#2 (IISEC)

Size: px
Start display at page:

Download "#2 (IISEC)"

Transcription

1 #2 (IISEC)

2 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q = [x]p n := #E(F p ) E(F p ) n p p n p p (x, P ) Q x = (x k 1 x k 2... x 1 x 0 ) 2, Q = 0 i<k[2 x i]p, k = O(log p) A, B n n p (P, Q) x P E(F p ) N := # P N n 2

3 4 Square-root Generic Algo. N = O(p) Square-root N Pohlig-Hellman + {baby-step giant-step, Pollard s rho, lambda} Pohlig-Hellman Silver 1978 Pohlig Hellman Non-Generic Algo rho Menezes-Okamoto-Vanstone SSSA Index calculus

4 6 1 m 1, m 2 Z, gcd(m 1, m 2 ) = 1, x 1, x 2 Z, 0 x i < m i x x i mod m i x Z s.t. x 0 x < m 1 m 2 x = ((m 1 1 mod m 2)(x 2 x 1 ) mod m 2 )m 1 + x 1 O((log(m 1 m 2 )) 2 ) bit-operations N N = 1 i r l e i i [N/l e i i ]Q = [N/le i i x]p, i = 1,..., r # [N/l e i i ]P = le i i

5 8 Q i := [N/l e i i ]Q, P i := [N/l e i i ]P x i [0, l e i i for i [1, r] 1] s.t. Q i = P x i i x i, l e i i x x i mod l e i i for i [1, r] gcd(l e i i, le j j ) = 1 for i j 2 Given: E/F p : EC, l: prime, e N s.t. l e N, P E(F p ) s.t. # P = l e, Q P Find: x [0, l e 1] s.t. Q = [x]p P i, Q i, x i, l i, e i P, Q, x, l, e x O ( (log p) 2) bit-operations

6 e > 1 f Z 0 < f < e Q = [l f v + u]p Q = [x]p, 0 x < l e Q [u]p = [l f v]p = [v][l f ]P u, v Z s.t. x = l f v + u, 0 u < l f, 0 v < l e f [l e f ]Q = [(l e f )x]p = [(l e f )(l f v + u)]p = [(l e f l f v + l e f u)]p = [(l e v + l e f u)]p = [l e f u]p = [u][l e f ]P # b lf = l e f < l e 1: [l e f ]Q = [u][l e f ]P u 2: Q [u]p = [v][l f ]P v 3: x = l f v + u # [l e f ]P = l f < l e e = 1 f f e/2 10

7 1 step [l e f ]Q, [l e f ]P, [u]p, [l f ]P 4 [l e ]P : O(log l e ) = O(e log l)e(f p )-ops. Q = [x]p, # P = l Given: E/F p : EC, l: prime, P E(F p ) s.t. # P = l, Q P Find: x [0, l e 1] s.t. Q = [x]p + 2 O(l) T (l, e) = O(e log l) + 2T (l, e/2) = O(e log e log l + et (l, 1)) Square-root Baby-step giant-step Deterministic algo. e = 1 Pollard rho / lambda Monte Carlo algo. : O(1) 12

8 Rho/lambda Birthday Paradox S : set, n 0 = #S 23 r 1 : ( r n 0 i + 1 r = 1 i 1 ) i=1 n 0 i=1 n 0 1/2 ( r = < exp i 1 ) i=1 n x e x 365 = r = exp i 1 = exp i=1 ( ( n 0 r(r 1) 2n 0 exp 2n 0 ( ) r = 2(log 2)n 0 exp r2 = 0.5 2n 0 r2 O( n 0 ) 14 ) )

9 16 Rho Algorithm 1 Pollard s rho.alpha Input: E/F p : EC, l: prime, P E(F p ) s.t. # P = l, Q P Output: x [0, l 1] s.t. Q = [x]p 1: i := 0 2: repeat 3: i := i + 1 4: Choose α i, β i [0, l 1] randomly 5: R i = [α i ]P + [β i ]Q 6: until j s.t. 1 j < i, R j = R i 7: x = (α i α j )(β j β i ) 1 mod l /*α i + β i x α j + β j x mod l*/ 8: Output x and terminate : O( l) : O( l) Beta 4: Choose α i, β i [0, l 1] randomly 5: R i = [α i ]Q + [β i ]P W S 1, S 2, S 3 #S 1 #S 2 #S 3, P = S 1 S 2 S 3, S 1 S 2 = S 2 S 3 = S 3 S 1 = R i = W (R i 1 ) = R i 1 + P, if R i 1 S 1 [2]R i 1, if R i 1 S 2 R i 1 + Q, if R i 1 S 3

10 18 R i = W (R i 1 ) = α i = W α (α i 1 ) = β i = W β (β i 1 ) = R i 1 + P, if R i 1 S 1 [2]R i 1, if R i 1 S 2 R i 1 + Q, if R i 1 S 3 α i 1 + 1, if R i 1 S 1 2α i 1, if R i 1 S 2 α i 1, if R i 1 S 3 β i 1, if R i 1 S 1 2β i 1, if R i 1 S 2 β i 1 + 1, if R i 1 S 3 Algorithm 2 Pollard s rho.beta Input: E/F p : EC, l: prime, P E(F p ) s.t. # P = l, Q P Output: x [0, l 1] s.t. Q = [x]p 1: i := 1 2: Choose α 1, β 1 [0, l 1] randomly 3: R 1 = [α 1 ]P + [β 1 ]Q 4: repeat 5: i := i + 1 6: R i = W (R i 1 ) 7: α i = W α (α i 1 ), β i = W β (β i 1 ) 8: until j s.t. 1 j < i, c j = c i 9: x = (α i α j )(β j β i ) 1 mod l 10: Output x and terminate : O( l) : O( l)

11 20 Beta alpha Algorithm 3 Pollard s rho method Input: E/F p : EC, l: prime, P E(F p ) s.t. # P = l, Q P Output: x [0, l 1] s.t. Q = [x]p j = 2i i j i j : Choose α 1, β 1 [0, l 1] randomly 2: R 1 = [α 1 ]P + [β 1 ]Q 3: R 2 = W (R 1 ) 4: α 2 = W α (α 1 ), β 2 = W β (β 1 ) 5: while R 1 R 2 do 6: R 1 = W (R 1 ) 7: α 1 = W α (α 1 ), β 1 = W β (β 1 ) 8: R 2 = W (W (c 2 )) 9: α 2 = W α (W α (α 2 )), β 2 = W β (W β (β 2 )) 10: x = (α 2 α 1 )(β 1 β 2 ) 1 mod l 11: Output x and terminate : O( l) : O(1)

12 P E(F p ) P S 3 S 1 ; 0 X(P ) < p/3 S 2 ; p/3 X(P ) < 2p/3 ; 2p/3 X(P ) < p p = 31 S 1 : [0, 10], S 2 : [11, 20], S 3 : [21, 30] E/F p : Y 2 = X X + 22 #E(F p ) = 37: P = (10, 3), Q = (9, 10) α 1 = 35, β 1 = 36 R 1 = [α]p + [β]q i R i α i β i 1 (30, 13) S (11, 3) S (3, 19) S (15, 4) S (21, 17) S (5, 13) S (20, 17) S (29, 11) S (3, 12) S (7, 2) S (21, 14) S (8, 11) S (29, 11) S (3, 12) S (7, 2) S (21, 14) S (8, 11) S (29, 11) S (3, 12) S (7, 2) S (21, 14) S

13 24 l e α 14 α 9 β 9 α 14 α 15 α 10 β 10 α 15 α 15 α 11 β 11 α 15 α 20 α 10 β 10 α 20 mod 37 [17]P = Q mod 37 T (l, e) = O(e log l) + T (l, e/2) = O(e log e log l + et (l, 1)) = O ( e ( log e log l + l )) = e l fore = O(2 l/ log l ) e log e log l fore = Ω(2 l/ log l ) # P T # P = l e O(e l) ; # b O(e log e log l) ; # b

14 Square-root T (N) = N = 1 i r 1 i r l e i i ) O (e i l i E(F p )-ops. i e i = bit l T (N) = ) O ( l i 1 i r = O( l)e(f p )-ops., l := max(l i ) l #E(F p ) Square-root l #E(F p ) G O( l) E(F p )-ops. 80 bit l l #E(F p ) 80 bit l 160 bit 128 bit l 256 bit #E(F p ) #E(F p ) = cl, # P = l P c: small constant. 26

15 28 p = E/F p : Y 2 = X 3 + AX + B A = B = E(F p ) = {P, (3, ), (3, ),... } #E(F p ) = (161bit) = i l i e i log 2 l i

16 30 For l 1 = 2, e 1 = 4 P = ( , ) N := # P = #E(F p ) [N/l i ]P P for i = 1,..., 10 Q = (3, ) Find x s.t. Q = [x]p P 1 = [N/l e 1 1 ]P = ( , ) Q 1 = [N/l e 1 1 ]Q = ( , ) Find x 1 [0, 2 4 1] s.t. Q 1 = [x 1 ]P 1

17 Q 11 = [u]p 11 1: [l e f ]Q = [u][l e f ]P # P 11 = l f 1 = 4 u 2: Q [u]p = [v][l f ˆf = f/2 = 1 ]P v 3: x = l f v + u f = e 1 /2 = 2 P 11 = [l e 1 f 1 ]P 1 = [4]P 1 = ( , ) P 12 = [l f ˆf 1 ]P 11 = [2]P 11 = ( , 0) Q 12 = [l f ˆf 1 ]Q 11 = [2]Q 11 = ( , 0) Q 12 = [û]p 12 û = 1 Q 11 = [l e 1 f 1 ]Q 1 = [4]Q 1 = ( , ) P 13 = [l ˆf 1 ]P 11 = [2]P 11 = P 12 Q 13 = Q 12 [û]p 12 = P Q 13 = [ˆv]P 13 ˆv = 0 u = l ˆf 1ˆv + û = 1 32

18 1: [l e f ]Q = [u][l e f ]P u 2: Q [u]p = [v][l f ]P v 3: x = l f v + u P 14 = [l f 1 ]P 1 = [4]P 1 = ( , ) Q 14 = Q 1 [u]p 1 = Q 1 P 1 = ( , ) Q 14 = [v]p 14 v = 1 x 1 = l f 1 v + u = = 5 Rho part i l e 1 i / log 2 l i x i sec./stps sec. on Magma/efficēon 1G 34

19 36 CRT part x 5 mod 16 3 mod 5 20 mod mod mod mod mod mod mod mod I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Number 265 in London Mathematical Society Lecture Note Series. Cambridge U. P., H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren. Handbook of elliptic and hyperelliptic curve cryptography. Chapman & Hall/CRC, A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptography. CRC Press, V. Shoup. A computational introduction to number theory and algebra. Cambridge University Press, x mod N

:00-16:10

:00-16:10 3 3 2007 8 10 13:00-16:10 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x

More information

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4..

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4.. 2010 8 3 ( ) 1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4........................................

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

2 2 ( M2) ( )

2 2 ( M2) ( ) 2 2 ( M2) ( ) 2007 3 3 1 2 P. Gaudry and R. Harley, 2000 Schoof 63bit 2 8 P. Gaudry and É. Schost, 2004 80bit 1 / 2 16 2 10 2 p: F p 2 C : Y 2 =F (X), F F p [X] : monic, deg F = 5, J C (F p ) F F p p Frobenius

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

2 1,384,000 2,000,000 1,296,211 1,793,925 38,000 54,500 27,804 43,187 41,000 60,000 31,776 49,017 8,781 18,663 25,000 35,300 3 4 5 6 1,296,211 1,793,925 27,804 43,187 1,275,648 1,753,306 29,387 43,025

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Block cipher

Block cipher 18 12 9 1 2 1.1............................... 2 1.2.................. 2 1.3................................. 4 1.4 Block cipher............................. 4 1.5 Stream cipher............................

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

.......p...{..P01-48(TF)

.......p...{..P01-48(TF) 1 2 3 5 6 7 8 9 10 Act Plan Check Act Do Plan Check Do 11 12 13 14 INPUT OUTPUT 16 17 18 19 20 21 22 23 24 25 26 27 30 33 32 33 34 35 36 37 36 37 38 33 40 41 42 43 44 45 46 47 48 49 50 51 1. 2. 3.

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

Skew-Frobenius IISEC, JANT18 1

Skew-Frobenius IISEC, JANT18 1 Skew-Frobenius IISEC, 2008 7 5 JANT18 1 Frobenius C/F p Jacobian J C (F p n) Frobenius ϕ p ϕ p Z[ϕ p ] End(J C ) ϕ p J C (F p ) J C (F p n) (J C (F p n)/j C (F p )) p g(n 1) g 2, p n J C (F p ) JANT18

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

2 H23 BioS (i) data d1; input group patno t sex censor; cards;

2 H23 BioS (i) data d1; input group patno t sex censor; cards; H BioS (i) data d1; input group patno t sex censor; cards; 0 1 0 0 0 0 1 0 1 1 0 4 4 0 1 0 5 5 1 1 0 6 5 1 1 0 7 10 1 0 0 8 15 0 1 0 9 15 0 1 0 10 4 1 0 0 11 4 1 0 1 1 5 1 0 1 1 7 0 1 1 14 8 1 0 1 15 8

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T analog-control-mod : 2007/2/4(8:44) E8 E8. PID DC. PID 2. DC PID 3. E8.2 DC PID C8 E8. DC PID E6 DC P M () K M ( T M ) (E8.) DC PID C8 E8. r e u E8.2 PID E8. PID analog-control-mod : 2007/2/4(8:44) 2 E8

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box White-Box Takayuki Kunihiro Graduate School of Pure and Applied Sciences, University of Tsukuba Hidenao Iwane ( ) / Fujitsu Laboratories Ltd. / National Institute of Informatics. Yumi Wada Graduate School

More information

楕円曲線暗号と RSA 暗号の安全性比較

楕円曲線暗号と RSA 暗号の安全性比較 RSA, RSA RSA 7 NIST SP-7 Neal Koblitz Victor Miller ECDLP (Elliptic Curve Discrete Logarithm Problem) RSA Blu-ray AACS (Advanced Access Control System) DTCP (Digital Transmission Content Protection) RSA

More information

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71 2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS kubo@ees.hokudai.ac.jp http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

icml10yomikai.key

icml10yomikai.key A Fast Augmented Lagrangian Algorithm for Learning Low- Rank Matrices Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama, Hisashi Kashima 2010/8/18 ICML2010 1 Matrix completion [Srebro et al. 05; Abernethy

More information

43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd

43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd n 808 3.0 % 86.8 % 8.3 % n 24 4.1 % 54.0 % 37.5 % 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 0% 37.4 % 7.2 % 27.2 % 8.4 % n 648 13.6 % 18.1% 45.4 % 4.1% n 18 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 sdmp Maple - (Ver.2) ( ) September 27, 2011 1 (I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology

More information

ISO/IEC 9798プロトコルの安全性評価

ISO/IEC 9798プロトコルの安全性評価 ISO/IEC 9798 2011 2 4 ISO/IEC 9798-2 (Mechanisms using symmetric encipherment algorithms), ISO/IEC 9798-3 (Mechanisms using digital signature techniques), ISO/IEC 9798-4 (Mechanisms using a cryptographic

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C 2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name RSA Group Name RSA Code Elliptic Curve Cryptograrhy Group /Project No. 13-B /Project Leader 1009087 Takahiro

More information

30 2018.4.25 30 1 nuida@mist.i.u-tokyo.ac.jp 2018 4 11 2018 4 25 30 2018.4.25 1 1 2 8 3 21 4 28 5 37 6 43 7 47 8 52 30 2018.4.25 1 1 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a

More information

Contents P. P. 1

Contents P. P. 1 Contents P. P. 1 P. 2 TOP MESSAGE 3 4 P. P. 5 P. 6 7 8 9 P. P. P. P. P. 10 11 12 Economy P. P. 13 14 Economy P. 1,078 1,000 966 888 800 787 716 672 600 574 546 556 500 417 373 449 470 400 315 336 218 223

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

/22 R MCMC R R MCMC? 3. Gibbs sampler :   kubo/ 2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : kubo@ees.hokudai.ac.jp http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )

More information

( )

( ) ) ( ( ) 3 15m t / 1.9 3 m t / 0.64 3 m ( ) ( ) 3 15m 3 1.9m / t 0.64m 3 / t ) ( β1 β 2 β 3 y ( ) = αx1 X 2 X 3 ( ) ) ( ( ) 3 15m t / 1.9 3 m 3 90m t / 0.64 3 m ( ) : r : ) 30 ( 10 0.0164

More information

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B 10 004 Journal of the Institute of Science and Engineering. Chuo University Euler n > 1 p n p ord p n n n 1= s m (m B psp = {a (Z/nZ ; a n 1 =1}, B epsp = { ( a (Z/nZ ; a n 1 a }, = n B spsp = { a (Z/nZ

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

卓球の試合への興味度に関する確率論的分析

卓球の試合への興味度に関する確率論的分析 17 i 1 1 1.1..................................... 1 1.2....................................... 1 1.3..................................... 2 2 5 2.1................................ 5 2.2 (1).........................

More information

P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

Kumagai09-hi-2.indd

Kumagai09-hi-2.indd CSR2009 CONTENTS 1 2 3 4 5 6 7 8 9 10 350 11 12 13 14 15 16 17 18 Do Check Action Plan 19 20 INPUT r r r r k k OUTPUT 21 22 Plan Action Check Do 23 24 25 26 27 28 16:50 7:30 8:00 8:30 9:30 10:00 18:00

More information

Pick up Part 01 2013C o n t e n t s Part 02 Part 03 Part 04 Pick up 4 2013 2013 5 Pick up 6 2013 2013 7 Part 01 8 2013 2013 9 10 2013 2013 11 12 2013 2013 13 14 2013 2013 15 16 2013 Part 02 18 2013 2013

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2/ 36 2012 2012 ERATO

2/ 36 2012 2012 ERATO 2013 2 18 1,2 1. 2. JST, ERATO, 2/ 36 2012 2012 ERATO Given n n A 1,..., A N Find P s.t. P A 1 P,..., P A N P A 1 A 2 A N simultaneously P A 1 P P A 2 P P A N P 3/ 36 4/ 36 5/ 36 6/ 36 [Wigner 1931 ].

More information

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開)

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開) 1733 2011 149-159 149 GBiCGSTAB $(s,l)$ GBiCGSTAB(s,L) with Auto-Correction of Residuals (Takeshi TSUKADA) NS Solutions Corporation (Kouki FUKAHORI) Graduate School of Information Science and Technology

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information