:00-16:10

Size: px
Start display at page:

Download ":00-16:10"

Transcription

1 :00-16:10

2 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x K a [1, p 1] K a b K a mod p (x, b, p) a b x mod p K a x = (x n x n 1... x 1 x 0 ) 2, a 0 i n b 2xi mod p, K b [1, p 1] K b bk n = O(log p) b mod p K b (a, b, p) x K K K a b mod p K K K b a mod p K

3 4 Square-root Pollard Rho (1978) O(p) Monte Carlo (Las Vegas) Algo. Square-root O ( l ) l p 1 (Adleman, 1979) L x (α, β) := exp ( β(log x) α (log log x) 1 α) O(L p (1/2, 2 + o(1))) O(L p (1/3, o(1))) : O(1) 23 1/ = =

4 Birthday Paradox Pollard ρ S : set, n 0 = #S r 1 : Find: Ind b a i.e. x s.t. a b x mod p ( r n 0 i + 1 r = 1 i 1 ) n 0 i=1 < i=1 r i=1 = exp = exp exp ( n 0 i 1 n x e x r i=1 ( ( i 1 n 0 r(r 1) 2n 0 r2 ) ) ) Given: p = 47, a = 40, b = α β a α b β mod p a 3 b 28 a 39 b 8 mod p exp 2n 0 ( ) a b (8 28)/(3 39) mod p r = 2(log 2)n 0 exp r2 = 0.5 2n 0 O( n 0 ) x mod p 1 6

5 8 Pollard ρ Algorithm 1 Pollard s rho.alpha Input: p:, a, b [1, p 1] Output: x [0, p 2] s.t. a b x mod p 1: i := 0 2: repeat 3: i := i + 1 4: Choose α i, β i [0, p 2] randomly 5: c i a α ib β i mod p 1 6: until j s.t. 1 j < i, c j = c i 7: x (β j β i )(α i α j ) 1 mod p 1 /*α i x + β i α j x + β j mod p 1*/ 8: Output x and terminate : O( p) O ( l ), l p 1 : O( p) O(1) Given: p = 47, a = 40, b = 11 Find: Ind b a i.e. x s.t. a b x mod p T = {2, 3, 5, 7, 11, 13} #T relation Ind Ind Ind Ind Ind Ind Ind Ind Ind Ind 1111 mod p

6 Ind 11 2 Ind 11 3 Ind 11 5 Ind 11 7 Ind Ind Ind 11 2 Ind 11 3 Ind 11 5 Ind 11 7 Ind Ind modp 1 mod p mod p Ind Ind Ind mod p 1 T Key Length (bit) Square-root 10

7 12 p p F p d := {F p d } Square-root log 2 p 160 F p := { p } F 5 = {0, 1, 2, 3, 4} log 2 p 1024 (?) Square-root log 2 p log 2 p

8 14 Given: p:, b [1, p 1], a {b i i [0, p 2]} + F p, (Z, Q, R, C) Find: x [0, p 2] + (N) s.t. a b x mod p F p \{0}, (Q\{0}, R\{0}, C\{0}) (Z) Given: F p : p, b F p, F p := F a b p\{0} Find: x [0, p 2] s.t. a = b x + Given: G:, b G, a b Find: x [0, #G 1] s.t. a = [x]b a = [x]b = b + b + + b }{{} x

9 G = F p Given: b F p, a b Find: x [0, p 1] s.t. a = [x]b #G p 160 bit square-root 4: Choose α i, β i [0, #G 1] randomly x Z/(p 1)Z 5: c i = [α i ]a + [β i ]b x = a/b Z/(p 1)Z 6: 7: until j s.t. 1 j < i, c j = c i x (β j β i )(α i α j ) 1 mod #G T (p) = O((log p) 2 ) bit-operations Pollard ρ Algorithm 2 Pollard s rho.alpha Input: G:,, a, b G Output: x [0, #G 1] s.t. a [x]b 1: i := 0 2: repeat 3: i := i + 1 /*α i x + β i α j x + β j mod #G*/ 8: Output x and terminate : O( #G) O ( l ), l #G : O( #G) O(1) 16

10 18 Square-root : l, l #G C : F (X, Y ) = 0, F (X, Y ) F p G Y 0 X

11 20 E : Y 2 = X 3 + a 4 X + a 6, a i F p E : Y 2 = X 3 + a 4 X + a 6, a i F p Y E(F p ) := {P = (x, y) F 2 p y 2 = x 3 + a 4 x + a 6 } {P } 0 X E(F p ) #E(F p ) p

12 22 1 P 1 + P 2 + P 3 + P 4 + P 5 + P 6 = 0 2 P = (x, y) P = (x, y) U(X)=0 Y Y=V(X) Y P 0 P1 P4 P5 0 X X P2 P3 P6 -P

13 24 P 3 = P 1 + P 2 E : Y 2 = X 3 + a 4 X + a 6 P2 P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) Y 0 P1 -P3 P 3 = (x 3, y 3 ) = P 1 + P 2 λ = y 2 y 1 x 2 x if P 1 1 P 2 3x 2 1 +a 4 2x if P 1 1 = P 2 x 3 = λ 2 x 1 x 2, P3 X y 3 = λ(x 1 x 3 ) y 1 I 3M or 4M

14 26 F p : ab : M = O((log p) 2 ) a + b : O(log p) M a 1 : I 20M a : O(1) I + 3M 23M #E(F p ) = O(p) F 2 I + 4M 24M p E(F p ) ? ? ? p 1/5 Square-root E : O ( #E(F p ) ) = O ( ) p F p E(F p) square-root

15 28 g Algorithm 3 C : Y 2 = X 2g+1 +f 2g X 2g + +f 1 X+f 0, Input: p: f i F p Output: A secure elliptic curve E and #E(F p ) 1: repeat 2: repeat 3: Choose an elliptic curve E randmly 4: Compute N = #E(F p ) /* */ 5: until N : prime p 6: until E satisfies MOV condition 7: Output E, #E(F p ) and terminate Y 0 X

16 30 C : Y 2 = X 2g+1 +f 2g X 2g + +f 1 X+f 0, f i F p C : Y 2 = X 2g+1 +f 2g X 2g + +f 1 X+f 0, f i F p C(F p ) := {P = (x, y) F 2 p y2 = x 2g f 0 } {P } C(F p ) J C (F p ) := {D = {P 1,..., P n C(F p g) \ {P }} n g, D p = D} C(F p ) J C (F p ) J C (F p ) #J C (F p ) p g

17 32 (g = 2) D 3 = D 1 + D 2, D i = {P i1, P i2 } Mumford C : Y 2 = F (X), F F p [X], deg F = 2g + 1 Y Y=V(X) D = {P 1,..., P n C(F p g) \ {P }} n g, D p = D, P i = (x i, y i ) -P31 P11 P32 P22 0 P21 P31 X -P32 P12 1 (U, V ) (F p [X]) 2 s.t. U = 1 i n deg U > deg V, (X x i ), U F V 2, y i = V (x i ). J C (F p ) = {(U, V ) (F p [X]) 2 lc(u) = 1, deg V < deg U g, U F V 2 }

18 34 Input Weight two coprime reduced divisors D 1 = (U 1, V 1 ), D 2 = (U 2, V 2 ) Output A weight two reduced divisor D 3 = (U 3, V 3 ) = D 1 + D 2 Step Procedure Cost 1 Compute the resultant r of U 1 and U 2. 4M z 1 u 21 u 11 ; z 2 u 21 z 1 ; z 3 z 2 + u 10 u 20 ; r u 10 (z 3 u 20 ) + u 20 (u 20 u 11 z 1 ); 2 If r = 0 then call the sub procedure. 3 Compute I 1 1/U 1 mod U 2. I + 2M w 0 r 1 ; i 11 w 1 z 1 ; i 10 w 1 z 3 ; 4 Compute S (V 2 V 1 )I 1 mod U 2. (Karatsuba) 5M w 1 v 20 v 10 ; w 2 v 21 v 11 ; w 3 i 10 w 1 ; w 4 i 11 w 2 ; s 1 (i 10 + i 11 )(w 1 + w 2 ) w 3 w 4 (1 + u 21 ); s 0 w 3 u 20 w 4 ; 5 If s 1 = 0 then call the sub procedure. 6 Compute U 3 = s 2 1 ((S2 U 1 + 2SV 1 )/U 2 (F V 2 1 )/(U 1U 2 )). I + 6M w 1 s 1 1 ; u 30 w 1 (w 1 (s u 11 + u 21 f 4 ) + 2(v 11 s 0 w 2 )) + z 2 + u 10 u 20 ; u 31 w 1 (2s 0 w 1 ) w 2 ; u 32 1; 7 Compute V 3 (SU 1 + V 1 ) mod U 3.(Karatsuba) 5M w 1 u 30 u 10 ; w 2 u 31 u 11 ; w 3 s 1 w 2 ; w 4 s 0 w 1 ; w 5 (s 1 + s 0 )(w 1 + w 2 ) w 3 w 4 v 30 w 4 w 3 u 30 v 10 ; v 31 w 5 w 3 u 31 v 11 ; Total 2I + 21M In. Genus 3 HEC C : Y 2 = F (X), F = X 7 + f 5X 5 + f 4X 4 + f 3X 3 + f 2X 2 + f 1X + f 0; Reduced divisors D 1 = (U 1, V 1) and D 2 = (U 2, V 2), U 1 = X 3 + u 12X 2 + u 11X + u 10, V 1 = v 12X 2 + v 11X + v 10, U 2 = X 3 + u 22X 2 + u 21X + u 20, V 2 = v 22X 2 + v 21X + v 20; Out. Reduced divisor D 3 = (U 3, V 3) = D 1 + D 2, U 3 = X 3 + u 32X 2 + u 31X + u 30, V 3 = v 32X 2 + v 31X + v 30; Step Procedure Cost 1 Compute the resultant r of U 1 and U 2 14M + 12A t 1 = u 11u 20 u 10u 21; t 2 = u 12u 20 u 10u 22; t 3 = u 20 u 10; t 4 = u 21 u 11; t 5 = u 22 u 12; t 6 = t 2 4 ; t 7 = t 3t 4; t 8 = u 12u 21 u 11u 22 + t 3; t 9 = t 2 3 t1t5; t10 = t2t5 t7; r = t8t9 + t2(t10 t7) + t1t6; 2 If r = 0 then call the Cantor algorithm 3 Compute the pseudo-inverse I = i 2X 2 + i 1X + i 0 r/u 1 mod U 2 4M + 4A i 2 = t 5t 8 t 6; i 1 = u 22i 2 t 10; i 0 = u 21i 2 (u 22t 10 + t 9); 4 Compute S = s 2 X2 + s 1 X + s 0 = rs (V2 V1)I mod U2 (Karatsuba, Toom) 10M + 31A t 1 = v 10 v 20; t 2 = v 11 v 21; t 3 = v 12 v 22; t 4 = t 2i 1; t 5 = t 1i 0; t 6 = t 3i 2; t 7 = u 22t 6; t 8 = t 4 + t 6 + t 7 (t 2 + t 3)(i 1 + i 2); t 9 = u 20 + u 22; t 10 = (t 9 + u 21)(t 8 t 6); t 9 = (t 9 u 21)(t 8 + t 6); s 0 = (u20t8 + t5); s 2 = t6 (s 0 + t4 + (t1 + t3)(i0 + i2) + (t10 + t9)/2); s 1 = t4 + t5 + (t9 t10)/2 (t7 + (t1 + t2)(i0 + i1)); 5 If s 2 = 0 then call the Cantor algorithm 6 Compute S, w and w i = 1/w s.t. ws = S /r and S is monic I + 7M t 1 = (rs 2 ) 1 ; t 2 = rt 1; w = t 1s 2 2 ; wi = rt2; s0 = t2s 0 ; s1 = t2s 1 ; 7 Compute Z = X 5 + z 4X 4 + z 3X 3 + z 2X 2 + z 1X + z 0 = SU 1 (Toom) 4M + 15A t 6 = s 0 + s 1; t 1 = u 10 + u 12; t 2 = t 6(t 1 + u 11); t 3 = (t 1 u 11)(s 0 s 1); t 4 = u 12s 1; z 0 = u 10s 0; z 1 = (t 2 t 3)/2 t 4; z 2 = (t 2 + t 3)/2 z 0 + u 10; z 3 = u 11 + s 0 + t 4; z 4 = u 12 + s 1; 8 Compute U t = X 4 + u t3x 3 + u t2x 2 + u t1x + u t0 = 13M + 26A (S(Z + 2w iv 1) wi 2((F V 1 2 )/U1))/U2 (Karatsuba) t 1 = s 0z 3; t 2 = (u 22 + u 21)(u t3 + u t2); t 3 = u 21u t2; t 4 = t 1 t 3; u t3 = z 4 + s 1 u 22; t 5 = s 1z 4 u 22u t3; u t2 = z 3 + s 0 + t 5 u 21; u t1 = z 2 + t 6(z 4 + z 3) + w i(2v 12 w i) (t 5 + t 2 + t 4 + u 20); u t0 = z 1 + t 4 + s 1z 2 + w i(2(v 11 + s 1v 12) + w iu 12) (u 22u t1 + u 20u t3); 9 Compute V t = v t2x 2 + v t1x + v t0 wz + V 1 mod U t 8M + 11A t 1 = u t3 z 4; v t0 = w(t 1u t0 + z 0) + v 10; v t1 = w(t 1u t1 + z 1 u t0) + v 11; v t2 = w(t 1u t2 + z 2 u t1) + v 12; v t3 = w(t 1u t3 + z 3 u t2); 10 Compute U 3 = X 3 + u 32X 2 + u 31X + u 30 = (F Vt 2)/Ut 7M + 11A t 1 = 2v t3; u 32 = (u t3 + vt3 2 ); u31 = f5 (ut2 + u32ut3 + t1vt2); u 30 = f 4 (u t1 + vt2 2 + u32ut2 + u31ut3 + t1vt1); 11 Compute V 3 = v 32X 2 + v 31X + v 30 V t mod U 3 3M + 3A v 32 = v t2 u 32v t3; v 31 = v t1 u 31v t3; v 30 = v t0 u 30v t3; Total I + 70M + 113A g = 1 I + 3M = 23M if I = 20M g = 2 I+25M = 45M if I = 20M g = 3 I+70M = 90M if I = 20M #E(F p ) = O(p) #J C (F p ) = O(p g ) Square-root (?) C : O ( #J C (F p ) )

19 2 80 p = 2 160/g g = 1 p Adleman-DeMarrais-Huang (1991) g = 2 p 2 80 < s g = 3 p 2 54 U deg < s : O(L p 2g+1(1/2, c < 2.181)), log p < (2g + 1) 0.98, g g = 1 I M 160 = 23M 160 g = 2 I M 80 = 45M 80 g = 3 I M 54 = 90M 54 23M 160 > 45M 80 > 90M 54??? : O(L p g(1/2, ), p g Enge, Gaudry-Enge Gaudry (1997) U deg = 1 : O(p 2 ) : O(p 2 2/g ) Gaudry-Harley, Thériault, Nagao, Gaudry-Thomé-Thériault-Diem 36

20 Gaudry C(F p ) = {P, (1, 1), (1, 6), (2, 1), (2, 6), p = 7 C : Y 2 = (4, 1), (4, 6)(5, 3), (5, 4), (6, 3), (6, 4)} X X X X 9 #C(F p ) = 11 +2X 8 + 6X 7 + 5X 4 + 5X 3 +X 2 + 2X + 6 T = {(1, 1), (2, 1), (4, 1), (5, 3), (6, 3)} #J C (F p ) = : 18 bit D a = ( X 6 + 2X 5 + 4X 4 + X 3 + 5X 2 + 3, 4X 5 + 5X 3 + 2X 2 + 5X + 4) D b = ( X 5 + 6X 3 + 3X 2 + 1, 3X 4 + X 3 + 4X 2 + X + 3) [9343]D b = ( X 5 + 6X 4 + 6X 3 + 5X 2 + 6X + 4, X 4 + X 3 + X 2 + 4X + 6) X 5 + 6X 4 + 6X 3 + 5X 2 + 6X + 4 = (X 1) 2 (X 4) 2 (X 5) X 4 + X 3 + X 2 + 4X + 6 X=1 = 6 X 4 + X 3 + X 2 + 4X + 6 X=4 = 1 X 4 + X 3 + X 2 + 4X + 6 X=5 = 3 Find Ind Db D a s.t. D a = [Ind Db D a ]D b. [9343]D b = [2](1, 1) + [2](4, 1) + (5, 3) 38

21 40 [9343]D b [120243]D b [121571]D b = [120688]D b [151649]D b Ind Db (1, 1) Ind Db (2, 1) Ind Db (4, 1) Ind Db (5, 3) Ind Db (6, 3) (1, 1) (2, 1) (4, 1) (5, 3) (6, 3) mod #J C (F p ) D a + [105454]D b = (1, 1) + [2](2, 1) + (4, 1) (6, 3) Ind Db D a Ind Db (1, 1) + 2Ind Db (2, 1) +Ind Db (4, 1) Ind Db (6, 3) mod #J C (F p )

22 42 Gaudry [9343]D b [120243]D b [121571]D b [120688]D b [151649]D b = (1, 1) (2, 1) (4, 1) (5, 3) (6, 3) : O(gp 2 (log #G) 2 ) = O(g 3 p 2 (log p) 2 ) O(g!g 3 p(log p) 3 ) + O(g 3 p 2 (log p) 2 ) #T = O(p) g : O(p g ) g rho 1 g : O(p g /g!) Õ( #G) = O(p g/2 ) O(g!) Jacobian : O(g 2 (log p) 2 ) : O(g 3 (log p) 3 ) O(g!g 3 p(log p) 3 ) Õ(p 2 ) 4 rho

23 44 (Gaudry.Harley) g #T = O(p r ), 0 < r < 1 Õ(p) + Õ(p 2 ) Õ ( p g p rg p r) +Õ ( p 2r) = Õ ( p g+(1 g)r + p 2r) r = g g+1 Õ ( p g+(1 g)r + p 2r) = Õ ( p 2g/(g+1)) Cost rho g

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

2 2 ( M2) ( )

2 2 ( M2) ( ) 2 2 ( M2) ( ) 2007 3 3 1 2 P. Gaudry and R. Harley, 2000 Schoof 63bit 2 8 P. Gaudry and É. Schost, 2004 80bit 1 / 2 16 2 10 2 p: F p 2 C : Y 2 =F (X), F F p [X] : monic, deg F = 5, J C (F p ) F F p p Frobenius

More information

Skew-Frobenius IISEC, JANT18 1

Skew-Frobenius IISEC, JANT18 1 Skew-Frobenius IISEC, 2008 7 5 JANT18 1 Frobenius C/F p Jacobian J C (F p n) Frobenius ϕ p ϕ p Z[ϕ p ] End(J C ) ϕ p J C (F p ) J C (F p n) (J C (F p n)/j C (F p )) p g(n 1) g 2, p n J C (F p ) JANT18

More information

Q E Q T a k Q Q Q T Q =

Q E Q T a k Q Q Q T Q = i 415 q q q q Q E Q T a k Q Q Q T Q = 10 30 j 19 25 22 E 23 R 9 i i V 25 60 1 20 1 18 59R1416R30 3018 1211931 30025R 10T1T 425R 11 50 101233 162 633315 22E1011 10T q 26T10T 12 3030 12 12 24 100 1E20 62

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 1,384,000 2,000,000 1,296,211 1,793,925 38,000 54,500 27,804 43,187 41,000 60,000 31,776 49,017 8,781 18,663 25,000 35,300 3 4 5 6 1,296,211 1,793,925 27,804 43,187 1,275,648 1,753,306 29,387 43,025

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Literacy 2 Mathematica Mathematica 3 Hiroshi Toyoizumi Univ. of Aizu REFERENCES [1] C.P Williams [2] [3] 1 Literacy 2 Mathematica Ma

Literacy 2 Mathematica Mathematica 3 Hiroshi Toyoizumi Univ. of Aizu REFERENCES [1] C.P Williams [2] [3] 1 Literacy 2 Mathematica Ma Mathematica 3 Hiroshi Toyoizumi Univ. of Aizu toyo@u-aizu.ac.jp REFERENCES [1] C.P Williams [2] [3] 1 Mathematica Mathematica 2 1 PKIPublic Key Infrustructure 3 4 2 5 6 3 RSA 3Ronald RivestAdi ShamirLeonald

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

14 35H-3 35H-3 15 b f f b b b f f f f f f f f f f b b f f f f f b b b b b b b b b f f f f f f f f f f f f f

14 35H-3 35H-3 15 b f f b b b f f f f f f f f f f b b f f f f f b b b b b b b b b f f f f f f f f f f f f f bff b b b ff ff ff f f ff b b ff ff f b b b b b b b b b f f f f f f f f f f f f f b b ï ñ ó ff ff ò ô ö ù û û Æ õ ú ü! bõ ú b μ b b b f f f f f f f f f f f f b b bõ fl fi f f f f f f f f b b b b@ b b ff

More information

[I486S] 暗号プロトコル理論

[I486S]  暗号プロトコル理論 [I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

油圧1.indd

油圧1.indd ff ff ff ff f f ff ff ff f f f f f f f f f f f f f f ff ff! f f f f f f f ff ff f f ff f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f S 9 M6 M6 M6 M. 6 6 R/ P M. M. M. M. f f f 96 f f f M.

More information

(35H-3).pm

(35H-3).pm ff f f f f f f f f f f f f f ff ff ff f f ff ff ff f ff ff! f f f f f f f f f f f f f ff ff f f ff f f f f f f f f f f f f f f f f f f f f f S f f f f f f 9 M6 M6 M6 M. M. M. M. M. 6 6 9 R/ R/ P M. M.

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

学習内容と日常生活との関連性の研究-第2部-第4章-1

学習内容と日常生活との関連性の研究-第2部-第4章-1 69 V A V + A V A 2A 2 http://www.jba-hp.jp/ http://www.kbn3.com/ http://www.usba.org/ 70 (1) (1996)35 7 pp.28-33 (2) (1994) 71 () 3 1 1 99 8 1 10 1 11.3 2.5 1 100 11.4 30.9 1 72 (1) http://www.stat.go.jp/data/zensho/1999/zuhyou/a906-6.xls

More information

取扱説明書[N-02B]

取扱説明書[N-02B] 187 1 p p 188 2 t 3 y 1 1 p 2 3 4 5 p p 1 i 2 189 190 1 i 1 i o p d d dt 1 2 3 4 5 6 9 0 191 192 d c d b db d 1 i 1 193 194 2 d d d r d b sla sla 1 o p i o o o op 195 u u 1 u t 1 i u u 1 i 196 1 2 bd t

More information

30 2014.08 2 1985 Koblitz Miller 2.1 0 field Fp p prime field Fp E Fp Fp Hasse Weil 2.2 Fp 2 P Q R R P Q O P O R Q Q O R P P xp, yp Q xq, yq yp yq R=O

30 2014.08 2 1985 Koblitz Miller 2.1 0 field Fp p prime field Fp E Fp Fp Hasse Weil 2.2 Fp 2 P Q R R P Q O P O R Q Q O R P P xp, yp Q xq, yq yp yq R=O An Internet Vote Using the Elliptic Curve Cryptosystem TAKABAYASHI Shigeki Nowadays various changes are taking place in the society by the spread of the Internet, and we will vote by the Internet using

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

Microsoft Word - 演習5_蒸発装置

Microsoft Word - 演習5_蒸発装置 1-4) q T sat T w T S E D.N.B.(Departure from Nucleate Boiling)h(=q/ T sat ) F q B q D 3) 1 5-7) 4) T W [K] T B [K]T BPR [K] B.P.E.Boiling Pressure Rising T B T W T BPR (3.1) Dühring T BPR T W T W T B T

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

t Z

t Z t Z 1 11 1 1 1 1 1 1 1 1 1 1 1 1 UU 1 as a s 1 1 1 1 1 1 G q w e r q q w e r a s 1 1 1 1 1 1 1 a s a gg g q w e r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

More information

(a) 4 1. A v = / 2. A i = / 3. A p = A v A i = ( )/( ) 4. Z i = / 5. Z o = /( ) = 0 2 1

(a) 4 1. A v = / 2. A i = / 3. A p = A v A i = ( )/( ) 4. Z i = / 5. Z o = /( ) = 0 2 1 http://www.ieicehbkb.org/ 1 7 2 1 7 2 2009 2 21 1 1 3 22 23 24 25 2 26 21 22 23 24 25 26 c 2011 1/(22) http://www.ieicehbkb.org/ 1 7 2 1 7 2 21 2009 2 1 1 3 1 211 2 1(a) 4 1. A v = / 2. A i = / 3. A p

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

2 H23 BioS (i) data d1; input group patno t sex censor; cards;

2 H23 BioS (i) data d1; input group patno t sex censor; cards; H BioS (i) data d1; input group patno t sex censor; cards; 0 1 0 0 0 0 1 0 1 1 0 4 4 0 1 0 5 5 1 1 0 6 5 1 1 0 7 10 1 0 0 8 15 0 1 0 9 15 0 1 0 10 4 1 0 0 11 4 1 0 1 1 5 1 0 1 1 7 0 1 1 14 8 1 0 1 15 8

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

K 1 mk(

K 1 mk( R&D ATN K 1 mk(0.01 0.05 = ( ) (ITS-90)-59.3467 961.78 (T.J.Seebeck) A(+ T 1 I T 0 B - T 1 T 0 E (Thermoelectromotive force) AB =d E(AB) /dt=a+bt----------------- E(AB) T1 = = + + E( AB) α AB a b ( T0

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P + Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P

More information

Block cipher

Block cipher 18 12 9 1 2 1.1............................... 2 1.2.................. 2 1.3................................. 4 1.4 Block cipher............................. 4 1.5 Stream cipher............................

More information

50. (km) A B C C 7 B A 0

50. (km) A B C C 7 B A 0 49... 5 A B C. (. )?.. A A B C. A 4 0 50. (km) A B C..9 7. 4.5.9. 5. 7.5.0 4..4 7. 5.5 5.0 4. 4.. 8. 7 8.8 9.8. 8 5. 5.7.7 9.4 4. 4.7 0 4. 7. 8.0 4.. 5.8.4.8 8.5. 8 9 5 C 7 B 5 8 7 4 4 A 0 0 0 4 5 7 8

More information

λ(t) (t) t ( ) (Mean Time to Failure) MTTF = 0 R(t)dt = /λ 00 (MTTF) MTTF λ = 00 MTTF= /λ MTTF= 0 2 (0 9 ) =0 7 () MTTF=

λ(t) (t) t ( ) (Mean Time to Failure) MTTF = 0 R(t)dt = /λ 00 (MTTF) MTTF λ = 00 MTTF= /λ MTTF= 0 2 (0 9 ) =0 7 () MTTF= 2003 7..2 R(t) t R(0) =, R( ) =0 λ(t) t R(t) λ(t) = R(t) dr(t) t, R(t) = exp ( λ(t)dt) dt 0 λ(t) (t) t ( ) 0 9 0 0 300 (Mean Time to Failure) MTTF = 0 R(t)dt = /λ 00 (MTTF) 00 000 MTTF λ = 00 MTTF= /λ

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

四変数基本対称式の解放

四変数基本対称式の解放 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

BIT -2-

BIT -2- 2004.3.31 10 11 12-1- BIT -2- -3-256 258 932 524 585 -4- -5- A B A B AB A B A B C AB A B AB AB AB AB -6- -7- A B -8- -9- -10- mm -11- fax -12- -13- -14- -15- s58.10.1 1255 4.2 30.10-16- -17- -18- -19-6.12.10

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

? FPGA FPGA FPGA : : : ? ( ) (FFT) ( ) (Localization) ? : 0. 1 2 3 0. 4 5 6 7 3 8 6 1 5 4 9 2 0. 0 5 6 0 8 8 ( ) ? : LU Ax = b LU : Ax = 211 410 221 x 1 x 2 x 3 = 1 0 0 21 1 2 1 0 0 1 2 x = LUx = b 1 31

More information

1 u t = au (finite difference) u t = au Von Neumann

1 u t = au (finite difference) u t = au Von Neumann 1 u t = au 3 1.1 (finite difference)............................. 3 1.2 u t = au.................................. 3 1.3 Von Neumann............... 5 1.4 Von Neumann............... 6 1.5............................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

I z n+1 = zn 2 + c (c ) c   pd L.V. K. 2 I 2012 00-1 I : October 1, 2012 Version : 1.1 3. 10 1 10 15 10 22 1: 10 29 11 5 11 12 11 19 2: 11 26 12 3 12 10 12 17 3: 12 25 1 9 1 21 3 1 I 2012 00-2 z n+1 = zn 2 + c (c ) c http://www.math.nagoya-u.ac.jp/~kawahira/courses/12w-tenbou.html

More information

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f : ( ) 2008 5 31 1 f(t) t (1) d 2 f(t) + f(t) = 0 dt2 f(t) = sin t f(t) = cos t (1) 1 (2) d dt f(t) + f(t)2 = 0 (1) (2) t (c ) (3) 2 2 u(t, x) c2 u(t, x) = 0 t2 x2 1 (1) (1) 1 t, x (4) 3 u(t, x) + 6u(t,

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

ISTC 3

ISTC 3 B- I n t e r n a t i o n a l S t a n d a r s f o r Tu b e r c u l o s i s C a r (ÏS r c ) E d is i k e - 3 ) a =1 / < ' 3 I n t e r n a t i o n a l s t a n d a r d s f o r T B C a r e e «l i s i k e 3

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 sdmp Maple - (Ver.2) ( ) September 27, 2011 1 (I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information