(t) α 1 S t β 1 SW t t t (16.1) (16.13) S, W O 16.6 S(t) W(t) G, S, W 1 grass sheep 10 wolf 8 t 6 510,,,,,,,,,, 4 O t grass ( ), sheep ( ),wolf( )

19 ,,, ds dt = α 1S β 1 SW γs dw dt = α W + β SW 51,, (G),, dg dt = α 0G β 01 GS ds dt = α 1S + β 10 GS β 1 SW dw dt = α W + β 1 SW 16.7, α 0 = α 1 = α = 1.0, β 01 = β 10 = β 1 = β 1 = 0.5, G(0) = 1, S(0) =, W (0) = () E + S ES, E E S [E][S] k +1, [E] k +1 [E][S] ( ), E, [ES] k 1, [E] k 1 [ES], ES E + P, ES E, [ES] k, [E] k [ES], (16.1) P, ES E + P, k [ES] (16.) 514 (1) ( [E] ) () ( (16.4) ) (3) ( (16.) [ES] ) (4) ( (16.6) k +1 ) 16.9 ( )...,...,

20 ?... Alfred J. Lotka Vito Volterra Wikipedia!/,! /,...?,,,, /!?,,...,,,,, ( ),,,????,,,? II,...,,,,,,,,, ,,,,, etc......,,,,,, /...,,,...,

21 13 17 e x,,,? (?),,,,,,, (absorbance),, (17.5), (17.6), κ ln 10 c d = A (17.7) c = A (κ/ ln 10)d (17.8), κ/ ln 10 (17.8) A (ln 10/(κd)), K, c = K A (17.9) 17.1 ( ),, x, x I(x), c, I(x + dx) = I(x) κ c I dx (17.1) (κ, di = κ c I (17.) dx κ, c x,, I(x) = I(0) exp ( κ c x) (17.3) I(x) = I(0) 10 κ c x/ ln 10 (17.4) κ ( I(x) ) ln 10 c x = log 10 I(0) (17.5) x d ( d = 1 cm ), (17.5) ( I(d) ) A := log 10 I(0) (17.6),,,, a,,,, b, (17.9) (17.1), 1,, (17.1) : I(x + dx) = I(x) κ 1 c 1 I dx κ c I dx (17.10), κ 1 κ 1,, c 1, c 1,,, (17.7), κ 1 ln 10 c 1 d + κ ln 10 c d = A (17.11) c 1, c, 1, c 1, c!,

22 14 17,, κ 1, κ, λ 1, λ, A 1, A, (17.11) : κ 11 ln 10 c 1 d + κ 1 ln 10 c d = A 1 (17.1) κ 1 ln 10 c 1 d + κ ln 10 c d = A (17.13) κ ij, λ i, j (i, j 1 ) (17.1), (17.13),, [ ] [ ] [ ] κ11 d/ ln 10 κ 1 d/ ln 10 c1 A1 = κ 1 d/ ln 10 κ d/ ln 10 c A (17.14) (17.1), (17.13), (17.14), c 1, c, (17.14),, (17.14), [ ] 1 [ ] κ11 d/ ln 10 κ 1 d/ ln 10 K11 K = 1 κ 1 d/ ln 10 κ d/ ln 10 K 1 K, [ ] [ ] [ ] c1 K11 K = 1 A1 c K 1 K A,, (17.15) (17.16) c 1 = K 11 A 1 + K 1 A (17.17) c = K 1 A 1 + K A (17.18) (17.16) (17.17), (17.18), (17.9) , a b 1,, λ 1 = nm, λ = nm, (17.16), [ 1.5 µg/ml ].85 µg/ml 4.91 µg/ml 0.31 µg/ml (17.19) *1, A 1 = 0.30, A = 0.13, a b,,, (17.14) (17.16) 519 (17.14) (17.16)?, 1? :,, 50 ( ), (17.3) κc,,, κc, ( 0.48 µm): κc 0.01 m 1 ( 0.55 µm): κc 0.05 m 1 ( 0.68 µm): κc 0.5 m 1 (1) 1 m, () 10 m,, :,,,,,,, :, 3,,,,, *1, 67, ,

23 17. 15? :,? 5 (17.5) 17.,,, t T (t) T T 0, T 1 T 0 T 1, t,, ( ), T 1 T (t), T 1 T (t) K, J, J(t) = K(T 1 T (t)) (17.0), dt, J(t) dt = K(T 1 T (t)) dt (17.1), C,, /C, t + dt, t, K(T 1 T (t)) dt/c, (1) (17.5) : dt T 1 T (t) = K dt (17.6) C () D : ln T 1 T (t) = K C t + D (17.7) (3) : T 1 T (t) = ± exp ( K ) C t D (17.8) (4) t = 0, : T 1 T 0 = ± exp( D) (17.9) (5) (17.8), (17.9), : T 1 T = (T 1 T 0 ) exp ( K ) C t (6) : (17.30) T = (T 0 T 1 ) exp ( K ) C t + T 1 (17.31) (17.31),, C K = τ (17.3) T (t + dt) = T (t) + K(T 1 T (t)) dt C, (17.), (17.31) : ( T (t) = (T 0 T 1 ) exp t ) + T 1 (17.33) τ T (t + dt) T (t) = K(T 1 T (t)) dt C dt, T (t + dt) T (t) dt = K(T 1 T (t)) C (17.3) (17.4) dt, T, dt dt = K(T 1 T (t)) C (17.5), τ (time constant),,,, exp( t/τ),, τ 53, (17.33), (1) T (0) = T 0, T ( ) =

24 16 17 T 1 () T t, T 0 > T 1 T 0 < T 1 (3) τ,, (4) T (τ) T 0 T 1? (5) 30 s ( ), ( 0 ), 1 3? 0.5?,,,,,,,, 54? 55,? 17.3,,,,,, I IV,,, V, I, R,, V = RI (17.34) (resistance) ( ),,, R, (, ), R,, R,, R, (17.34), R = V/I,, SI V/A ( =V/A) 1 V 3 A 4,,??,,, (condenser; ),?,,,,,, V, +Q, Q, C, Q = CV (17.35), V = Q (17.36) C,, C

25 , C, (17.35), C = Q/V,, SI C/V C=A s, A s/v F (F=A s/v) F 3 V 15 C 5 F * 1 F... V R (t) = RI(t) (17.37), V C, (17.36) V C (t) = Q(t) C (17.38), V R (t) + V C (t) V : V = V R (t) + V C (t) (17.39), 17.4, R, C, t = 0 V 17.1; I P.85 5 V = RI(t) + Q(t) C (17.40), (t) (17.40) t, : 0 = R di dt + 1 dq C dt (17.41) V, I,, dt I dt, dq, dq = I dt (17.4) 17.1,,,,,,, (t),, (t) t I(t), Q(t), V R (t), (17.34), dq dt = I (17.43) (17.43) (17.41), 0 = R di dt + I C (17.44) (,, Q(t) ), : di dt = I CR (17.45), (17.45), * 5 F, 10 6 F 10 9 F 56 (17.45), : I(0) = I 0,

26 18 17 : ( I(t) = I 0 exp t ) CR, (17.40), t = 0, V = RI(0) + Q(0) C (17.46) (17.47),, Q(0) = 0,, V = RI(0), I 0 = V/R (17.46), : I(t) = V ( R exp t ) CR (17.37), ( V R (t) = V exp t ) CR (17.39), { ( V C (t) = V V R = V 1 exp t )} CR 57 (17.50) 58 (17.48) (17.49) (17.50), (17.49) (17.49) (17.50) ( t ), CR = τ (17.51), (17.46) : ( I(t) = I 0 exp t ) τ τ 59 (17.5) τ, I(t), 530 R = 1 k, 1000, C = 1 F, F, (1) s () I(t) I 0 1? 531 C,? ,,, (1) 1 m, 0.01 m (100 cm ) 1, 1% m, 1 p m n,, F, F = 1 (1 p) n (17.53) ( ) () 1 m L m, np = L (17.54) F n L p (3) (17.54) L,, n, p 0, F = 1 e L (17.55), 1 1, (4) 1 m 1 m, (5) 1 k P k P k = n C k p k (1 p) n k (17.56) : n k, n k (6) (17.54) L,,

27 n, p 0, : P k = Lk e L k! (17.57) (7),,, θ, 1, p p cos θ, p, n, X, X k, P (X = k), P (X = k) = n C k p k (1 p) n k (17.58), n,, p,, np ( np = λ ), 53, P (X = k) = λk e λ k! (17.59), λ (17.57), L (17.59),...,, 533 (1) 1, 1, 4 () 10 1, 1 3!, ,, ( ) (),, 1, 1, 1 / ?, 16? 535 DNA 4 (A,T,G,C) (1) 4,? 1 4 (A,T,G,C )? () DNA, 30 ( ),? (3)? (4) CD (compact disc)? (5) DVD (digital versatile disc)?, 17.1 (, ),,,,,, (),,, p, I, I = log p (17.60) I p, 17.

28 0 17 I O p I = log p, (),,,,,,,, () H, H = p s log p s p r log p r (17.61) I, yes no 1, yes no 1/,, I = log (1/) = 1, 1, yes no DNA, A, T, G, C 4 1/4,, (),,,, p 1, p, p 3,, p n, n H = p k log p k (17.6) k=1 (, p 1 + p + + p n = 1), () 537 3/4, 1/4,?? 17., 17.1, (, ),,,,?, p s, p r,,, 538, (1) 3/4, 1/4, () 9/10, 1/10, (3) p, 1 p,, H = p log p (1 p) log (1 p) p 0, p p 1 (4), p = 1/ (5),,?

29 DNA, 4,, DNA, A, T, G, C 0.34, 0.4, 0.19, 0.3, 0.8, 0.15, 0.10, 0.47,,?, :, n,, p 1, p, p 3,, p n, n H = p k log p k (17.63) k=1 *3 H, 540, (17.63) H, (1) 3, H () 4, H? (3), n, H n? (4) 3, 0., 0,3, 0.5 H?, 3?, 0.1, 0., 0.7?,,, S S 1 = 1 dq T (17.64) ( T, Q S 1, S 1, )?, (17.64) S,,, : S = k B n k=1 p k ln p k (17.65), n, *4, p k, k B ( ) (17.65),, (17.6) (17.65), (k B ), (17.65),,, (17.6),, (17.63),,, 17.7 : e ix = cos x + i sin x (17.66) *3,, (Claude Elwood Shannon) Norbert Wiener), 0, *4, S 1 S 1

30 17, sin x = eix e ix i cos x = eix + e ix (17.67) (17.68), i,,, ( ) sinh x := ex e x cosh x := ex + e x (17.69) (17.70) tanh x := sinh x cosh x = ex e x e x + e x (17.71) cosh, sinh, tanh,,,, sin h h, sinh,,, 541, cosh x sinh x = 1 (17.7) (cosh x) = sinh x (17.73) (sinh x) = cosh x (17.74) (tanh x) 1 = cosh x, x = 0, sinh 0 = e0 e 0 cosh 0 = e0 + e 0 = 1 1 = (17.75) = 0 (17.76) = 1 (17.77) tanh 0 = sinh 0 cosh 0 = 0 1 = 0 (17.78), y = f(x) = sinh x : f(0) = sinh 0 = 0, f (0) = cosh 0 = 1, x = 0 1 x e x, e x 0, f(x) sinh( x) = e x e x = ex e x = sinh x sinh x, y = sinh x y x y = sinh x! y = sinh x, 0 (y = x 3 )... (sinh x) = cosh x, cosh 0 = 1, x = y = f(x) = cosh x f(0) = cosh 0 = 1, (0, 1) f (0) = sinh 0 = 0, x = 0 0 x e x, e x 0 f(x) cosh( x) = e x + e x = cosh x cosh x y, y = cosh x 17.4 y = f(x) = tanh x f(0) = tanh 0 = 0, f (0) = 1/ cosh 0 = 1 x = 0 1 x y 1

31 y x -1 T T 0 T 1 0 τ τ 3τ 17.6 T 0 > T 1 t y = cosh x tanh( x) = sinh( x) cosh( x) = sinh x cosh x = tanh x tanh x, y = tanh x 17.5 y 3 (1) x y = 1 () xy, (x, y), ( x, y),, cosh t x, sinh t y,,,,, ) 3,...,, x y = tanh x 54, y = sinh x, y = cosh x, y = tanh x 543 t, x = cosh t, y = sinh t ( ) κ 11 κ κ 1 κ 1 = 0 50 (1) : 0.99, : 0.95, : 0.61 () : 0.90, : 0.61, : (1) () 17.6, 17.7 (3), T (t), T (t) ( )

32 4 17 T T 1 T 0 0 τ τ 3τ 17.7 T 0 < T 1 t, I(t) ( ) 530 (1) F= F = (V/A)(C/V)= C/A= s () I(t)/I 0 = exp( t/τ) = 0.01, t/τ = ln , t 4.6 τ s s (4) (17.33) t = τ, T (τ) = (T 0 T 1 )e 1 + T 1 (17.79), T (τ) T 0 T 1 T 0 = (T 0 T 1 )e 1 + T 1 T 0 T 1 T 0 = e = 1 1 = 0.63 (17.80) e, T 0 T 1, 63 (5) T 1, T 1 = T T 0 exp( t/τ) 1 exp( t/τ) (17.81), τ = 30 s, T 0 = 0, t = 60 s, T = 3, T 1 = , 1.9, t, t = τ ln T 0 T 1 T T 1 (17.8) 0.5, T = 33.4, t = 99.8 s, 100, 54 t,, exp( t/τ), τ 55 C/K, K, C,, , I(t) 531,,, 53 (1) 1, 1 1 p n, n, (1 p) n, n, 1 (1 p) n 1 m,, 1 (1 p) n F () np = L, p = L/n, F = 1 (1 L/n) n (3), n, (1+x/n) n e x x = L, F = 1 (1 L/n) n 1 e L, F (L) = 1 e L (4) F (1) = 1 1/e (5) n k nc k,, k 1, 1 p k (1 p) n k, P k = n C k p k (1 p) n k (17.83) : (6) p = L/n, P k = = n! k!(n k)! pk (1 p) n k n! k!(n k)!( L n ) k ( 1 L ) n k n n(n 1) (n k + 1) = n k k! ( = ) ( 1 k 1 ) n n L k ( 1 L ) n k n ( Lk 1 L ) n ( 1 L ) k (17.84) k! n n

33 17.8 5, n, ( ) ( n 1 k 1 n ) 1 (17.85) ( 1 L ) n e L n (17.86) ( 1 L ) k 1 n (17.87), n (17.84), H P k Lk e L k! (17.88) O p (7) 1, p p cos θ, L L cos θ 533 ( ) (1), 0.67?? (), ???? ( ) 534 8, 8 = 56 16, 16 = (1) 4 : A,T,G,C, 4 4 =, () 30, 60 (3) 60 /8=7.5 (4) CD 700 = 7, CD 1 (5) DVD 5 = 50, DVD A, T, G, C, log (1/4) = 537, log (3/4) = 0.4,, log (1/4) = 538 (1) p s = 3/4, p r = 1/4, H = p s log p s p r log p r =0.81 () p s = 9/10, p r = 1/10, H = p s log p s p r log p r =0.47 (3) 17.8 (4) H, dh/dp , dh dp = 1 ( 1 p ) ln ln = 0 (17.89) p, (1 p)/p = 1,, p = 1 p,, p = 1/ (5) p = 1/, H, 539 : H = 1.97 : H = 1.77, 540 (1) H = log (1/3) = 1.58 () H = log (1/4) =.0 (3) n, 1/n, (17.63), p k = 1/n, H = n k=1 = n 1 n log 1 n log 1 n 1 n = log 1 n = log n (4) 0., 0,3, 0.5, H = , H 0.1, 0.,

34 , H = 1.16, 541 ( e cosh x sinh x + e x ) ( e x e x x = = ex + e x + ex + e x = = 1 ( e (cosh x) x + e x ) e x e x = = = sinh x ( e (sinh x) x e x ) e x + e x = = = cosh x ( sinh x ) (tanh x) = cosh x = (sinh x) cosh x sinh x(cosh x) cosh x = cosh x sinh x cosh x (1) (17.7) 1 = cosh x () y 1 0 x y (cosh t, sinh t) y ( cosh t, sinh t) y = ±x )..., 1 /...,,,...!!...,,,,,,,,,,?,,,,,,,,,,,,,

35 7 18 1:,,,,,,,,,,,,,,,,,,,,, (0 ) 18., 0 (!),,,, R, C, Z 544 (1)? () N? (3) Q? 18.1,,,, (0 ),, (0 ),,,,,,,, ( ), 1, 3+4=7, 3 4 7,, 18.3,, X, K,, X K x X, α K, αx X (18.1) x, y X, x + y X (18.),,, R ( K = R ),, C ( K = C ) R, C, K, (18.1) α

36 8 18 1:, R C,,,,, R , 545? *1, (18.1), : X x K α, αx X, (18.), : X x y, x + y X (18.1), (18.), X x, y, (18.1), X, (18.), X,,, 18.1 A = {1,, 3, 4, 5} A,? x, y A, x = 1, y = 5, x + y = 6, A (18.), A 18. S = {,,,, } *4 S S? x S x =, 0.1.5,, +,,,, S,, (18.1) (18.),,, S,, *,,,,, (),, *3,,,?,?,,,,,,, 18.3 R? x R, ( )αx, α,, αx R, (18.1), x, y R,, x + y R, (18.), R,,,, (18.1) (18.),,,, *1,! *, p. 19 *3,,, *4

37 x αx, (, 3) ( 3, 1, 1.5),,, 18. x, y x + y!!!, 3,,,,, 3,,,?,,,, : 18.4 X,? x X, αx, ( 18.1) (18.1), x, y X, x + y, ( 18.) (18.), X 18.5 n n,, n n? n R n *5, (18.3) 4, R 4 *6, R n? x R n, x 1, x,, x n, x 1 x x =. x n (18.4), )α, αx 1 αx αx =. αx n (18.5), R n (18.1) 18.4,,,,,,,,, *5 R n n,,, R n = R R R,, *6,, ( ) [ ],

38 :, R n y 1 y y =. y n, x y x 1 + y 1 x + y x + y =. x n + y n (18.6) (18.7), R n (18.), R n *7 548,,,,,,,,,,, 547?? 18.3, x,,,, x,,,,,,, x, X ( )x, α, x α αx,, xα,,,,,,,,,,,,, *7,,,,, ( ) 18.6 Z Z, x =, α = 0.1, αx = 0., Z, (18.1) Z *8 18.3, R,,, 18.6, Z,,,?, (!) *9 *8, Z,,, Z? Z *9,,,,

39 , R (1) B = {n n 1 } () C, R (3) C, C (4) {0} (5) {1}, Y, (18.11), p exp(qx), (18.11) sinh x, 17.3,, f(x) = p exp(qx), p Y 18.7 P * 10, P = {f(x) = px + qx + r p, q, r R} (18.8) P?, P f(x) = px + qx + r, α α αf(x) = α(px + qx + r) = αpx + αqx + αr 18.9 x, 1 x 1 f(x) X f(x) X, αf(x) 1 x 1, αf(x) X, f 1 (x), f (x) X, f 1 (x) + f (x) 1 x 1, f 1 (x) + f (x) X, X,, 1 x 1,, P (18.1), P g(x) = sx + tx + u s, t, u R, 18.7 P 18.8 Y, 18.9 X,, f(x) + g(x) = (px + qx + r) + (sx + tx + u) = (p + s)x + (q + t)x + (r + u), P (18.), P,,, ,,, * 11,,,, 18.8 Y, f(x) = p exp(qx), x (p, q ),,,, Y = {f(x) = p exp(qx) p, q R} (18.9), Y?, ( ) f 1 (x) = 1 exp(x), f (x) = 1 exp( x) (18.10), f 1 Y, f Y, f 1 (x) + f (x) = exp(x) exp( x) (18.11) *10, x 0, P 0, , f(x) = x 1, f( 1) = f(1) = 0, f(x) 0 0,, 0,,, *11,,,, ,

40 3 18 1:,,, ( ),,, (18.)!), X () 550 α, β, γ, (x, y, z) αx + βy + γz = 0 (18.19) : : x + y + z = 0 (18.1) 1 3,, * 1,, (x, y, z) = ( 1, 1, 1) (18.13) (x, y, z) = (0, 1, ) (18.14),, : X = {(x, y, z) x + y + z = 0} :, (x 1, y 1, z 1 ) X (18.15) (x, y, z ) X (18.16), x 1 + y 1 + z 1 = 0 (18.17) x + y + z = 0 (18.18), α, α(x 1, y 1, z 1 ),, (αx 1, αy 1, αz 1 ), (18.1), αx 1 + αy 1 + αz 1 = α(x 1 + y 1 + z 1 ) = 0 ( (18.17) ), α(x 1, y 1, z 1 ) (18.1), α(x 1, y 1, z 1 ) X ( (18.1)!), (x 1, y 1, z 1 )+(x, y, z ), (x 1 +x, y 1 +y, z 1 +z ) (18.1), x 1 + x + (y 1 + y ) + z 1 + z = (x 1 + y 1 + z 1 ) + (x + y + z ) = 0 ( (18.17) (18.18) ), (x 1, y 1, z 1 ) + (x, y, z ) (18.1), (x 1, y 1, z 1 ) + (x, y, z ) X ( *1 :,, (, 18.3 R, 18.9 ),, 551, (1) 3, () 3, :, X = {ln x 0 < x R} (18.0) α ln x = ln x α X, ln x 1 + ln x = ln x 1 x X, X, R R R,,, X = {f(x) = ln x 0 < x R} (18.0) f(x) = ln x, f(x) = ln x,,,,,,, X = {sin x x R} (18.1)

41 , X = {x x R, 1 x 1} (18.), (18.1),,? ( ) ( ), ( ),,, 18.4,, K X, n (n 1 ): x 1, x,, x n X, n : α 1, α,, α n K, α 1 x 1 + α x + + α n x n (18.3), n α k x k (18.4) k=1,, superposition,,,,,,,,,,,,,,, 3,,,, * 15,, 55 (1) () (3) 553 X, X 554 ( (18.1) (18.)), * 13 * 14 x X, y X, α K, β K, αx + βy X (18.5) 1 X, Y, X, Y, X Y :,, R, R R, R R, 554,,,, *15,, *13 *14, (18.5),

42 : (1) 544 () (1) 0, (), 3, 5 N, 3 5 = / N, * 16, N (3) 0 ), Q, 545, (3) 553 x 1, x,, x n X, α 1, α,, α n K X, α 1 x 1 X n S n = α k x k (18.6), (18.1), 546 α n+1 x n+1 X (18.8) k=1, S 1 = α 1 x 1 X, n N, S n X x n+1 X, α n+1 K (18.7) 547, (18.), 548 S n + α n+1 x n+1 X (18.9) 549 (1) B, 0.1 R, 0.1 = 0. / B (), (3), (4) {0} 0, α R, α0 = 0 {0}, {0} ( 0 ), = 0 {0}, {0} ( 0 ), {0} (5) 1 {1}, R, 1 = / {1} S n+1, S n+1 X,, X X 554 (18.1), α K, β K, x X, y X, αx X βy X (18.), αx + βy X (18.5), (18.5), β = 0 (18.1), α = β = 1 (18.) (18.1) (18.), (18.1) (18.), (18.5),......?..., *16, 1

43 35 19,,,, 556, ( ), x + y + z = 0 (19.3) P ,,,,, ( ) * (19.1),,,, * 555 : 19. x(t) { x + y + z = 0 x + y z = 0 (19.1) dx dt + x = 0 (19.4) *3,,, x(t) = Ae t A,, 19.1 x, y, : xy = 1 (19.)?, (x, y) = (1, 1),, (x, y) = (, ), A,, (19.4) x(t), X,, X = {x(t) = Ae t A R} (19.5),, e t,, A, e t, (19.4),, = 4 1, (, ) ( ), *, *1, dx/dt = x, *3, x(t) (t),,,

44 36 19,, (19.4) : x 1 (t), x (t) X ( (19.4) ), m d x dt dx = kx γ dt : (16.33) (19.1) dx 1 dt + x 1 = 0 (19.6) dx dt + x = 0 (19.7), α, αx 1 (t) X ( (19.4) ), d(αx 1 ) dt ( dx1 ) + (αx 1 ) = α dt + x 1 = 0 (19.8) (19.6), X X, x 1 (t) + x (t), X, d(x 1 + x ) + (x 1 + x ) dt (19.9) ( dx1 ) ( = dt + x dx ) 1 + dt + x = 0 (19.10) (19.6), (19.7), X X, X, (19.4) 19.3 (19.11) (19.1), t,,,,?,, (17.) (16.6),, *4, (19.11) (19.1) *5 19.3, x(t) (19.11) d x dt dx x = 0 (19.13) dt,,,,,! 557 d x dt dx x = 0 (19.11) dt 558, m, k, γ 0 t = 0, x = 5 dx dt =, dx d x, (19.13),,, x(t) *4,, dx dt = x + t,, *5,

45 ,, ( d dt d dt ) x = 0 (19.14), (19.14) (),,, (operator) x(t) ,, ( d dt )( d dt + 1 ) x = 0 (19.15),, (19.14) O x(t) = 4e t + e t 4e t e t t = 0 t, (19.13),, x(t) x(t),,, ( d dt + 1 ) x = 0 (19.16) dx dt + x = 0 (19.17) x(t), (19.15), (19.13), (19.14) ( d dt + 1 )( d dt ) x = 0 (19.18) x(t) = a 1 exp( t) (19.1) () (19.0), a x(t) = a exp(t) (19.) (3), x(t) = a 1 exp( t) + a exp(t) (19.3), (19.13) (4) a 1, a, x = 4e t + e t (19.4) 19.1,, ( d dt ) x = 0 (19.19) dx x = 0 (19.0) dt x(t), (19.13)!, x(t),,,,,, (, ),, 559, (19.13),,, (1) (19.17), a 1,,

46 38 19, : () (19.14) (), (19.15) (19.16),,, (19.16) ( d ) x dt + 1 = 0 (19.5),,, d/dt λ, (19.14), λ λ = 0 (19.6), λ ( ), : (λ + 1)(λ ) = 0 (19.7) λ d/dt, (19.6), d/dt λ, ( d dt + ω 0 ) x = 0 (19.30) (4),,, (19.30), i ( d dt iω 0 )( d dt + iω 0) x = 0 (19.31) (5) a 1, a, x = a 1 e iω0t + a e iω0t (19.3) (6) t = 0 x = x 0, v = v 0 : x 0 = a 1 + a (19.33) v 0 = iω 0 (a 1 a ) (19.34) (7), a 1, a, : ( a 1 = x 0 + v ) 0 / (19.35) iω 0 ( a = x 0 v ) 0 / (19.36) iω 0 (8), (19.3) : x = x 0 cos ω 0 t + v 0 ω 0 sin ω 0 t (19.37) (9), a, δ, x = a sin(ω 0 t + δ) (19.38) 560 (1) ω 0 = 16.1 k m (19.8),,,,, (16.31) d x dt + ω 0x = 0 (19.9) () (19.9) (3),, 561, P.9 517(3) (1),, : d x dt + dx + x = 0 (19.39) dt

47 x(t) t (19.4) 16.9 : t = 0 x = 1, dx/dt = 0 (),, a 1, a x(t) = ( i ) ( 1 15 i ) a 1 exp t + a exp t 4 4 (19.40) (3) : x(t) = e t/4{ ( 15 i ) ( 15 i )} a 1 exp t + a exp t 4 4 (19.41) (4), a 1, a, : x(t) = e t/4 ( cos 15 4 t ) sin 15 4 t (19.4) (5),, 517(3) (), : d [B] dt + (k 1 + k ) d dt [B] + k 1k [B] = 0(19.47) (3), : ( d dt + k 1 )( d dt + k ) [B] = 0 (19.48) (4) a, b, : [B] = ae k 1t + be k t (19.49) (5) t = 0, [A]= A 0, [B]=0, : [B] = k 1A 0 k k 1 (e k 1t e k t ) (19.50),,,,, 19.4,,, (19.4) (19.11),, (16.8), t, * A, B, C,, : 563? A B C (19.43) A B k 1, B C k, (19.4) (19.11) (1) : d[a] dt d[b] dt d[c] dt = k 1 [A] (19.44) = k 1 [A] k [B] (19.45) = k [B] (19.46) *6, r = (x(t), y(t), z(t)), x(t), y(t), z(t) 3 ( ) () 3, t (x, y, z ),,

48 40 19,, ( (x, y, z) (0, 0, 0) ),,, *7,,,,,,,,,,,,,,, *8 f(x, y) : f x + f y = 0 (19.51), 3 f(x, y, z) 3 : f x + f y + f z = 0 (19.5),, 0,?, 567 (19.51) f(x, y) X (1) f 1 (x, y) X f = f 1 (x, y) (19.51), α, f = αf 1 (x, y) (19.51) () f 1 (x, y), f (x, y) X f = f 1 (x, y) f = f (x, y) (19.51), f = f 1 (x, y) + f (x, y) (19.51) (3) X, 564? 19.4 II-1, ( 565 f(x, y),, (19.51) (1) f(x, y) = x y () f(x, y) = ln (x + y ) (x, y) (0, 0) ) ϕ,, : ϕ x + ϕ y = 0 (19.54), 1 P.44 (8), f(x, y, z), 3 (19.5) I, ϕ = ρ s I π ln r 0 r (19.55) f(x, y, z) = 1 x + y + z (19.53), ρ s, r, r 0, (19.54) *7,, *8 (Pierre-Simon Laplace), 18-19, (19.55),, (x, y) r, r = x + y (19.56)

49 , (1) (19.56) (19.55) ϕ = ρ s I 4π ln(x + y ) + ρ s I π ln r 0 (19.57) () (19.57) (19.54) : (19.57) (19.54), ,, (19.3) (19.4) 19.6,,, 19.5, 567,,,, 19.4,,,,, I P.46 (4),, :,,,,,,,,,,,,, 569,,,,,,,,, *9,,,, 570?,, (16.33) (19.8) ω 0, : α = γ m (19.58) *9,

50 4 19 α, (16.33) d x dt + αdx dt + ω 0x = 0 (19.59) (1) x 1 (t), x (t) () α ω 0, x 1 (t), x (t), t 0 () (3) α < ω 0, x 1 (t), x (t), 0 3 ( ) (16.6),,, α = 1.0, β = 0.005, N(0) = 0,,, 503(3), 4 ( ) (19.13), (1) x (t) y(t), (19.13), : { x (t) = y(t) y (t) = y(t) + x(t) (19.60) () (19.60) : d dt [ ] x(t) = y(t) [ ] [ ] x(t) y(t) (19.61) (3) (19.61) A A * 10, (19.13),, (19.6),,, (4) A, λ 1, λ *10,, P, [ ] P 1 λ1 0 AP = 0 λ (19.6) (λ 1, λ, P ) (5), (19.61) : d dt P 1 [ ] [ ] [ ] x(t) λ1 0 = P 1 x(t) y(t) 0 λ y(t) (19.63) :, (19.6) A = ( P, P 1, ) A, (19.61) P 1 (6), [ ] [ ] X(t) = P 1 x(t) Y (t) y(t), { X (t) = λ 1 X(t) Y (t) = λ Y (t) (19.64) (19.65) (7), X(t), Y (t) t, X(t), Y (t) 1 (8) (19.64), x(t), (9) : x(0) = 5 x (0) =,,...,...,!!!...,

51 X... X X, x x,...,?...,

52 (19.1) X (x 1, y 1, z 1 ) X, (x, y, z ) X, x 1 + y 1 + z 1 = 0 (19.66) x 1 + y 1 z 1 = 0 (19.67) x + y + z = 0 (19.68) x + y z = 0 (19.69), α, α(x 1, y 1, z 1 ), (αx 1, αy 1, αz 1 ) (19.1), αx 1 + αy 1 + αz 1 = α(x 1 + y 1 + z 1 ) = 0 αx 1 + αy 1 αz 1 = α(x 1 + y 1 z 1 ) = 0, (19.1), α(x 1, y 1, z 1 ) X, (x 1, y 1, z 1 )+(x, y, z ), (x 1 +x, y 1 + y, z 1 + z ) (19.1), (x 1 + x ) + (y 1 + y ) + (z 1 + z ) = (x 1 + y 1 + z 1 ) + (x + y + z ) = = 0 (x 1 + x ) + (y 1 + y ) (z 1 + z ) = (x 1 + y 1 z 1 ) + (x + y z ) = = 0, (19.1), (x 1, y 1, z 1 ) + (x, y, z ) X, X ( (18.1), (18.)),, (19.1) (19.11), d (αx 1 ) dt d(αx { 1) d x 1 (αx 1 ) = α dt dt dx } 1 dt x 1 (19.70), α 0, 0 αx 1 (19.11), x = x 1 + x (19.11), d (x 1 + x ) dt d(x 1 + x ) (x 1 + x ) dt { d x 1 = dt dx } { 1 d dt x x 1 + dt dx } dt x (19.70), (19.71), 0 + 0, 0 x 1 + x (19.11), X, X (1) () (3) (19.3) (19.13), = 0 (4) t = 0 x = 5, 5 = a 1 + a t = 0 dx/dt =, = a 1 + a, a 1 = 4, a = 1 (19.3) 556,, (, 0, 4) (1, 0, 1),, (3, 0, 5), = 4, 0 (3) (4) 557 (19.11) X x 1 (t), x (t) X (, (t) ), 560 (1) () (5) (19.31), : ( d dt iω 0) x = 0, ( d dt + iω 0) x = 0 d x 1 dt dx 1 dt x 1 = 0 (19.70) d x dt dx dt x = 0 (19.71) α, x = αx 1,, dx x = iω 0dt, x 1 = a 1 e iω 0t,

53 , x = a e iω 0t,, (6) (7) (8) x = a 1 e iω0t + a e iω0t (9) a = x 0 + (v 0/ω 0 ),, sin δ = x 0 /a, cos δ = v 0 /(aω 0 ) δ, (1) A B, A k 1, (19.44) * 11 B C, B ( [B]) C, k, (19.46), B k [B] C ( [B] ),, A k 1 [A] B ( [B] ), (19.45) () : (19.45) t, : d [B] dt = k 1 d[a] dt k d[b] dt, 1 d[a]/dt, (19.44), d [B] dt = k 1[A] k d[b] dt b = a, (19.49), [B] = a(e k 1t e k t ) (19.7) t, d[b] dt = a( k 1 e k 1t + k e k t ) (19.73) t = 0, t = 0 d[b]/dt = a( k 1 + k ), (19.45), t = 0 d[b]/dt = k 1 A 0,, t = 0 d[b]/dt = a( k 1 + k ) = k 1 A 0, a = k 1A 0 k k 1 (19.7), (19.50) (1), f x =, f = (19.74) y f x + f y = 0 (19.75), 1 [A], (19.45), d [B] dt = k 1 ( d[b] dt ) d[b] + k [B] k dt, (19.47) (3) ( (19.47) ) (4) () (5) (19.49), t = 0, [B](0) = a+b, [B](0)=0, a + b = 0, *11 6 (), f x = x + y 4x (x + y ) (19.76) f y = x + y 4y (x + y ) (19.77) f x + f y = 4 x + y 4x + 4y (x + y ) = 0 (19.78)

54 f x = x ( x + y + z ) 3 f x = 1 ( x + y + z ) + 3x 3 ( x + y + z ) 5 N , f y = 1 ( x + y + z ) + 3y 3 ( x + y + z ) 5 00 f z = 1 ( x + y + z ) + 3z 3 ( x + y + z ) 5 150, 100 f x + f y + f z = 3 ( x + y + z ) + 3x + 3y + 3z 3 ( x + y + z ) = O α=1.0, β=0.005, N 0 =10 α=1.0, β=0.005, N 0 =0 Twice of the first line t ( ) (1) f 1 (x, y) X, f 1 x + f 1 y = 0, (αf 1 ) x + (αf 1 ) ( f 1 y = α x + f ) 1 y = 0, 19.3,,,, αf 1 (x, y) X () f 1 (x, y) X f (x, y) X,, f 1 x + f 1 y = 0, f x + f y = 0, (f 1 + f ) x + (f 1 + f ) y ( f 1 = x + f ) ( 1 f y + x + f ) y = 0, f 1 (x, y) + f (x, y) X (3) (1) (), X X N 0 = 0, 19.3, N 0 =

55 47 0 :, :,, ( ), 300 1,, (),, 0.1, ( X ), ( Y ), X Y (mapping) 0.1 (,, ), ( ),, () (), X Y, X Y, ,, (), Y X, 0.,,,, (),, X Y, X Y,, Y X *1 * 300,, X Y Y (,, ),, 0.1,, , 400, 300,, 571? *1 Y X * Y X

56 48 0 : 57?, f, X Y, f : X Y (0.1) * , : Z :,,,, f g,,, f : X Y, X Y, f : x y (0.) x X, y Y, f, f :, g, g :, *4 f() = 400 g() =,,, ( ),,, ( ),,, ,, (, ) () 4?...,,,,, 0.7, ( ), R *5,, R R f, f : R R (0.3), f : (x, y) x + y (0.4), f(x, y) = x + y (0.5) () 0.8 3, (3 ) (3 ), R 3 R 3 *6, f, f : R 3 R 3 R (0.6) , *3 :, ; *4, *5 R R R! *6 R 6, 3 6, ( ),, R 3 R 3

57 0. 49, 0.9 x x f(x) = x f : ( (x 1, y 1, z 1 ), (x, y, z ) ) x 1 x + y 1 y + z 1 z (0.7), f ( (x 1, y 1, z 1 ), (x, y, z ) ) = x 1 x + y 1 y + z 1 z (0.8) *7 x, y α, β, f(αx + βy) = (αx + βy) = α(x) + β(y) = αf(x) + βf(y), f(x) (0.1) (),,,,,,,, 0., X W f : f : X W (0.9), f α K, x X, f(αx) = αf(x) (0.10) x, y X, f(x + y) = f(x) + f(y) (0.11), K 573, (0.10) (0.11), (0.10) (0.11), α, β K, x, y X, f(αx + βy) = αf(x) + βf(y) (0.1) 0.10 x = (x 1, x ) R, (,3), f, f : (x 1, x ) (, 3) (x 1, x ) = x 1 + 3x (0.13), f : (3, 1) (, 3) (3, 1) = 9 (0.14) *8 : f((3, 1)) = (, 3) (3, 1) = 9 (0.15), f, R R, f : x = (x 1, x ), y = (y 1, y ) α, β, f(αx + βy) = (, 3) (αx + βy) = (, 3) {(αx 1, αx ) + (βy 1, βy )} = (, 3) (αx 1 + βy 1, αx + βy ) = αx 1 + βy 1 + 3αx + 3βy (0.16), αf(x) + βf(y) = α(, 3) x + β(, 3) y = α(, 3) (x 1, x ) + β(, 3) (y 1, y ) = α(x 1 + 3x ) + β(y 1 + 3y ) = αx 1 + βy 1 + 3αx + 3βy (0.17) (0.16) (0.17), f(αx + βy) = f(αx) + f(βy) (0.18) 574, (0.1),,, f (0.1),, *7 *8 (0.15),,,,

58 50 0 : 0.11 R R g, 0.13 R R g : (x 1, x ) x 1 x (0.19), g((x 1, x )) = x 1 x (0.0), g((3, 4)) = 3 4 = 1 (0.1) g?, g((3, 4)) = g((6, 8)) = 6 8 = 48 (0.) F : (x, y) (x, y), :, x = (, 0) y = (3, 0), α = 1, β = 1, f(αx + βy) = f((5, 0)) = (5, 0), αf(x) + βf(y) = f((, 0)) + f((3, 0)) = (4, 0) + (9, 0) = (13, 0), g, (0.10), g((3, 4)) = g((3, 4)) = (3 4) = 4 (0.3), (0.1) (0.), (0.3) 575,, g ( )? * f(x), 3, F, F : f(x) 3f(x) (0.4), F ( f(x) ) = 3f(x) (0.5), F : f(x), g(x) α, β, 576 R R F : (1) F : (x 1, x ) (x 1, x ) () F : (x 1, x ) (0, x ) (3) F : (x 1, x ) (x, x 1 ) (4) F : (x 1, x ) ( x 1, x ) (5) F : (x 1, x ) (x 1 + 1, x ) F ( αf(x) + βg(x) ) = 3(αf(x) + βg(x)) = α 3f(x) + β 3g(x) = αf (f(x)) + βf (g(x)), F (0.1) 0.9, 0.1,,,,, 0.9, 0.1, f(x) = x 0.1 3x x 3x, 3, F 0.14 f(x) X f(x) X f (x) X,, f(x) d dx : f(x) f (x) (0.6), X X f(x), g(x) X, α, β R,, d ( ) αf(x) + βg(x) = α d dx dx f(x) + β d dx g(x), d/dx * 10 *9,, *10,, x < 0

59 f(x), ( ) (1) F : f(x) f(x) + 1 (0.7) () F : f(x) f(x) (0.8) (3) F : f(x) d f(x) (0.9) dx ( d ) (4) F : f(x) dx f(x) (0.30) x 1 f(x) F F : f(x) 1 0 f(x)dx (0.31),,,,,,, (0.10)(0.11), (0.10), αx X, (0.11), x + y X, X,,, X,, W,,,,,, (0.10) (0.11), f(x) = x, 0 x f(x) = x 3 f(x), x = 0 ), 1, 1,,,,,,,,, * 11 : 0.15 R, (x, y) R, f : (x, y) (x, y ) (0.3), R R,, (0.30),,,, ( ),, X, Y, : f : X Y (0.33),, Y X, f, 0.9, 0.1, 0.14, 0.10 ( ) 579, 3 ( 0.10, ) f(x), L : f(x) d dx f(x) d f(x) f(x) (0.34) dx L L (0.34) L, L = d dx d dx (0.35) *11,

60 5 0 :, P.37 (19.14), L, (19.14),,,,,,, (19.4), ( d dt + 1 ) x(t) = 0 (0.36), (19.11), ( d dt d dt ) x(t) = 0 (0.37), (19.51), ( ) x + y f(x, y) = 0 (0.38),,,,,,,, =0,, x, y, ( ) L, x, y, f(x, y, ), Lf(x, y, ) = 0 (0.39), ( ) 581 (0.39) : (0.39) L, (0.35) L 0.4,, x, y, f(x, y, ), L, 0 g(x, y, ), Lf(x, y, ) = g(x, y, ) (0.40) ( ) g(x, y, ) * 1, f f (explicit ) g 0, (0.40) (0.39),, 0.16, : d dx f(x) d dx f(x) + f(x) = x (0.41) L = d dx d dx + (0.4) g(x) = x (0.43) (0.40) (0.41) 0.17 : d dx f(x) d dx f(x) + f(x) = f(x) + x (0.44),? f(x), d dx f(x) d dx f(x) + f(x) f(x) = x (0.45) f 0.18 : d dx f(x) d f(x) + f(x) = f(x) + x (0.46) dx,,, *1

61 f(x), d dx f(x) d f(x) + f(x) = x (0.47) dx, (0.50) (0.40) t, x (f(x) ) 58 (1) () (3) R C,, t V (t) (, ),,, (0.41) f 1, f d dx f 1 d dx f 1 + f 1 = x (0.54) d dx f d dx f + f = x (0.55) 0.1 (0.54) (0.55), d dx (f 1 + f ) d dx (f 1 + f ) + (f 1 + f ) = x, f 1 + f (0.41), I(t) Q(t) 17.1, (17.40),,, V (t) = RI(t) + Q(t) C, V (t), (0.48) V (t) = V 0 sin ωt (0.49) (V 0, ω, ) (17.43), Q I, (0.48), R dq(t) dt + Q(t) C = V 0 sin ωt (0.50),, L = R d dt + 1 C (0.51) f = Q(t) (0.5) g = V 0 sin ωt (0.53) d dx (f 1 + f ) d dx (f 1 + f ) + (f 1 + f ) = x,,, 0 = x (0.56), f 1 + f (0.41) (0.41),,,,,,,, L, f 1 (x) L f 1 (x) = g 1 (x) (0.57), f (x) L f (x) = g (x) (0.58)

62 54 0 : g 1 (x), g (x), (L) a, b, a, b, al f 1 (x) + bl f (x) = ag 1 (x) + bg (x) (0.59), L ( ), L(af 1 (x)+bf (x)), L(af 1 (x) + bf (x)) = ag 1 (x) + bg (x) (0.60), ag 1 (x) + bg (x),, g 1 (x) g (x),,,, :,,,,,,, : R dq(t) dt R dq(t) dt + Q(t) C = V 0 i eiωt (0.65) + Q(t) C = V 0 i e iωt (0.66) (0.65), e iωt, e iωt, Q(t) = Q 0 e iωt, (0.65), RiωQ 0 e iωt + Q 0e iωt C e iωt, RiωQ 0 + Q 0 C = V 0 i Q 0, Q 0 = V 0 ( Rω + i/c), (0.65), Q 1 (t) = = V 0 i eiωt (0.67) (0.68) (0.69) V 0 ( Rω + i/c) eiωt (0.70) (0.66), 583 : Lf(x, y, ) = g(x, y, ) (0.61), f 0 (x, y, ), L Lϕ(x, y, ) = 0 (0.6) ϕ(x, y,... ), f 0 : f 0 (x, y, ) + ϕ(x, y, ) (0.63) Q (t) = V 0 ( Rω i/c) e iωt (0.71), (0.50), Q 1 (t) Q (t),, (0.50), : Q(t) = Q 1 (t) + Q (t) = V 0 V 0 ( Rω + i/c) eiωt + ( Rω i/c) e iωt (0.7), (0.61) , 0.19 (0.50), V 0 sin ωt : e iωt e iωt V 0 sin ωt = V 0 (0.64) i (1) (0.50), (0.7),, () (0.7), : : Q(t) = V 0{e iωt ( ωr i/c) + e iωt ( ωr + i/c)} (R ω + 1/C ) (0.73)

63 (3) (0.73), : : Q(t) = V 0 Rω cos ωt + (sin ωt)/c R ω + 1/C (0.74) (4) (0.74), : : Q(t) = CV 0 sin(ωt ϕ) (0.75) (ωrc) + 1 ϕ = arctan ωrc (0.76), α = β = 1 (0.11) , α, β (1) F (α(x 1, x ) + β(y 1, y ) ) = F ( (αx 1 + βy 1, αx + βy ) ) = (αx 1 + βy 1, αx + βy ) = α(x 1, x ) + β(y 1, y ) = αf ( (x 1, x ) ) + βf ( (y 1, y ) ) 5 ( ) X, E[X], E, : X, Y a, b, E[aX + by ] =? 6 ( ) X, V [X], V, :! 7 ( ) f(x) f(x + 1) F, () (3) F (α(x 1, x ) + β(y 1, y ) ) = F ( (αx 1 + βy 1, αx + βy ) ) = (0, αx + βy ) = α(0, x ) + β(0, y ) = αf ( (x 1, x ) ) + βf ( (y 1, y ) ) F (α(x 1, x ) + β(y 1, y ) ) = F ( (αx 1 + βy 1, αx + βy ) ) = (αx + βy, αx 1 + βy 1 ) = α(x, x 1 ) + β(y, y 1 ) = αf ( (x 1, x ) ) + βf ( (y 1, y ) ) F : f(x) f(x + 1) (0.77) F, : (0.10), (0.11) (0.11), f(αx + βy) = f(αx) + f(βy) (0.10), f(αx) + f(βy) = αf(x) + βf(y) (0.1), (0.1), α = α, β = 0 (0.10) (4) F (α(x 1, x ) + β(y 1, y ) ) = F ( (αx 1 + βy 1, αx + βy ) ) = ( αx 1 βy 1, αx + βy ) = α( x 1, x ) + β( y 1, y ) = αf ( (x 1, x ) ) + βf ( (y 1, y ) ) (5) F ( (0, 0) ) = F ( ( 0, 0) ) = F ( (0, 0) ) = (1, 0), F ( (0, 0) ) = (1, 0) = (, 0), 577 (1) f(x) = x, g(x) = x * 13, F (f(x) + g(x)) = F (x) = x + 1 *13 f(x) = x, f (x) = 1, f (x) = 0,,, f (x) = 0, f (x) = f (4) = = 0 0, 0

64 56 0 :, F (f(x)) + F (g(x)) = F (x) + F (x) = x +, () f(x) = 1, g(x) = x, F (f(x) + g(x)) = F (1 + x) = (1 + x) F (f(x)) + F (g(x)) = F (1) + F (x) = 1 + x, (3), d ( ) dx αf(x) + βg(x) = α d d f(x) + β dx dx g(x) (4) f(x) = x, g(x) = x 578, F (f(x) + g(x)) = F (x) = = 4 F (f(x)) + F (g(x)) = F (x) + F (x) = =, = α F (αf(x) + βg(x)) = 1 0 f(x)dx + β 1 = αf (f(x)) + βf (g(x)) g(x)dx ( αf(x) + βg(x) ) dx (1), () L, ( 0 ) g(x, y, ), Lf(x, y, ) = g(x, y, ), f(x, y, ) (3), L, Lf = L(f 0 + ϕ) = Lf 0 + Lϕ (0.78) f 0 (0.61), Lf 0 = g (0.79),, ϕ (0.6), Lϕ = 0 (0.80), (0.78), Lf 0 + Lϕ = g + 0 = g (0.81), (0.78), L(f 0 + ϕ) = g (0.8), f 0 + ϕ C C x = 1 i, α = 1 + i αx = (1 i)(1 + i) = x = 1 i, y = 1 + i x + y = (1 i) + (1 + i) = (R )... R C,,..., f = f 0 + ϕ (0.61)

65 57 1 3: 1.1 *1 ( ), : {x 1, x,, x n } (1.1), p 1, p,, p n K (1.) 1.1 (x y) (p 1 x + p y), (p 1 p ) 0, 0, p 1 x 1 + p x + + p n x n = 0 (1.3), p 1 = p = = p n = 0 (1.4), {x 1, x,, x n }, ( ),, 0, 0, 0 (1.3) 1.1, p 1 = p = 0, p 1 x + p y = 0, {x, y}, x, y, a, y = ax (1.6), ax y = 0 (1.7) 585 3,, x, y 0, y 0, 0,,,, {x, y} (), 1.1 x, y 0 x, y,, (1.3) p 1, p,, p n, (1.4), p 1 x + p y (p 1, p ) (1.5), p 1 x p y 586 (1) () (3) *1,, 587 A

66 58 1 3: 1. 3, (p 1, p, p 3) 0, , 1, {x 1, x,, x n }, p 1, p,, p n K p 1 x 1 + p x + + p n x n = 0, p 1 = p = = p n = 0, 1.1,,, 3, ax + by z = 0 (1.10), x, y, z 0, 0 ( z 1 ),, {x, y, z} (),,,,,,? : 1. 3 x, y, z 0, x, y, z, p 1 x + p y + p 3 z (1.8) (p 1, p, p 3 ), p 1 x p y p 3 z ( 1.) *, p 1 = p = p 3 = 0, p 1 x + p y + p 3 z = 0, {x, y, z}, x, y, z, x, y ( 1.3), a, b, z = ax + by (1.9) *, 6, O, O 3 p 1 x, p y, p 3 z, 1.3 : { x 1 = R , x = 3, x 3 = 4 } (1.11) 3 4 5,?,, (1.3), p 1, p, p 3, p 1 x 1 + p x + p 3 x 3 = 0 (1.1), p 1 = p = p 3 = 0 (1.1), (1.1) (1.11), 1p 1 + p + 3p 3 = 0 (1.13) p 1 + 3p + 4p 3 = 0 (1.14) 3p 1 + 4p + 5p 3 = 0 (1.15) (p 1, p, p 3 ) (, ),, *3, (p 1, p, p 3 ) = ( 1,, 1) (1.13) *3,,

67 (1.15), p 1 = p = p 3 = 0 (1.1) 18.7, P, P :, {f 1 (x) = x, f (x) = x, f 3 (x) = 1} (1.18) 588 R (1) e 1 = (1, 0), e = (0, 1), R {e 1, e } () R,, {e 1, e } (3) R,, R n (n ), : n,, 3,, n, n *4 0, *5 589 { x 1 = R 3 3 : 1 3, x = 3, x 3 = 4 } (1.16) 1 4 1, : (18.8), P, P = {f(x) = px + qx + r p, q, r R} (1.17), : p 1 f 1 (x) + p f (x) + p 3 f 3 (x), p 1 x + p x + p 3 0, p 1 x + p x + p 3 = 0 (1.19) (1.19) x = 0, 1, 1, p 3 = 0 p 1 + p + p 3 = 0 p 1 p + p 3 = 0, p 1 = p = p 3 = 0, {f 1 (x), f (x), f 3 (x)}, 0, x 0, p 1 = p = p 3 = 0, x 0, P P,, (1) {g 1 (x) = 1 + x, g (x) = 1 x, g 3 (x) = x + x } () {h 1 (x) = 1 + x, h (x) = 1 x, h 3 (x) = 1} * *5,?, (A λe)x = 0 x = 0 det(a λe) = 0,, A λe, 591 x f(x) = a cos x + b sin x X (a, b ), X = {f(x) = a cos x + b sin x a, b R}(1.0) (1) X R

68 60 1 3: () {sin x, cos x} X,? (3) {sin x, sin x} X,? (4) sin(x + π/3) X *6 (5) {sin x, sin(x + π/3)} X,? (6) {sin x, sin(x + π)} X,? (7) {sin x, sin(x + π/3), cos x} X,? 59 : {x 1, x,, x n } 1 0,, f(x) = f 1 (x) + 3f (x) + f 3 (x) (1.3) P ( ) 3 : B = {g 1 (x) = 1+x, g (x) = 1 x, g 3 (x) = x+x } P R, (1) e 1 = (1, 0), e = (0, 1), {e 1, e } R () g 1 = (1, 1), g = (1, 1), {g 1, g } R X B, X B 1.6 R n,, B X 593 5, e 1 = (1, 0, 0,, 0) (1.4) e = (0, 1, 0,, 0) (1.5) e n = (0, 0, 0,, 1) (1.6), P ( ) P B = {f 1 (x) = x, f (x) = x, f 3 (x) = 1} (1.1), P?, 1.4, B, P, f(x), a, b, c, f(x) = ax + bx + c f(x) = af 1 (x) + bf (x) + cf 3 (x), f(x) B, f(x) = x + 3x + 1 (1.) *6,,,,,,,,, 0 {e 1, e,, e n } (1.7), 595(1) R n 595(1) {e 1 = (1, 0), e = (0, 1)}, R 596 R 4? 597 x f(x) = A sin(x + B) Y (A, B ), Y = {f(x) = A sin(x + B) A, B R} (1.8) (1) X = {f(x) = a sin x + b cos x a, b R}

69 1.3 61, Y = X ( :, X, Y Y = X, Y X X Y, ) () {sin x, cos x} X 1.3,,,,,,,,,,,,, 3, 4, P ,,,, X,, X,,,,, 1.7 R 595, R,, n, R n n, R n n ( ) R n n ( ),,, K n *7!,, K n X, B = {v 1, v,, v n } (1.9), X x, x = x 1 v 1 + x v + + x n v n (1.30), n ( ): x 1, x,, x n (1.31), (1.9) (1.30), x x 1, x,, x n, x 1 x x =. x n (1.33) x (coordinate), x 1 x (component), 1.4 :,,,,! (1.33),?, (1.33) x X,, (1.33) (1.33), (1.30), 598 (1)? (),? *7 K n = K K K (1.3),, K, R C

70 6 1 3: 599,? 600, {ϕ 1 (x) = (1 + x), ϕ (x) = 1 + x, ϕ 3 (x) = 1} (1.37) 1.4 X, ( )K n, f(x) = x + 3x + 1?,, X, (1.30), K n,,,,,,,, P ( ) B,, B = {f 1 (x) = x, f (x) = x, f 3 (x) = 1} (1.34), f(x) = x + 3x + 1 (1.35), f(x) = f 1 (x) + 3f (x) + f 3 (x) (1.36), (, 3, 1) f(x),,, 3, R 3 1.4,,,, : 0.10, R R, y = (, 3) (x 1, x ) (1.38), x, y 1, y = ( 3) [ x1 x ] (1.39) ( 3) 1, 1.9 : P = {f(x) = px + qx + r p, q, r R} (1.40) 1 : P 1 = {f(x) = ax + b a, b R} (1.41), d/dx, P P 1, P, {v 1 (x) = x, v (x) = x, v 3 (x) = 1} (1.4) P 1 : {w 1 (x) = x, w (x) = 1} (1.43)

71 1.4 63, P px + qx + r, p q (1.44) r 601 X : X = {f(x) = a sin x + b cos x a, b R} (1.5) X R R 3,, P 1 f(x) = ax + b, [ ] a b R,, (1.45) d dx : px + qx + r ax + b (1.46),, a = p (1.47) b = q (1.48),, [ ] a = b [ ] p q (1.49) r,, x + 3x + 4, P ( (1.4)) 1 3 (1.50) 4, (1.49), L, g(x, y, ), [ ] [ ] Lf(x, y, ) = g(x, y, ) (1.55) = (1.51) , g 0, g P 1 ( (1.43)), 1 0, x + 3,, x + 3x + 4, f(x, y, ), (1.49),,,, : (1) f(x) X, d dx : f(x) f (x) (1.53), X X () {v 1 (x) = sin x, v (x) = cos x} X (3), : [ ] (1.54),,,,,,,,, (0.40), g(x, y, ) f, g, L A, (1.55), Af = g (1.56),,!,,!,,

72 64 1 3:, 8 X, {x, y} x 0, α, y = αx :! 588 (1) p 1, p R, p 1 e 1 + p e = 0, p 1 (1, 0) + p (0, 1) = (p 1, p ) = 0, p 1 = p = 0 {e 1, e } () {(1, 1), (1, 1)} (3) {(1, 1), ( 1, 1)} 9 R,, 0 : 10 X Y X Y Y, Y Y, Y :, 11 ( ) X Z X Z Z, Z Z, Z, (1) a 1, a, b 1, b, f 1 (x) = a 1 cos x + b 1 sin x (1.57) f (x) = a cos x + b sin x (1.58) f 1 X f X, α R, αf 1 (x) = αa 1 cos x + αb 1 sin x X (1.59), f 1 (x) + f (x) = (a 1 + a ) cos x + (b 1 + b ) sin x X(1.60) 1.5 X R () p, q R, (1) () (3) 587 A, p 1 x 1 +p x + +p n x n = 0 p 1 = p = = p n = 0 p 1 = p = = p n = 0, p 1 x 1 + p x + + p n x n = 0, A p sin x + q cos x = 0 (1.61) x = 0 q = 0, x = π/ p = 0, p = q = 0 {sin x, cos x} (3) {sin x, sin x} p sin x + q( sin x), p =, q = 1 0 {sin x, sin x} (4) ( sin x + π ) = sin x + cos x (1.6) (1.0) a = 3/, b =

73 / sin(x + π/3) X (5) p, q R ( p sin x + q sin x + π ) 3 ( = p + q ) 3q sin x + cos x (1.63) {sin x, cos x},, {sin x, cos x}, 0, p + q = 0 3q = 0, p = q = 0, {sin x, sin(x + π/3)} (6) sin x + sin(x + π) = sin x sin x = 0 {sin x, sin(x + π)}, 0 0 {sin x, sin(x + π)} (7) B, f(x) = px +, q 1 = q = q 3 = 0, qx + r, q 3 = p, q 1 q + q 3 = q, q 1 + q = r (q 1, q, q 3 ), f(x) = q 1 g 1 (x) + q g (x) + q 3 g 3 (x) (1.65), P B, B P 595 (1) {e 1, e } 588, x = (x 1, x ) R, x = (x 1, x ) = (x 1, 0) + (0, x ) = x 1 (1, 0) + x (0, 1) = x 1 e 1 + x e, R {e 1, e } {e 1, e } R () p 1, p R, p 1 g 1 + p g = 0, ( sin x + π ) = sin x + cos x, ( sin x + π ) sin x cos x = 0 {sin x, sin(x + π/3), cos x}, 0 0 {sin x, sin(x + π/3), cos x} 59 (!) q 1, q, q 3 R, q 1 g 1 (x) + q g (x) + q 3 g 3 (x) = 0 (1.64), q 1 (1 + x) + q (1 x) + q 3 (x + x ) = 0, q 3 x + (q 1 q + q 3 )x + (q 1 + q ) = 0 0, q 3 = 0, q 1 q + q 3 = 0, q 1 + q = 0 p 1 (1, 1) + p (1, 1) = (p 1 + p, p 1 p ) = 0, p 1 = p = 0 {g 1, g }, R x = (x 1, x ), p 1, p (x 1, x ) = p 1 (1, 1) + p (1, 1) (1.66)? (1.66), (p 1 + p, p 1 p ), x 1 = p 1 + p x = p 1 p, (1.66), p 1 = x 1 + x, p = x 1 x, x = x 1 + x g 1 + x 1 x g (1.67), R {g 1, g } {g 1, g } R

74 66 1 3: 596 {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} 597 (1) Y A sin(x + B), A sin(x + B) = A(sin x cos B + cos x sin B) = A cos B sin x + A sin B cos x A cos B = a, A sin B = b, A sin(x + B) = a sin x + b cos x X (1.68), Y X (1.69), X a sin x + b cos x,, a sin x + b cos x = a + b sin(x + δ) δ, (a, b) x (a, b) a + b = A, δ = B, a sin x + b cos x = A sin(x + B) Y (1.70), X Y (1.71), f(x) X, f (x) X ) () ( ) (3) X {v 1 (x) = sin x, v (x) = cos x}, X f(x) = a sin x + b cos x, [ a b] f(x), f (x) = a cos x b sin x = b sin x + a cos x,,, [ ] b a (1.7) (1.73) (1.7) (1.73), [ ] b = a [ ] [ 0 1 a 1 0 b] (1.74), (1.54) (1.69), (1.71), Y = X () {sin x, cos x} 591, 3, (1.68), Y...,, {sin x, cos x}, {sin x, cos x} Y Y = X,,, X 598 (1) () 1.5, {x, x, 1}, 3 3, ,, 600 f(x) = x + 3x + 1 = (x + 1) (x + 1), (, 1, 0) 601 (1) (d/dx,,

75 67 4:.1,,,,,, 60, 5,,,,, *1,, 18,, 603 f X α R u, u 1, u, v, v 1, v X (1) f(u, v), v, u : 4) 5) () : 3) 4) f(u, αv) = αf(u, v) (.) (3) : 3) 5) f(u, v 1 + v ) = f(u, v 1 ) + f(u, v ) (.3), * : (4) f(u, v), u, v (5) : 4) 0 = 00 R X, f(u, 0) = f(0, u) = 0 (.4) f : X X R (.1) 1) 5), f X, u, v, u 1, u X 1) f(u, u) 0 ) f(u, u) = 0 u = 0 3) f(u, v) = f(v, u) 4) α R, f(αu, v) = αf(u, v),,,,,, 5) f(u 1 + u, v) = f(u 1, v) + f(u, v).1 u, v R 1) 5), f u = (x 1, y 1 ), v = (x, y ) (.5) *1, 3 *,, (u, v) R R *3 *3,

76 68 4:, R R R f, f(u, v) = x 1 x + y 1 y (.6) f,,?,,? 1) f(u, u) = x 1 + y 1, x 1 y 1, 0 1) 604, (.6) f ) 5) 605 R R R u = (x 1, y 1 ), v = (x, y ) (1) f : f(u, v) = x 1 x + 3y 1 y (.7) () f : f(u, v) = x 1 x (.8) : ) (3) f : f(u, v) = x 1 + y 1 + x + y (.9) : 4) 5) x 1 *4 f(x) X f(x), g(x) X, 1 1 f(x)g(x)dx (.10) 1,.1 604, (.6),, (.7) R,, (.10), f,, f(u, v) u v (.11) (u, v) (.1) u, v (.13) u v (.14) (.11),, (.1), (.13),, (.14) 607 u = (1, ), v = (3, 4) (1) R (.6), u v = 5 () R (.7), u v = x 1 f(x) X X (.10) f(x) = x X (.15) g(x) = x + 1 X (.16), f(x), g(x) 1/3., (metric space), X u R, (.6) *4,, 1) u u, u u u

77 . 69 *5, u *6, u = u u (.17),, (.17), u, u = 0 (.17),,,,, , :, u = (1, ),, 5, (.7) 14!,, u = (1, ) 5,, :,,,,, 1,,, (1, ), 5,,,,,,,,, 1, (1, ) 5 611, 61 (1) (),,, 61 u = (1, ), v = (3, 4) (1) R (.6), u = 5, v = 5 () R (.7), u = 14, v = x 1 f(x) X X (.10), X f(x) = x X (.18) g(x) = x + 1 X (.19), f(x) = 1/5, g(x) = 4/3 *5, X R, u u *6 u 614 u, u u X, 0 (.0)

78 70 4:,, 0,, a, b, a b = a b cos θ (.1),,,, (.1), a, b, α a = αb (.5), a b,,,,,, (.1) (.1) 615, (.1),, (.1),, 616, : 3,,, 617 u = (1, ), v = (3, 4), a, b, (1) R (.6) u v θ : (.3) () R (.7) u v a b a b (.) θ : (.3), x 1 cos θ := a b a b (.3) (.1), a, b θ,, (.10) X f(x) = x X g(x) = x + 1 X, f(x) g(x) θ *7 : (.3),, (.), X, 0 a, b, a b = 0 (.4), a b *7 θ, f(x) g(x),,!,,

79 , 1 1, (.3), 1 1 (1) X a, b a, b t, f(t) f(t) = (ta + b) (ta + b) (.6) : p 1 v 1 = p v = 0 (.33) () p 1 = p = 0 (3) {v 1, v } 61, : t, f(t) 0 (.7) () : f(t) = a t + (a b)t + b (.8) (3) t f(t) = 0,, : (.7) (4) : (a b) a b 0 (.9) : (5) : a b a b (.30) : X, (6) : a b a b a b (.31) (7) : 1 a b a b 1 (.3).3 i, j, δ ij, δ ij = { 1 i = j 0 i j (.34) δ ij,, δ 1 = 0, δ 33 = ? 3 x, y, z 1 e 1, e, e 3 e i e j = δ ij (.35) (.3) 60, v 1, v, v 1 v = 0 p 1, p, p 1 v 1 + p v = 0 (1) v 1 v.4 X, ( ), 1,, {e 1, e,..., e n } X (.36) (n, e i e j = δ ij (.37)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information